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Abstract. The present study investigates the design of a very low head axial ow turbine
using surrogate-based optimization. The design variables were blade angles between guide
vanes and runner blades with the objective function of turbine e�ciency. A Latin hypercube
sampling method was initially used to design the experiment with thirty sampling points,
and a large eddy simulation was modeled to analyze the ow for all sampling points. The
correlation between the design variables and turbine e�ciency was then evaluated using
surrogate models while the optimal design variables were identi�ed. In addition, several
optimizers were employed to tackle the proposed problem and evaluate their performance.
The optimal design of blade angles �1 � �8 of 10�, 20�, 30�, 40�, 25�, 45�, 55�, and 65�
increased the turbine e�ciency up to 89.87%. The approach of using surrogate modeling
was proved to be very e�ective and simple in optimizing a design of blade angles of stator-
rotor, and it could be used for designing any other new blades.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Hydro energy generated from a large dam is very
powerful with the ability to provide clean energy, hence
practicable for electricity production with high poten-
tial as an alternative to coal and fossil fuels. However,
the number of large dams in Thailand is not su�cient
and their locations are not well distributed, especially
in remote areas. One of interesting alternative energy
sources is use of a Very Low Head (VLH) hydro turbine
replacing a dam that needs high maintenance cost, ash
oods, etc. The VLH hydro turbine is ecologically
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saved to operate within a small water reservoir such
as a weir, a small waterfall, etc. Despite its several
advantages, it cannot be totally used as a substitute
for a large dam due to insu�cient energy storage for a
community. Moreover, the turbine needs a generator
with high reliability and e�ciency. For renewable
energy supplement, an axial ow turbine is arguably
the most popular owing to its high e�ciency [1]. An
optimum design of the turbine is therefore needed for
maximum energy output.

Computational Fluid Dynamics (CFD) is one of
the most powerful engineering tools for uid ow anal-
ysis. Turbulence model simulation has been studied
throughout the literature to design pumps, turbines [2{
6], and other systems and according to the �ndings,
the simulation results agreed well with those of the
experiments. Here, CFD simulation of a Kaplan tur-
bine was employed to predict the ow in a conical draft
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tube directly below the runner cone using turbulence
models of Unsteady Reynolds Average Navier-Stokes
(URANS). The results were su�ciently precise when
compared with the experimental results [7]. Large
Eddy Simulation (LES) turbulence model also yielded
good simulation results regarding the pressure on the
blade on the pressure and suction sides, which also
agreed well with the experimental results [8]. With
simulation of axial ow hydraulic turbines, Sutikno
and Adam predicted the turbine performance using
the turbulence model k� " (Reynolds Average Navier-
Stokes, RANS). The computational results were then
compared with that from experiments as well as that
of the power output with less than 5% di�erence [9].
Cheng et al. compared two turbulence models obtained
from LES and RANS that were used to simulate the
turbulent ow over a cube matrix. When comparing
the experimental results with simulation results, LES
was superior to RANS [10]. Su et al. simulated the in-
terior ow characteristics of hydraulic turbines using a
combination of LES with the Smagorinsky-Lilly model
and RANS with k � " turbulence model. The LES
results were more accurate than that obtained from the
k�" to predict the overall performance [11]. Therefore,
this study selected the LES method with Smagorinsky-
Lilly model for uid ow analysis to reduce the e�ect of
unsteadiness and gain the required accuracy for turbine
simulation.

Design of uid machinery based on CFD has been
widely reported in the literature. For example, a
suitable airfoil section for blades of a horizontal axis
hydrokinetic turbine was studied based on CFD in [12].
The e�ects of the number of blades, initial angle of
attack of the airfoil, twist angle of the blade, and
chord length on the power coe�cient of the airfoil,
pressure coe�cient, and cavitation number of high-
head turbine were investigated based on CFD and
real experimental study. In good agreement with the
experimental results, the results con�rmed that the
design improvement of the turbine blade through CFD
method was accurate [13]. The structural optimiza-
tion of the cover of a high-head axial hydro turbine
was also investigated based on one-way uid-structure
interaction computation using Finite Element Analysis
(FEA) and CFD [14]. Similarly, in the blade design of a
horizontal-axis hydrokinetic turbine, a hybrid approach
which was a combination of Blade Element Momentum
(BEM) theory, Genetic Algorithm (GA), CFD, and
FEA techniques was employed to improve the blade
by optimizing chord lengths and blade twist angles.
According to this study, the power coe�cient of the
turbine increased by 17% [15]. The Francis carbon
blades were studied using FEA to design blades as thin
as possible with reduced weight and high strength [16].
Optimization of Francis turbine blades for a low-head
runner case study was also developed based on a

multi-�delity design algorithm [17]. Optimization of
a VLH turbine blade based on XFOIL was reported
in [18] to minimize the drag-to-lift ratio. To increase
turbine e�ciency, the runner blade and draft tube were
designed for optimization using the CFD and GA [19].
In addition, the optimum design of an axial ow fan
was presented in [20] while using CFD and vortex
law for uid ow analysis. Similarly, optimization of
air-turbine blades for increasing torque was presented
in [21]. In this study, CFD was used as a tool for
uid ow analysis with the design variables, namely
blade tip width and angle of turbine blade. In addition,
surrogate assisted optimization is wieldy used for axial
ow turbine optimization to overcome the expensive
computation problems such as optimization of a sweep
blade of a Wells turbine [22], turbomachinery blade
design in [23,24], a pump and an axial compres-
sor [25,26], a micro gas turbine [27], and a high-head
pump turbine [28].

Nowadays, while designing a hydro turbine, most
engineers focus on increasing the capability of VLH
hydropower. An axial ow turbine was proved to
be appropriate for low head water sources [1]. The
turbine set consists of guide vanes and runner blades
that signi�cantly a�ect the turbine performance; both
assemblies are the key parts in energy conversion.
Therefore, optimization of a VLH axial ow turbine
through designing the guide vanes and runner blades is
interesting. According to the literature, an optimiza-
tion study on a hydro turbine puts its main focus on a
high-head turbine; however, the VLH turbine has been
rarely studied.

In the present study, optimization of a VLH hydro
turbine was performed based on a combination of a
surrogate model and a Meta-Heuristic (MH) optimizer.
The optimization problem was posed to maximize
the turbine e�ciency with the blade angles as the
design variables. In this regard, several MHs along
with response surface and kriging surrogate models
were employed, and CFD was used for real objective
function calculation.

2. Optimization problem formulation

This study aims to optimize a three-dimensional axial
ow turbine model, as shown in Figure 1. The
operating conditions of the local site were de�ned with
a water head level of two meters and the ow rate of
5 m3/s. These values were used to solve the runner
diameter of the turbine given in Eq. (1):

Q =
�
�D2
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�
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�2
#
�p2gH: (1)

The diameter ratio of hub to tip (DhD ) for an axial
ow turbine ranges typically from 0.4 to 0.55 [29]. In
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Figure 1. Geometry of an axial ow turbine.

Figure 2. Angle positions of the guide vane and the
runner blade.

this research, the average value of 0.48 was assumed
to calculate the blade diameter. The turbine blade
is characterized by a tip diameter of 1.15 meters and
a hub diameter of 0.55 meters for 5 blades and 12
guide vanes, respectively. The geometry of an axial
ow turbine was created using the ANSYS Workbench
software. The region around the turbine is composed of
�ve parts namely inlet, guide vane, runner blade, draft
tube section, and outlet. Both the inlet and outlet of
the tube were characterized by a diameter of 1600 mm.

The guide vanes and runner blades were the core
components used for improving the performance of an
axial ow turbine. The design variables of the blade
angles between guide vane and runner blade at the
leading and trailing edge positions of the hub and
blade tip were taken into account to assess the turbine
e�ciency. The guide vane angles �1 and �2 in the hub
position were de�ned with the tip angles �3 and �4,
respectively. Similarly, the runner blade angles �5 and
�6 in the hub position were de�ned with the tip angles
�7 and �8, respectively. Figure 2 presents a schematic

demonstration of the blade angles between guide vane
and runner blade.

The thickness values of the guide vanes on the
leading and trailing edges were 10 mm and 5 mm,
respectively, and those of the runner blade in the hub
and tip positions range from 5 to 20 and 5 to 15 mm,
respectively, from the leading edge to the trailing
edge. The values of the initial thickness of both guide
vane and the runner blade were de�ned based on the
constraints on materials and manufacturing processes.

To optimize the blade shape, the objective func-
tion is posed to maximize the turbine e�ciency when
the optimization which is formulated as a minimization
problem can be expressed as follows:

min : 1� �(�)
100

; (2)

subjected to:

Li � �i � Ui;
where �(�) is a function of the turbine e�ciency and
� = (�1; � � � ; �8) represent the design variables detailed
in Figure 2; Li and Ui are the lower and upper bounds
of the angles �i, respectively. The CFD technique
(LES) was also introduced to determine the turbine
e�ciency.

3. Computational uid dynamics

3.1. Governing equations
The present study employed the LES turbulence model
to simulate the uid ow in a hydro turbine system,
proven to be reliable in studies of Su et al. [11] and
Altimemy et al. [30]. The LES method was explicitly
resolved such that eddy smaller than the grid size
was simulated by implementing a Subgrid-Scale (SGS)
model. A large-scale structure was solved using the
Navier-Stokes equations through a �ltering approach
de�ned as:
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where �uj = uj � u0j is the �ltered velocity vector in
which the overbar stands as a �ltering operator, �
the density of the uid, �p the resolved pressure, t the
time, and �ij = uiuj � ujui the subgrid shear stress
evaluated using SGS models. Through the Boussinesq
hypothesis, the SGS turbulent stress is de�ned by:

�ij =
1
3
�kk�ij � 2�t �Sij ; (5)
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where �ij is the Kronecker delta, �t the SGS eddy
viscosity, �kk the SGS stress, and �Sij the strain-rate
tensor in relation to the following:

�Sij =
1
2

�
@�ui
@xj

+
@�uj
@xi

�
: (6)

The Wall-Adapting Local Eddy-viscosity (WALE)
method was modeled to solve the SGS eddy-viscosity
through the following relations:
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Ls = min
�
kd;CsV 1=3

�
; (9)

where Ls is the mixing length for SGS, k the Von
K�arm�an constant, d the shortest distance to the nearest
wall, Cs the WALE constant of 0.325, and V the mesh
cell volume. The eddy-viscosity is solved nearly zero
in areas close to walls without any application of the
damping function [11,30].

3.2. CFD simulation
A moving mesh was utilized to simulate the ow in the
turbine. The LES method with the Smagorinsky-Lilly
model is an e�cient turbulence model with acceptable
results in simulating the ow �eld in the work of hydro-
turbines [11]. First, it was used in this study to
evaluate the ow e�ect on the turbine blade. CFD
analysis was then carried out using the ANSYS Fluent
software for turbine simulations.

The results obtained from CFD validation, prior
to their application in this study, were simulated and
compared with the experimental results obtained from
Ramos et al. [31]. Initially, the turbine was de�ned with
a diameter of 100 mm and �ve blades. The turbine
blade pro�les were described by the blade angles in
the experiment [31]. In the proposed approach, the
validation results of CFD simulation were in good
agreement with those from experiment, as shown in
Figure 3. It should be noted that the turbine in [31]
is merely used for validating the CFD simulation
accuracy. It is di�erent from the turbine optimized
in this study. However, operation of the validated
axial ow turbine has similar conditions to our turbine,
which is a VHL axial ow turbine.

Figure 3 presents a comparison between the CFD
simulation and experimental results as the plots of tur-
bine e�ciency versus ow rate. The turbine e�ciency
from experiment was found to be more scattering than
those from CFD simulation at the same ow rate.

Figure 3. Computational Fluid Dynamics (CFD)
validation with experimental results.

However, the trending average on the curves of both
e�ciency data sets was similarly distributed. The
turbine e�ciency from the experimental data set on
the average curve was lower than that of the CFD
simulation data set mainly due to the energy loss and
experimental uncertainties in the real system, which
was neglected in the simulation. According to the
�ndings, the maximum turbine performance of both
CFD and experiment was at a ow rate of 0.0037 m3/s.
The maximum e�ciency values of the turbine from
CFD simulation and experiment were 50.94% and 54%,
respectively. The relative error between the maximum
e�ciencies of both approaches was 5.7%.

Accordingly, the CFD simulation through the
LES method with the Smagorinsky-Lilly model is an
e�cient turbulence model that can be used to represent
the real testing results of the hydro turbine. As a result,
the CFD approach is used for function evaluations
of the training points generated by means of design
of computational experiment. In addition, it can be
used to check the �nal optimum solution obtained from
surrogate-assisted optimization. Surrogate models are
generally used in a wide variety of real-world applica-
tions. Neural network and support vector regression
models are used to estimate velocity and ow depth
variables at a sharp bend of 60� [32]. A response surface
model was used to analyze the data and �nd behavioral
equations on the remolded clayey samples mixed with
gasoil to evaluate their geotechnical properties [33]. A
radial basis function model was also used for optimiza-
tion of highway guardrails [34], and the kriging model
was employed to quantify uncertainties in the design
of an aircraft wing structure [35]. Such models are
regarded as the numerical tools for engineers.

3.3. Mesh generation and boundary conditions
As shown in Figure 1, four computational domains are
de�ned as inow, guide vane, runner blade, and outow
domain. The solid domain of the runner blade rotates
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at 200 rpm and the other domains are kept constant.
Unstructured 3D tetrahedral mesh was selected in this
study due to the complex geometries of the axial ow
turbine. The boundary conditions for simulating the
ow are de�ned as follows.

The total and static pressures are zero for the inlet
and outlet ows. The guide vane, runner blade, and
other parts of the turbine are de�ned as the surface
walls where the wall of the runner blade is rotating.

The initial ow was dependent on the constraints
on the local installation site. Therefore, the water
head was set at two meters and the volume ow rate
was 5 m3/s for the inlet pressure, with the runner
blade rotating at a speed of 200 rpm. The time
revolution of the runner was 0.3 sec per round, and
the simulation was performed for at least 1.6 ow
cycles. To reach a robust solution, the pressure-velocity
coupling scheme was employed in this study [36].
A standard scheme for pressure interpolation [11]
and Quadratic Upwind Interpolation for Convective
Kinetics (QUICK) scheme [37] were also taken into
consideration. Further, momentum interpolation was
also utilized. The transient formulation was set in a
second-order implicit scheme, while the residual criteria
were controlled at 10�5.

The mesh validation was initially performed to
ensure that the results of the turbine performance
would be identi�ed as almost constant. As shown in
Figure 4, the turbine e�ciency decreased upon increas-
ing the mesh density. The numbers of grid elements
were between 3.02-8.91 million. The convergence of
the results was de�ned when the number of elements
was higher than 5.0 million. In this study, the grid
elements of approximately 6.01 million were considered
to shorten the numerical time. Obviously, the e�ciency
of the turbine was almost constant for the number
of grid elements between 5.00 and 8.91 million. The
di�erence in turbine e�ciency for the numbers of grid
elements of 6.01 and 7.06 million was 0.09%.

As shown in Figure 5(a) and 5(b), the pressure

Figure 4. Mesh validation results.

Figure 5. Pressure contours of the runner blade.

distribution on the runner blade using 6.01 and 7.06
million mesh elements is almost the same.

4. Surrogated assisted optimization

A surrogate-assisted optimization technique was pro-
posed for the optimization problem with expensive
objective function evaluations due to high �delity com-
putation. In this case, performing optimization using
the real expensive function evaluation is made impos-
sible. The main idea behind using surrogate-assisted
optimization is that the real expensive evaluation is
approximated by a constructed inexpensive function
while performing an optimization process based on the
inexpensive function. The conventional process of the
surrogate-assisted optimization consists of three main
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steps. Firstly, a set of sampling points is generated
throughout the design domain using Design Of Exper-
iment (DOE) technique. Then, the objective function
value of each sampling point is calculated based on the
real expensive function evaluation. Next, a surrogate
model is constructed and optimization is performed
based on the constructed inexpensive function or a
surrogate model. Followed by achieving an optimum
solution, its real function value is calculated using the
expensive function evaluation, which is referred to as
the CFD simulation in this study.

For the proposed optimization of the turbine
blades, a conventional surrogate-assisted optimization
technique is used. Latin Hypercube Sampling (LHS)
technique is �rstly used for generating a set of
sampling points. Then, CFD is employed to evaluate
the real objective function of each sampling point.
Surrogate models based on polynomial response
surface and kriging models are then constructed and
optimization is performed based on the constructed
surrogate models. Several MH optimizers along with
a linear programing optimizer are used to solve the
proposed optimization problem.

4.1. DOE by LHS technique
M sampling points using LHS can be generated by
dividing the bound [Li; Ui] into M subintervals based
on the following equation:

Lij = Li +
(j � 1)(Ui � Li)

M
; (10)

Uij = Li +
j(Ui � Li)

M
; (11)

where Lij and Uij are the lower and upper bounds of
the subinterval j of the ith design variable, respectively.
For each subinterval, a sampling point is generated
using the equation leading to M sampling points.

Xij = Lij + (Uij � Lij) � rand: (12)

Finally, the elements of each column of X are randomly
permuted [38]. Table 1 shows 30 sampling points
generated using LHS for the proposed hydro turbine
blade optimization problem with eight design variables.
The lower and upper bounds for each design variable
are also presented in this table. Note that the lower

Table 1. Sampling of DOE.

Sampling DOEs of blade angles (deg)
�1 �2 �3 �4 �5 �6 �7 �8

Li 10 20 30 40 25 35 45 55
Ui 20 30 40 50 35 45 55 65

1 11.2 22.7 34.8 49.2 29.2 42.3 46.7 55.5
2 17.5 21.1 36.9 48.1 29.6 39.3 48.4 61.6
3 12.1 29.7 38.1 44.5 33.6 38.7 45.8 57.0
4 16.2 20.1 32.5 44.0 26.6 42.9 47.3 59.7
5 18.0 20.8 31.4 40.4 27.8 44.4 50.5 63.6
6 19.9 24.4 32.8 46.7 27.5 36.0 50.8 58.5
7 15.9 25.1 33.1 42.8 25.9 43.6 51.1 56.5
8 19.4 26.7 34.5 44.9 34.7 44.8 45.3 59.3
9 18.4 28.5 35.4 42.3 34.4 39.6 48.1 59.5
10 19.0 25.6 32.2 48.4 26.1 43.8 47.6 63.7
11 17.0 26.4 36.4 47.4 32.5 36.3 53.5 62.2
12 13.2 21.9 33.8 41.8 31.3 41.1 53.8 57.9
13 17.9 20.4 38.4 49.0 30.6 43.0 52.0 64.1
14 14.2 29.1 31.7 49.8 34.1 35.5 54.9 60.6
15 10.2 24.0 35.3 46.8 30.1 40.3 49.2 57.3
16 12.0 28.1 30.7 43.7 28.3 38.1 50.3 56.0
17 14.7 27.0 38.9 43.5 31.6 40.8 50.0 60.7
18 15.3 23.7 31.2 40.1 28.9 41.6 47.8 62.7
19 16.4 23.0 39.7 45.7 27.1 36.7 45.4 58.7
20 10.5 23.4 37.1 46.2 33.7 40.0 53.2 62.5
21 12.7 22.4 33.4 49.4 33.0 44.3 54.3 61.0
22 13.9 24.7 39.0 42.5 26.9 36.5 51.6 60.1
23 11.3 28.9 34.1 47.0 25.7 41.7 46.5 63.3
24 15.6 26.3 39.6 40.9 31.7 37.2 48.9 64.9
25 11.0 26.0 30.9 41.6 30.9 42.5 54.7 55.1
26 19.0 29.4 30.2 45.1 29.8 40.7 49.5 58.1
27 14.7 27.8 37.5 45.5 25.3 35.3 52.2 57.5
28 16.8 27.5 36.1 43.2 32.1 38.0 52.4 64.7
29 12.4 21.5 35.8 41.0 28.5 38.6 46.0 61.7
30 13.4 22.1 37.9 47.8 33.1 37.5 52.7 56.2
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and upper bounds used in this study are set based on
the available values reported in [3,39{41].

After generating a set of sampling points based
on LHS, the turbine performance criteria including
turbine e�ciency, torque, ow rate, and total head for
all sampling designs for each sampling are evaluated
based on CFD, the results of which are given in Table 2.
According to this table, the maximum e�ciency of the
turbine of these 30 sampling points is 85% with the
blade angles �1 � �8 of 18�, 20:8�, 31:4�, 40:4�, 27:8�,
44:4�, 50:5�, and 63:6�, respectively.

4.2. Surrogate model
After achieving the desired turbine performance, the
correlation between the design variables of blade angles
(�1��8) and turbine e�ciency is presented in a scatter
plot in Figure 6. As observed in this �gure, there is no
correlation between the blade angles themselves while
all of the blade angles appear linearly correlated to the
turbine e�ciency. In addition, Pearson's correlation
method is used to examine the correlation between the
turbine e�ciency and blade angles (�1 � �8). The
correlation between the turbine e�ciency and blade
angles (�1 � �8) is 0.1137, �0:3999, �0:2498, �0:0941,
�0:102, 0.2426, 0.4022, and 0.5448, respectively. The
correlation between the design variables of �1, �3, �4,
�5, and �6 with the turbine e�ciency is quite low;
however, the �2 and �7 are of low correlation and
�8 has a medium-rated correlation with the turbine
e�ciency. Moreover, while the design variables of �2,
�3, �4, and �5 show an inverse correlation with the
turbine e�ciency, �1, �6, �7, and �8 present a direct
correlation.

Three surrogate models were constructed based
on the sampling points in Tables 1 and 2. The �rst
and second models were constructed based on the �rst-

Figure 6. Scatter plot of input-output data.

Table 2. Computational Fluid Dynamics (CFD) results
of sampling models.

Sampling Q (m3/s) H (m) � (Nm) � (%)

1 4.66 1.78 2735.50 70.34

2 4.29 1.70 2732.88 79.93

3 4.50 1.75 2025.70 55.09

4 4.65 1.82 3251.22 82.14

5 4.38 1.95 3397.82 85.00

6 4.55 1.74 2920.30 78.94

7 4.70 1.83 3236.36 80.58

8 4.47 1.85 2826.69 73.08

9 4.57 1.84 3095.68 78.50

10 4.15 1.81 2898.62 82.30

11 4.12 1.71 2667.42 80.82

12 4.66 1.84 3299.77 82.41

13 3.99 1.85 2863.05 83.08

14 4.25 1.83 3003.90 82.67

15 4.64 1.80 3082.63 78.84

16 4.81 1.79 3011.83 74.86

17 4.36 1.78 2945.83 81.03

18 4.56 1.88 3388.80 84.30

19 4.60 1.71 2769.25 75.37

20 4.20 1.84 3007.68 83.13

21 4.19 1.87 3096.75 84.35

22 4.45 1.70 2805.96 79.29

23 4.25 1.78 2934.99 83.11

24 4.18 1.77 2791.82 80.66

25 4.82 1.85 3422.22 82.10

26 4.56 1.83 2900.36 74.28

27 4.50 1.80 2659.80 70.20

28 4.08 1.80 2844.45 82.61

29 4.61 1.76 3078.03 81.20

30 4.54 1.69 2779.34 77.31

order polynomial function, expressed as Eq. (13):

�(�) = k0 + k1�1 + k2�2 + � � �+ k8�8; (13)

where �(�) is a function of the turbine e�ciency, and
the terms k0; k1; k2; � � � ; k8 are the regression coe�-
cients. While the �rst response surface function is
constructed using all 30 sampling points, the second
response surface model is constructed based on only
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nine sampling points, which is the minimum sampling
required for eight design variables. Of note, these
nine sampling points used for constructing the second
response surface model were selected based on a K-
mean clustering technique from the 30 sampling points.
The linear response surface functions obtained from
30- and 9-sampling-point sets are shown in Eqs. (14)
and (15):

�f =13:8742� 0:108�1 � 0:6385�2 � 0:5954�3

� 0:1996�4 � 0:2346�5 + 0:1042�6

+ 0:8623�7 + 1:2021�8; (14)

�f =31:6901� 0:113�1 � 0:0202�2 � 0:3938�3

� 0:0314�4 � 0:0837�5 + 0:3064�6

+ 0:3132�7 + 0:6793�8: (15)

In addition, the third surrogate model was constructed
using the kriging model. The DACE MATLAB kriging
toolbox was used for the kriging model construction
while utilizing Gaussian correlation function with a
linear regression model.

4.3. Optimizers used and their parameter
setting

To solve the proposed optimization problem based on
the three surrogate models, several MH optimizers and
linear programming were used. The employed MHs and
their parameter settings are detailed in the following:

{ Arti�cial Bee Colony (ABC) [42]: The number of
food sources for the employed bees was set to np=2.
A trial counter to discard a food source was 100;

{ Real Code Ant Colony Optimization (ACOR) [43]:
The parameter settings were q = 0:2 and � = 1;

{ Di�erential Evolution (DE) [44]: The DE/best/2/
bin strategy was used. A scaling factor, crossover
rate, and probability of choosing elements of mutant
vectors were 0.5, 0.7, and 0.8, respectively;

{ Particle Swarm Optimization (PSO) [45]: The
starting inertia weight, ending inertia weight, cogni-
tive learning factor, and social learning factor were
calculated as 0. 5, 0.01, 2.8, and 1.3, respectively;

{ Grey Wolf Optimizer (GWO) [46]: There was no
required parameter setting

{ Moth-Flame Optimization Algorithm (MFO) [47]:
The constant parameter b was set to 1 while other
parameters were iteratively adopted.

Linear programming was used to solve the �rst
and second surrogate models as they were linear func-
tions while the MHs were employed to solve the third

surrogate model constructed from the kriging model.
For each MH, since the method employs randomization,
the problem was tackled for 30 optimization runs while
the results of various MHs were compared in terms of
search convergence and consistency. The best results
obtained from the kriging-assisted MHs were then
compared with those from the two linear models, which
were solved using the linear programming. For each
MH, population size and number of iterations were set
to 20 and 200, respectively.

5. Results and discussion

Followed by performing optimization based on the
three surrogate models, MHs performance in solving
the proposed optimization problem through kriging
model was evaluated. After performing 30 optimization
runs for each MH, the results are shown in Table 3.
According to this table, the mean objective function
values (Mean) were utilized to measure the search
convergence, and the Standard Deviation of objective
function values (STD) was aimed at measuring the
search consistency. It was found that all MHs were
characterized by somewhat similar search convergence
and consistency except for the DE and PSO, known as
two worse algorithms in terms of search convergence
and consistency. However, all of the MHs obtained the
same minimum objective function values of 0.01434.
Figure 7 shows the search history of the best run for

Table 3. Results of 30 optimization runs for each MHs.

MHs Mean STD Min Max
ABC 0.01434 0 0.01434 0.01434
ACOR 0.01434 0 0.01434 0.01434
DE 0.014688 0.001903 0.01434 0.024765
PSO 0.029062 0.02069 0.01434 0.097341
GWO 0.01434 0 0.01434 0.01434
MFO 0.01434 0 0.01434 0.01434

Figure 7. Search history of the best run for the all MHs.
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each MH. As observed in this �gure, DE, ACOR, PSO,
and MFO have faster convergences from the beginning
and ACOR is the best algorithm that can �rst converge
to the optimum. Based on this investigation, it can be
concluded that ACOR is the most e�cient algorithm
for the proposed optimization of a VLH turbine based
on the kriging model.

The best result obtained using kriging-assisted
MHs was compared with those from the two remaining
linear surrogate models solved by linear programming.
After optimization of the two remaining linear surro-
gate models, the results are shown in Table 4. Here, �f
is the turbine e�ciency calculated through a surrogate
model and �optCFD is the e�ciency obtained from
actual function evaluations of CFD. Obviously, similar
optimum points were obtained from all chosen models.
The accuracy rates of the 30-point linear, 9-point
linear, and kriging models at optimum, compared to
that of CFD analysis, were 8.82, 0.32, and 8.82%,
respectively. The optimal turbine e�ciency based on
CFD was measured as 89.87%. Since the kriging

model is a global meta model containing polynomial
terms, it yields results very similar to those of the
30-point linear model. It con�rms that the design
variables and objective function are linearly correlated;
therefore, only n + 1 sampling points are required for
constructing a linear surrogate model where n is the
number of design variables. Moreover, the optimal
design results gave an output e�ciency higher than
the e�ciency of the sampling models obtained from the
experiment design. Table 5 introduces the performance
characteristics of the turbine based on CFD simulation
between the maximum e�ciency of the �fth sampling
solution and the newly optimized model, and the blade
angles of such solutions are found in Tables 1 and 4,
respectively. The turbine e�ciency of the optimized
model is 89.87%, which is 5.42% more than that of
the �fth sampling point. The turbine of the optimized
model is characterized by the operating of ow rate of
4.16 m3/s, total head of 1.88 meters, and 3276.11 Nm
for the torque. The turbine torque of the optimized
model decreased by 3.72% less than that of the �fth

Table 4. Optimal results based on three surrogate model.

Index Parameters
Linear surrogate model KRG-MHs

30 sampling 9 sampling 30 sampling

Objective function,
min : 1� �(�)

100

�1 (deg) 10.00 10.00 10.00

�2 (deg) 20.00 20.00 20.00

�3 (deg) 30.00 30.00 30.00

�4 (deg) 40.00 40.00 40.00

�5 (deg) 25.00 25.00 25.00

�6 (deg) 45.00 45.00 45.00

�7 (deg) 55.00 55.00 55.00

�8 (deg) 65.00 65.00 65.00

Optimal design
�f (%) 98.57 90.16 98.57

�optCFD (%) 89.87 89.87 89.87

Fifth model in Table 2 �re. (%) 85.00 85.00 85.00

Comparison (%) �optCFD & �re. 5.42 5.42 5.42

Validation error (%) �f & �optCFD 8.82 0.32 8.82

Table 5. Performance characteristics of turbine.

Model � (Nm) Q (m3/s) H (m) �CFD (%)

Optimal design 3276.11 4.16 1.88 89.87

Maximum e�ciency of sampling model

(�fth model in Table 2)
3397.82 4.38 1.95 85.00
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Figure 8. Pressure distribution in the blade tip domain
of the stator-rotor.

sampling point. It should be noted that all of the
torque, ow rate, and total head a�ect the turbine
performance.

The optimal design of the blade angles of an
axial ow turbine coupling with CFD at a VLH was
proved to be an e�ective technique for improving the
turbine performance. Figure 8 presents the results
of di�erent pressure characteristics of the stator-rotor
section based on CFD analysis of the initial (�fth model
in Table 1) and newly optimized models. Under the
same operating conditions, the pressure distribution
for the optimal design blade angles, compared to the
original design illustrated in Figure 8(a), was improved
(Figure 8(b)). Clearly, the pressure distribution around

the center area of the original runner blade was less
uniform than that of the new design. The pressure
uctuation on the leading and trailing edges of the
guide vane and runner blades also decreased when using
the optimal design.

6. Conclusions

The present study presented a simpli�ed blade angle
design of a VLH axial ow turbine using a surrogate-
based optimization to reach the maximum e�ciency of
the turbine. The assigned design variables including
the blade angles between the guide vanes and runner
blades were positioned on the leading and trailing edges
of the hub and blade tip. The LHS method was used in
the experiment design with 30 sampling points of blade
angles, and the LES turbulence model was simulated
to analyze the ow in the turbine. According to the
datasets of CFD results, the turbine e�ciency was
evaluated in the case of the correlation between the
objective function and blade angles of the sampling
points. Several optimizers were employed to tackle
the proposed optimization problem and to evaluate
their performance. In addition, three surrogate models
including 30-point, 9-point linear models, and kriging
were taken into account in this study. According to the
�ndings, the linear surrogate model exhibited the best
function since only n + 1 training points with n being
the total number of design variables were required. The
objective function was validated based on the error
between the results of CFD and linear surrogate model,
which was 0.32%. The result of the optimum blade
angles was determined at �1-�8 of 10�, 20�, 30�, 40�,
25�, 45�, 55�, and 65�, respectively. The maximum
e�ciency of the turbine reached 89.87% with a ow
rate of 4.16 m3/s and total head of 1.88 meters.

Surrogate-based optimization was presented to
design the blade angles of the guide vane and runner
blade of the VLH axial ow turbine, which is very
e�ective and can be applied to design other new
blades. Since the objective function is linear, the more
challenging design concept for such a turbine is how to
accurately assign the best lower and upper bounds of
the angles to obtain the highest possible e�ciency.
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Nomenclature

Acronyms

Dia. Diameter (m)
exp. Experiment
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min. Minimum

Variables

D Runner diameter (m)
Dh Hub diameter (m)
H Total head (m)
Li Lower bound
Q Volume ow rate (m3/s)
rand Random
Ui Upper bound
g Gravitational acceleration (m/s2)
�i Angles (degree)
� Torque (Nm)
� Turbine e�ciency
�CFD CFD turbine e�ciency
�f Turbine e�ciency of Surrogate model
�optCFD Optimization turbine e�ciency
�re Reference turbine e�ciency
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