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Abstract. The aim of this study is to develop a combined approximation technique to �nd
a numerical solution to the foam drainage equation in various absorption and distillation
processes. In this approach, �rst, discretization of time is performed with the aid of the
Taylor expansion series. Hence, a collocation method based on novel Bessel polynomials
is utilized for the space variable. Thus, the solution is found by solving a linear system
of algebraic equations in each time step. Numerical simulations are provided to check the
accuracy and e�ciency of the presented algorithm. The numerical results are compared
with exact solutions as well as the outcomes of other existing numerical methods.
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1. Introduction

This research aims to develop an e�cient approxima-
tion algorithm to solve the nonlinear foam drainage
equation [1]:
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with initial condition:

W jt=0 = W0(x): (2)

Here, W (x; t) as the scaled coordinates and t the
time position) denotes the cross-section of a channel
formed where three �lms meet, usually indicated as
\Plateau border". Foams naturally appear in numer-
ous applications and technological processes and have
attracted the attention of many researchers given their
signi�cance, see cf. [2,3].
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By substituting W (x; t) := w2(x; t) in Eqs. (1)
and (2), we arrive at the following nonlinear initial-
value problem:8><>:wt+2w2 wx�w2

x;�1
2 wwxx=0;

0�x�L; 0� t�T
wjt=0 = w0(x) :=

p
W0(x); 0 < x < L

(3)

where T > 0 is a given �nal time and L > 0 is
a real constant. In addition, the following bound-
ary conditions are supplemented with the initial-value
problem (3):

w(0; t)=h0(t); w(L; t)=h1(t); 0 � t � T; (4)

where h0(t) and h1(t) are two prescribed functions.
Over the last few decades, researchers have proposed
several analytical techniques as well as approxima-
tive algorithms to solve the foam drainage equation.
Among these methods, we mention the Tahn and
Adomian decomposition methods [4], the Homotopy
Perturbation Method (HPM) [5], the symmetry Lie
group approaches [6,7], the series solution based on
the homotopy analysis method [8], the Exp-function
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approach [9], the Homotopy Perturbation Transform
Method (HPTM) [10], a semi-analytical approach
based upon the quasilinearization and the Haar wavelet
bases, and a hybrid computational approach based on
the generalized Chebyshev polynomials and quasilin-
earization technique [11].

The main objective of this research study is
to derive a new combined approximation technique
based on a combination of Taylor-series approach and
spectral collocation scheme for the numerical treatment
of the nonlinear foam-drainage equation. On the one
hand, the considered equation is a time-dependent
model problem and, thus, it is of interest to develop an
accurate time-marching algorithm for our model. On
the other hand, collocation-based methods have been
applied successfully to many model problems in science
and engineering due to their e�ciency as well as simple
applicability while giving high accuracy. Among many
existing approaches based on the collocation strategy,
we can mention the meshfree methods [12,13], the spec-
tral collocation approach based on diverse polynomial
bases such as Legendre, Chebyshev, Chelyshkov, etc.
utilized in [14{17], over the past decades.

In approximate terms, the Taylor approach with
second-order accuracy is �rst employed to discretize
the time variable. Then, in each time step, it is
supposed that the underlying model problem has a
solution in terms of the novel Bessel series expansion
of the unknown function. Afterwards, representing all
involved unknowns in the Bessel matrix form together
with the proper usage of a suitable set of collocation
points helps determine the unknown series coe�cients
by solving a linear system of matrix equations. Indeed,
the Bessel polynomial of order ` is de�ned explicitly as
[18]:

B`(x) =
X̀
�=0

(`+ �)!
(`� �)!

x�

2� �!
; ` = 0; 1; : : : : (5)

See also [19{22] for recent applications. Besides the
fact that all coe�cients of B`(x) are positive, they also
satisfy the second-order di�erential equation:

x2 B00̀(x) + 2(x+ 1)B0̀ (x)� ` (`+ 1)B`(x) = 0:

It should be noted that the considered Bessel functions
B`(x) di�er from the traditional Bessel functions of
the �rst kind, which have previously been utilized in
various research papers, see cf. [17,23].

2. Taylor scheme for time discretization

First, an attempt is made to discretize the foam
drainage equation with respect to time variable. In
this respect, the interval [0; T ] can be subdivided into
(M + 1) grid points:

0 =: t0 < t1 = �t < : : : < tM := M�t = T;

being �t = tn � tn�1 the uniform time step. To
get a time-accurate discretization scheme, according to
the Taylor series representation for wn = w(x; tn) we
obtain the following:

wnt =
wn+1 � wn

�t
� 1

2
�t wntt +O(�t2): (6)

To proceed, we di�erentiate Eq. (3) with respect to t
to get:

wntt =
h1

2
wn wnxx + (wnx )2 � 2(wn)2 wnx

i
t

=
1
2
wnt w

n
xx +

1
2
wn (wnt )xx + 2wnx (wnt )x

�4wn wnt w
n
x � 2(wn)2 (wnt )x:

By replacing the �rst-order derivatives wnt � (wn+1 �
wn)= �t in all occurrences, we may write wntt as follows:

�t wntt =
�

1
2
wnxx � 4wn wnt

�
(wn+1 � wn)

+2
�
wnx � (wn)2�(wn+1

x � wnx )

+
1
2
wn(wn+1

xx � wnxx): (7)

Next, Eq. (7) is inserted into the right-hand side of
Eq. (6) using the time discretized form of Eq. (3), i.e.:

wnt = �2(wn)2 wnx + (wnx )2 +
1
2
wn wnxx;

for the left-hand side of Eq. (6). After some manipula-
tions, the following time discretized equation for Eq. (3)
with second-order accuracy in time is obtained:h

�t(2wn wnx � 1
4
wnxx) + 1

i
wn+1

��t
h
wnx � (wn)2

i
wn+1
x � �t

4
wn wn+1

xx

= wn
h
1 + �t wn wnx

i
; (8)

for n = 0; 1; :::. To start computations in Eq. (8),
we need w0 = w0(x), which is obtained from the
initial condition in Eq. (3). Moreover, the boundary
conditions obtained from Eq. (4) at x = 0; L are:

wn+1(0) := hn+1
0 = h0(tn+1);

wn+1(L) := hn+1
1 = h1(tn+1); n = 0; 1; : : : ;M � 1:

(9)

3. Bessel functions: Basic matrix relations

Now, the �rst stage in discretizing the foam drainage
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equation in time is carried out through Eq. (8). In
the second stage, it is required to approximate the
solution of the original model (1) with respect to the
space variable through solving Eq. (8). To do so, it
is assumed that the solution wn+1 of Eq. (8) can be
written as a combination of B`(x). In the �rst time
step, i.e., for n = 0, we use the initial condition w0(x)
to determine w0 exactly. Let Wn;N (x) denotes the
approximate solution of wn at time level tn. Then,
the Wn+1;N (x) is sought after at the next time level
tn+1 as follows:

Wn+1;N (x) =
NX̀
=0

a`;n B`(x); x 2 [0; L]; (10)

for n = 0; 1; : : : ;M � 1. Here, a`;n, ` = 0; 1; : : : ; N
as the unknown Bessel coe�cients must be found. Let
us introduce the Bessel vector BN (x) as well as the
unknown vector An;N in the forms:

BN (x) = [B0(x) B1(x) : : : BN (x)] ;

An;N = [a0;n a1;n : : : an;N ]T :

With the help of these vectors, we are able to rewrite
Eq. (10) in a compact representation as follows:

Wn+1;N (x) = BN (x) An;N ; (11)

additionally, by introducing the matrix D shown
in Box I, and the monomial vector XN (x) =�
1 x x2 : : : xN

�
, we shall express BN (x) as fol-

lows:

BN (x) = XN (x) DT : (12)

We are left with �nding a relationship between XN (x)
and d

dxXN (x). A straightforward calculation shows
that:

d
dx

XN (x) = XN (x) MT ;

MT =

26666664
0 1 0 : : : 0
0 0 2 : : : 0
...

...
. . .

...
...

0 0 0
. . . N

0 0 0 : : : 0

37777775
(N+1)�(N+1)

: (13)

We consider the result of the convergence of the
Bessel functions as N ! 1. This property indicates
that the Bessel function is exponentially convergent in
the weighted L2 norm with respect to weight function
r(x) = exp(�2L=x).

Theorem 3.1 [22]. Let ZN (x) = BN (x) An;N
be the best square approximation to Z(x). Under
the assumptions Z(x) 2 CN+1[0; L] and M1 :=
maxx2[0;L] jZ(N+1)(x)j, we have the following error
bound:

jjZ(x)� ZN (x)jjr � M1p
2N + 3

LM+ 3
2

(N + 1)!
1

exp(1)
:

4. Taylor-Bessel collocation method

Now, the solution to the discretized model problem (8)
is to be approximated via Eq. (10). To do so, we �rst
de�ne the set of collocation points fxqgNq=0 on [0; L]
with:

xq =
L
N
q; q = 0; 1; : : : ; N: (14)

Next, we express the unknown functions wn+1; wn+1
x ;

and wn+1
xx in Eq. (8) in a matrix form. By placing

the collocation points (Eq. (14)) into the resulting
equation, we get a linear matrix equation.

Our next task is to combine two previously as-
serted Relations (Eqs. (11) and (12)). In this way,
Eq. (10) is rewritten in the matrix expression as follows:

Wn+1;N (x) = XN (x) DT An;N : (15)

D =

26666666666666666664

1 0 0 : : : 0 0

1 1 0 : : : 0 0

1 3 3 : : : 0 0
...

...
. . . . . . . . .

...

1 N !
(N�2)! 1! 21

(N+1)!
(N�3)! 2! 22 : : : (2N�2)!

0! (N�1)! 2N�1 0

1 (N+1)!
(N�1)! 1! 21

(N+2)!
(N�2)! 2! 22 : : : (2N�1)!

1! (N�1)! 2N�1
(2N)!

0!N ! 2N

37777777777777777775
(N+1)�(N+1)

Box I
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After evaluating the preceding equation at the colloca-
tion points (Eq. (14)) we arrive at:

Wn+1 = Y DT An;N ; Wn+1 =

26664
Wn+1;N (x0)
Wn+1;N (x1)

...
Wn+1;N (xN )

37775 ;

Y =

26664
XN (x0)
XN (x1)

...
XN (xN )

37775 : (16)

We can represent the �rst and second-orders
derivatives in Eq. (8) through Eqs. (13) and (15) in
the matrix forms:(

wn+1
x � W(1)

n+1;N (x) = XN (x) MT DT An;N ;
wn+1
xx �W(2)

n+1;N (x)=XN (x) (MT )2 DT An;N : (17)

Similarly, by evaluating them at the collocation points,
the �rst and second derivatives in Eqs. (17) can be
written in the matrix forms:

_Wn+1 = Y MT DT An;N ;

_Wn+1 =

266664
W(1)
n+1;N (x0)
W(1)
n+1;N (x1)

...
W(1)
n+1;N (xN )

377775 ; (18)

�Wn+1 = Y (MT )2 DT An;N ;

�Wn+1 =

266664
W(2)
n+1;N (x0)
W(2)
n+1;N (x1)

...
W(2)
n+1;N (xN )

377775 : (19)

By introducing the following functions:

pn;0(x) = 2�t wn wnx � 1
4

�t wnxx + 1;

pn;1(x) = ��t wnx + �t (wn)2;

pn;2(x) = �1
4

�t wn;

gn(x) = wn + �t (wn)2 wnx ;

and using the approximations Wn+1;N (x);W(1)
n+1;N (x);

W(2)
n+1;N (x), we may rewrite Eq. (8) as:

pn;2(x)W(2)
n+1;N (x) + pn;1(x)W(1)

n+1;N (x)

+pn;0(x)Wn+1;N (x)=gn(x); 0�x�L: (20)

By inserting the collocation points into Eq. (20), the
following system is obtained:

Pn;2 �Wn+1 + Pn;1 _Wn+1 + Pn;0 Wn+1 = Gn: (21)

In Eq. (21), the matrices Pn;l, and the vector Gn take
the forms:

Pn;l=

26664
pn;l(x0) 0 : : : 0

0 pn;l(x1) : : : 0
...

...
. . .

...
0 0 : : : pn;l(xN )

37775
(N+1)�(N+1)

Gn =

26664
gn(x0)
gn(x1)

...
gn(xN )

37775
(N+1)�1

:

` = 0; 1; 2. Let's place Eqs. (16), (18), and (19) into
Eq. (21). This yields the fundamental matrix equation:

Vn An;N = Gn; (22)

where:

Vn :=
�
Pn;2 Y (MT )2 + Pn;1 Y MT +Pn;0 Y

	
DT :

Clearly, the fundamental matrix equation (Eq. (22)) is
a set of (N + 1) linear equations in terms of (N + 1)
unknown coe�cients a0;n; a1;n; : : : ; aN;n to be found.

To consider the boundary conditions (Eq. (9)),
we must also convert them into matrix form. Based
on the representation (Eq. (15)), these conditions, i.e.
Wn+1:N (0) = hn+1

0 and Wn+1;N (1) = hn+1
1 , can be

expressed in the matrix notation:bVn;0 An;N = hn+1
0 ;bVn;0 := XN (0) DT = [v̂0;0 v̂0;1 : : : v̂0;N ];bVn;1 An;N = hn+1
1 ;bVn;1 := XN (1) DT = [v̂1;0 v̂1;1 : : : v̂1;N ]:

Next, we substitute the �rst two rows of the aug-
mented matrix [Vn; Gn] by the vectors [bVn;0;hn+1

0 ]
and [bVn;1;hn+1

1 ], for convenience. Thus, the modi�ed
linear system of equations is obtained by Eq. (23)
as shown in Box II. Now, by solving the above
linear system, we may to obtain the unknown Bessel
coe�cients in Eq. (15).

5. Numerical simulations

To testify the performance of the combined Taylor
and Bessel-collocation approach, numerical simulations
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h bVn; bGn

i
=

266666664
v̂0;0 v̂0;1 v̂0;2 v̂0;3 : : : v̂0;N ; hn+1

0
v̂1;0 v̂1;1 v̂1;2 v̂1;3 : : : v̂1;N ; hn+1

1
v2;0 v2;1 v2;2 v2;3 : : : v2;N ; gn(x2)
...

...
...

. . .
...

... ;
...

vN�1;0 vN�1;1 vN�1;2 vN�1;3 : : : vN�1;N ; gn(xN�1)
vN;0 vN;1 vN;2 vN;3 : : : vN;N ; gn(xN )

377777775 : (23)

Box II

based on two test cases are given for the nonlinear
initial and boundary value Problems (Eqs. (3) and (4)).
Furthermore, comparisons of numerical results and the
outcomes of diverse existing schemes are also made for
validation. For implementations, MATLAB software
(version 2017a) is employed.

Test problem 5.1. We �rst consider the foam
drainage equation (Eq. (3)) with the following initial
condition [4,24,11]:

w0(x) = � tanh(x):

The exact solution is given by w(x; t) = � tanh(x� t).
We �rst employ �t equal to T = 0:01. Consider-

ing Eq. (10) with N = 5, the following approximation
for 0 � x � L = 1 is obtained:

W1;5(x) = 0:01807890048x5 � 0:1934987886x4

+0:4424756341x3 � 0:03689672509x2

�0:9975210119x+ 0:00999966668:

We plot the above obtained solution as an approxima-
tion to w(x; T ) in Figure 1. We also show the cor-
responding Absolute Errors (AE) jw(x; T )�W1;5(x)j

Figure 1. Graphs of exact and solutions at di�erent time
instants t = �t for �t = 0:1; 0:01; 0:001; N = 5 in test
problem 5.1.

Figure 2. Graphs of absolute errors at di�erent time
instants t = �t for �t = 0:1; 0:01; 0:001; N = 5 in test
problem 5.1.

at x 2 [0; 1] in Figure 2. Besides �t = 0:01, we use
�t = 0:1; 0:01 to demonstrate the impact of di�erent
values of time step size on the computations.

To validate our results, some comparisons are
made in Tables 1 and 2, which show the numerical
solutions obtained by the presented scheme evaluated
at t = 0:01; 0:001 and various x 2 [0; 1]. The corre-
sponding AE are also reported in the second column
of these tables. Furthermore, analogue results of
the previously well-established methods are displayed
in Table 1. These include the collocation method
based on Bivariate Chebyshev Functions (BCF) [11],
the Adomian Decomposition Method (ADM) [4], the
Homotopy Perturbation Method (HPM) [5], the Haar
Wavelet Quasilinearization Approach (HWQA) [24],
and the Homotopy Perturbation Transform Method
(HPTM) [10]. It can be observed that our numer-
ical results are in good agreement with the corre-
sponding exact solutions. However, our approach
is more straightforward than other existing meth-
ods.

Test problem 5.2. As the second example, we
consider the following initial condition [4,24,11]:
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Table 1. The comparison of numerical results in Test Problem 5.1 for N = 8 and various x 2 [0; 1] at time t = 0:01.
x
64 Present AE BCF [11] HWQA [24] ADM [4] HPM [5] HPTM [10]

1 �0:0056255222 5:82�7 �0:005624 �0:005626 �0:004253 �0:004358 �0:048341
3 �0:0368592824 9:87�7 �0:036858 �0:036874 �0:009002 �0:027011 �0:017108
5 �0:0680207213 9:16�7 �0:068019 �0:068085 �0:015399 �0:058439 �0:014053
7 �0:0990498931 7:28�7 �0:099049 �0:099199 �0:023360 �0:089857 �0:045083
9 �0:1298876683 5:79�7 �0:129887 �0:130158 �0:032796 �0:121194 �0:075921
27 �0:3900638141 2:53�7 �0:390063 �0:392716 �0:168432 �0:387936 �0:336218
29 �0:4162316016 2:05�7 �0:416231 �0:419230 �0:187449 �0:414778 �0:362463
31 �0:4417276182 1:71�7 �0:441727 �0:445063 �0:206944 �0:440899 �0:388074
33 �0:4665295588 1:49�7 �0:466529 �0:470208 �0:226840 �0:466274 �0:413043
35 �0:4906189456 1:30�7 �0:490618 �0:494646 �0:247065 �0:490881 �0:437369
55 �0:6907427887 2:57�8 �0:690742 �0:697478 �0:453650 �0:693486 �0:651564
57 �0:7067322567 3:28�8 �0:706732 �0:713630 �0:473606 �0:709521 �0:671453
59 �0:7220308937 8:46�8 �0:722030 �0:729056 �0:493271 �0:724843 �0:691471
61 �0:7366545782 1:55�7 �0:736654 �0:743775 �0:512612 �0:739469 �0:711761
63 �0:7506204287 1:27�7 �0:750620 �0:757808 �0:531603 �0:753420 �0:732485

Table 2. The comparison of numerical results in Test problem 5.1 for N = 8 and various x 2 [0; 1] at time t = 0:001.

x
64 Present AE BCF [11] HWQA [24] ADM [4] HPM [5] HPTM [10]

1 �0:0146242559 2:99�7 �0:014624 �0:014624 �0:000433 �0:013626 �0:039344

3 �0:0458432514 4:06�7 �0:045843 �0:045847 �0:002700 �0:044858 �0:008125

5 �0:0769726894 2:46�7 �0:076972 �0:076984 �0:006885 �0:076014 �0:023004

7 �0:1079527574 6:67�8 �0:107953 �0:107973 �0:012948 �0:107033 �0:053984

9 �0:1387246409 4:28�8 �0:138725 �0:138769 �0:020837 �0:137855 �0:084756

27 �0:3976673000 1:64�8 �0:397667 �0:398034 �0:160042 �0:397455 �0:343819

29 �0:4236441749 1:58�8 �0:423644 �0:423939 �0:181144 �0:423499 �0:369872

31 �0:4489424537 6:57�9 �0:448942 �0:449301 �0:202947 �0:448860 �0:395283

33 �0:4735409398 6:06�9 �0:473541 �0:473964 �0:225333 �0:473515 �0:420046

35 �0:4974222452 1:56�8 �0:497422 �0:497826 �0:248187 �0:497448 �0:444159

55 �0:6954195363 5:22�8 �0:695419 �0:696107 �0:480881 �0:695694 �0:655872

57 �0:7112084249 3:79�8 �0:711208 �0:711883 �0:502829 �0:711487 �0:675449

59 �0:7263108975 1:93�7 �0:726311 �0:726999 �0:524303 �0:726592 �0:695130

61 �0:7407432348 3:37�7 �0:740744 �0:741464 �0:545268 �0:741025 �0:715055

63 �0:7545229508 2:54�7 �0:754523 �0:755247 �0:565692 �0:754803 �0:735378

w0(x) = (1 + ex)�1 � 1
2
:

It is shown that the exact solution is given by w(x; t) =
(1 + ex� t4 )�1 � 1

2 .
For this test problem, we consider T = 0:1,

�t = 0:001, and N = 5. The snapshots of numerical
solutions at di�erent time instants t = s�t, s =
1; 2; : : : ; 100 are shown in Figure 3. In addition, the
corresponding AE are also plotted in Figure 4. In this

case, the approximate solutions at t = �t and t = T
are obtained as follows:

W1;5(x) = �0:001109924646x5 � 0:001404371504x4

+0:02164565497x3 � 0:0002217269879x2

�0:2499815546x+ 0:00006249999967;
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Table 3. The comparison of L2 and L1 error norms in Test problem 5.2 for diverse N = 4; 5; : : : ; 8, �t = 0:001; 0:01; 0:1
evaluated at the �nal times t = T with T = 0:1; 0:5; 1.

�t = 0:001 �t = 0:01 �t = 0:1
T = 0:1 T = 0:5 T = 1 T = 1

N L1 L2 L1 L2 L1 L2 L1 L2

4 6:137�6 1:533�6 1:534�4 2:034�5 6:512�4 3:349�4 5:859�4 2:966�4

5 6:264�6 2:606�7 1:607�4 4:955�5 1:133�3 5:212�4 9:678�4 4:496�4

6 5:918�6 2:316�7 1:391�4 5:211�5 1:577�3 7:531�4 9:771�4 5:598�4

7 6:033�6 6:316�8 2:164�4 7:232�5 3:833�3 1:668�3 2:514�3 9:270�4

8 6:076�6 2:276�7 3:382�4 9:884�5 1:249�3 4:766�3 1:919�3 1:041�3

Figure 3. Graphs of numerical solutions in Test
problem 5.2 at di�erent time instants t = s�t; s = 1; 2;
: : : ; 100 for �t = 0:001, T = 0:1, and N = 5.

Figure 4. Graphs of absolute errors in Test problem 5.2
at di�erent time instants t = s�t; s = 1; 2; : : : ; 100 for
�t = 0:001, T = 0:1, and N = 5.

W100;5(x)=�0:000731548639x5�0:002111324555x4

+0:0224345299x3 � 0:002035416473x2

�0:249920896x+ 0:0062496745:

We next compute the maximum AE which are denoted

by L1 and L2 error norms evaluated at the �nal time
t = T via:

L1 := max
0�x�1

jw(x; T )�WM+1;N (x)j;

L2 :=
� 1
N + 1

Z 1

0
[w(x; T )

�WM+1;N (x)]2dx
� 1

2
:

We utilize various N = 4; 5; : : : ; 8 and report the results
of errors in Table 3. Also, di�erent �nal times T =
0:1; 0:5; and T = 1 are used with the step sizes �t =
0:001; 0:001, and T = 0:1.

Finally, our numerical results and computations
are veri�ed through a comparison with well-established
numerical models and simulations. Tables 4 and 5 show
these comparisons with the methods used in Tables 1
and 2 in Test problem 5.1. However, in Tables 4 and
5, the Laplace Decomposition Method (LDM) [25] is
employed rather than HPM.

6. Conclusions

In this work, a space and time-accurate approximation
technique was presented to solve the foam drainage
equation. For the temporal discretization, the Taylor
series expansion approach with order O(�t2) was
employed. Afterwards, at each time step, the novel
Bessel based collocation approach with exponential
accuracy was utilized to approximate the space vari-
able. By using the matrix representations of these
polynomials in conjunction with the collocation points,
the scheme converts the underlying model problem into
an algebraic linear system of equations. The utility
and accuracy of the presented technique were exam-
ined by using numerical experiments. Comparisons
with earlier computational and experimental studies
were also made. The presented results demonstrated
the reliability and the applicability of the presented
combined algorithm for the nonlinear time-dependent
foam drainage equation. The combined technique with
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Table 4. The comparison of numerical results in Test problem 5.2 for N = 8 and various x 2 [0; 1] at time t = 0:1.
x
64 Present AE BCF [11] HWQA [24] ADM [4] HPM [5] HPTM [10]

1 +0:0023435127 2:20�7 +0:002344 +0:002344 +0:002098 +0:002083 +0:002084
3 �0:0054690211 4:89�7 �0:005469 �0:005468 �0:005793 �0:005785 �0:005787
5 �0:0132787383 6:11�7 �0:013278 �0:013278 �0:013664 �0:013650 �0:013651
7 �0:0210818974 6:53�7 �0:021081 �0:021081 �0:021512 �0:021508 �0:021509
9 �0:0288747443 6:56�7 �0:028874 �0:028874 �0:029357 �0:029354 �0:029353
27 �0:0979371596 5:45�7 �0:097937 �0:097935 �0:098832 �0:098830 �0:098831
29 �0:1054263741 5:27�7 �0:105426 �0:105424 �0:106358 �0:106357 �0:106358
31 �0:1128664061 5:08�7 �0:112866 �0:112863 �0:113834 �0:113833 �0:113833
33 �0:1202541435 4:88�7 �0:120254 �0:120251 �0:121255 �0:121254 �0:121254
35 �0:1275865681 4:69�7 �0:127586 �0:127583 �0:128620 �0:128619 �0:128619
55 �0:1972794716 2:66�7 �0:197279 �0:197274 �0:198532 �0:198532 �0:198532
57 �0:2038347870 2:50�7 �0:203834 �0:203830 �0:205099 �0:205099 �0:205099
59 �0:2103071180 2:27�7 �0:210307 �0:210304 �0:211582 �0:211582 �0:211582
61 �0:2166949149 1:81�7 �0:216695 �0:216691 �0:217979 �0:217979 �0:217979
63 �0:2229967352 8:29�8 �0:222997 �0:222994 �0:224288 �0:224288 �0:224288

Table 5. The comparison of numerical results in Test problem 5.2 for N = 8 and various x 2 [0; 1] at time t = 0:01.
x
64 Present AE BCF [11] HWQA [24] ADM [4] HPM [5] HPTM [10]

1 �0:0032812030 1:18�10 �0:003281 �0:003281 �0:003309 �0:003307 �0:003307
3 �0:0110919303 3:50�10 �0:011092 �0:011091 �0:011126 �0:011123 �0:011123
5 �0:0188972450 5:21�10 �0:018897 �0:018897 �0:018939 �0:018935 �0:018934
7 �0:0266933472 6:16�10 �0:026693 �0:026693 �0:026741 �0:026737 �0:026736
9 �0:0344764548 6:52�10 �0:034476 �0:034476 �0:034529 �0:034525 �0:034524
27 �0:1033336837 5:28�10 �0:103334 �0:103333 �0:103430 �0:103424 �0:103423
29 �0:1107878235 5:10�10 �0:110788 �0:110787 �0:110888 �0:110883 �0:110880
31 �0:1181905313 4:91�10 �0:118191 �0:118190 �0:118297 �0:118289 �0:118287
33 �0:1255387617 4:71�10 �0:125539 �0:125538 �0:125649 �0:125641 �0:125638
35 �0:1328295665 4:52�10 �0:132830 �0:132829 �0:132943 �0:132932 �0:132932
55 �0:2020073393 2:59�10 �0:202007 �0:202007 �0:202149 �0:202136 �0:202132
57 �0:2085030871 2:27�10 �0:208503 �0:208502 �0:208650 �0:208636 �0:208629
59 �0:2149147407 1:71�10 �0:214915 �0:214914 �0:215065 �0:215047 �0:215041
61 �0:2212408533 9:18�11 �0:221241 �0:221240 �0:221389 �0:221376 �0:221368
63 �0:2274800989 1:51�11 �0:227480 �0:227480 �0:227639 �0:227618 �0:227608

inherited simplicity and ease of implementation can be
easily extended to other nonlinear model problems in
diverse disciplines of engineering and sciences.

Nomenclature

AE Absolute Errors
BCF Bivariate Chebyshev Functions
ADM Adomian Decomposition Method
HPM Homotopy Perturbation Method

HWQA Haar Wavelet Quasilinearization
Approach

HPTM Homotopy Perturbation Transform
Method

LDM Laplace Decomposition Method
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