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Abstract. Investigation into the spread of HIV virus as one of the fastest infectious
viruses through human body is essential. Mathematical modeling facilitates the process
and evaluation of the experimental tests. It can also help predict the disease progress and
provide a better understanding of the virus development. In this study, a new nonlinear
di�erential equation model was proposed to investigate the interaction between the HIV
virus and body immune system. This physiological-based model was capable of representing
complex behaviors. The bifurcation analysis of some variations of activated healthy T cells
was carried out. It was shown that the chaotic development of the virus was detected in a
number of activated healthy T cells. This may explain why the virus develops di�erently
in di�erent individuals or under di�erent circumstances. The chaotic region contains some
narrow periodic windows in which the chaotic mode suddenly ends at some critical points
and the system exhibits a periodic behavior in a small range of active healthy T cells.
This �nding con�rms the possibility of controllable development of the HIV virus, even
when it is at a random-like phase. For further illustration, the state space of the system is
represented.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Given the increasing number of HIV-infected patients,
the study on how this virus develops in the human
body gains more signi�cance than ever. As a result of
delayed diagnosis and lack of proper treatment, most of
these patients will be infected with Acquired Immuno-
De�ciency Syndrome (AIDS) within 5{10 years [1]. To-
day, researchers have recognized the spread mechanism
of AIDS and found suitable methods for treatment.
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A majority of researches have studied this infection
from a theoretical perspective using mathematical
modeling and computer simulations [2,3]. Some of
these mathematical models are based on the decay
characteristics of the virus in the infected body [4]. In
fact, this procedure can help expand our knowledge
on controlling virus development and suggest some
new therapeutic approaches. More importantly, many
therapeutic methods can be easily tested on a model
and their e�ectiveness can be examined without any
side e�ects for the patient. Furthermore, carrying
out the trial-and-error process for therapeutic methods
requires time, cost, and a plenty of samples, which
usually makes them impractical. Since the therapeutic
methods for managing the HIV virus usually interfere
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with one of the viral proliferation stages, the proposed
model can reect the e�ciency of these methods if the
viral proliferation stages are put together correctly. For
this reason, developing models capable of representing
the behaviors of the virus in the body can revolutionize
the treatment of diseases.

One of the procedures for modeling biological sys-
tems is dynamical-based modeling [5,6]. Furthermore,
chaotic behavior is regarded as a speci�c state of dy-
namical systems with particular and unique properties
[7]. It is also a desirable phenomenon observed in living
organisms [8]. Therefore, chaotic-based dynamical
models have drawn considerable attention and gained
signi�cance in the modeling of biological systems [9].
Generally, chaotic behavior is the justi�cation of many
unknown behaviors formerly considered as random
[10]. A number of studies have investigated chaos,
its applications, and ways of controlling the chaotic
systems, mainly focusing on chaotic oscillators, either
individually or in a network. Discovering the chaotic
behavior in the biological systems by scientists such as
Yao and Freeman [11] led to fundamental changes to
this context. Chaotic models o�er qualitative demon-
strations of the desired system rather than quantitative
representations.

The HIV virus development is one of the biological
mechanisms that seems to exhibit chaotic behavior.
The disease caused by HIV has three main stages.
In the �rst stage or acute infection, the patient may
have a u-like illness for a short time. This stage is
called the incubation period. As the disease progresses,
the more it interferes with the body immune system,
the more infections or even tumors will spread [12].
However, this may not a�ect individuals with strong
immune systems. Finally, the disease reaches the
last stage called AIDS. In this stage, the number of
T lymphocytes is less than 200 cells per microliter.
The T lymphocytes are white blood cells mediating
the immune system response, which is responsible for
the elimination of the foreign invaders [13]. HIV-
infected individuals are also reported to be at high
risk of hepatitis B virus and hepatitis C viral infections
[14].

A number of studies have been conducted on the
modeling of HIV virus and its development in the
human body using di�erent theoretical approaches and
mathematical models. While some of these studies
have employed a cellular automata modeling approach
[15], others have used nonlinear di�erential equations
to survey the interactions of the HIV virus [16]. More-
over, some fractional models have been established
owing to the strength of the fractal analysis in chaotic
systems [17{22]. In cellular automata method, the
virus attack process in human body is modeled using
several healthy and infected immune cells arranged
next to each other in a two- or three-dimensional

space with some neighbor laws for transmission of the
disease. Although this method makes it possible to
reproduce some spatial localizations and interactions
of the HIV infection, it also has some drawbacks.
First, although the virus substance is di�erent from
the immune cells, the virus itself is not included in
these models. Instead, only the aggregation of the
healthy and nearby infected immune cells is considered.
Second, the motion of virus and immune cells in blood
vessels is not considered in these models. For instance,
while an infected immune cell can transfer the disease
only to its neighbor cells in these models, transference
of the virus to the human body is not subjected to such
limitations. In fact, an infected immune cell can infect
many healthy immune cells by the produced viruses
moving to di�erent locations.

A variety of dynamical models have been pro-
posed using nonlinear di�erential equations to study
the development of the HIV virus and potential ther-
apeutic methods [22{26]. Bonhoe�er et al. suggested
a three-dimensional di�erential equation model to de-
scribe the behavior of the HIV virus in the body at a
rate that was dependent on the virus population and T
cells [27]. Ho and Ling showed that the dynamics of the
HIV virus model was sensitive to both parameters and
initial conditions of the system [28]. In their study, the
number of viruses was a�ected by the number of both
CD4 lymphocytes and CD8 lymphocytes. The CD8
cells involve inhibition of viral transcription and they
are associated with a long-term healthy state in the
HIV infection [29]. While the CD8 lymphocytes play
a resistant, �ghting role, the CD4 lymphocytes have
only a replicative role for the virus. Wang studied the
interaction between HIV and T cells using di�erential
equations in which the number of viruses as well as both
healthy and infected T cells were taken into account
[30]. Moreover, he suggested a prey-predator compet-
itive relationship between the healthy and infected T
cells. Lund et al. con�rmed that chaotic dynamics
could be developed in the interaction model between
the HIV virus and immune system [13]. Hernandez-
Vargas et al. presented a discrete-time neural observer
tested, while it was applied to a model for HIV infection
dynamics [31]. Revilla and Grc��a-Ramos [32] and Yu
and Zou [33] proposed a method using the recombinant
virus, which is a manipulated HIV virus engineered by
genetic engineers. This recombinant virus was sent to
the HIV-infected body; then, it stuck to the infected T
cells and forced them to reproduce, thus preventing the
proliferation of the HIV virus. This recombinant virus
does not attack the healthy T cells and its host cells
are only the HIV-infected ones. In this regard, use of
engineered therapeutic viruses called 'hunter' viruses to
control the HIV and other viral infections was discussed
in [34].

The results of these investigations revealed that
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the HIV virus population in the human body behaved
randomly, especially in the phase of AIDS [13]. How-
ever, some researchers con�rmed that these behaviors
were not random, but rather complex and chaotic [13].
In this study, a proper model capable of representing
the complex, yet simple, behaviors was established.
In this respect, three-dimensional di�erential equations
with a special set of parameters were proposed where
the system could be in the chaotic mode. Furthermore,
the saturation phenomenon was included to avoid an
endless increase in the population of activated healthy
immune cells, infected immune cells, or the virus. It
was shown that the proliferation rate of healthy T cells
could highly a�ect the dynamics of virus development.
It was also found that the healthy immune cells, in
turn, determined whether the virus dynamics was
periodic or chaotic. In addition, bifurcation behavior
was shown to be available in a short range of activated
healthy T cells. The proposed model in this study was
able to make some speci�c ranges of activated healthy
T cells exhibit chaotic behaviors while it followed a
route to the periodic behavior of some other ranges.
Moreover, the state space for some modes of the system
was displayed for greater completeness.

This paper is organized as follows. The phys-
iological background of the HIV infection process is
discussed in Section 2. The mathematical model is
illustrated in Section 3 that contains some further
de�nitions to clarify the modeling approach. The
numerical simulation and calculation results are rep-
resented in Section 4. Finally, the discussion and
the conclusion are given in Sections 5 and 6, respec-
tively.

2. The physiological background

Application of a physiologically-based model is essen-
tial for a better understanding of the mechanisms of
HIV pathogenesis and developing treatments. There-
fore, in this section, the physiology of the HIV virus
infection process is briey discussed. The virus repli-
cation cycle begins with the infection of a host cell and
ends with the release of mature viral particles. The
viruses must come into another cell nucleus since they
are not able to be reproduced by themselves, given
that reproduction requires energy and a proteinization
mechanism, available only in the living cells. The host
cell for the HIV virus is a vital subtype of immune cells
called lymphocytes. This is the reason why the HIV
virus is one of the best-known fatal viruses. The virus
entry into the cell is made possible only for cells that
carry the virus receptor, which is particularly the CD4
molecule for the HIV virus. The lymphocytes that take
this type of receptor to absorb the virus are more likely
to be infected by the virus, while the other cells resist
infection so that any contact with the virus will be in

vain. Once the virus enters the cell, its nucleic acid
activity begins. The nucleic acids of the virus contain
enough genes to inhibit the metabolism of the host cell
and conduct the vital chemical reactions of the host
cell to proliferate the virus. Then, the produced viruses
exit the cell. This can take place in two di�erent ways.
In some cases, a large number of viruses are released as
a result of decomposition of the host cell. However, in
other cases such as the HIV virus, the virus exits the
host cell without any decomposition of the host cell. In
this case, the host cell is not destroyed and continues
to proliferate the HIV virus until it dies.

3. The mathematical model

In this part, some de�nitions are presented to explain
the basis of modeling the systems in which two species,
materials, cells, etc. interact with one another. In
such systems, an increase or decrease in the pop-
ulation of each group can inuence the population
of the other one. To describe the dynamics of two
interacting species, a di�erential equation model known
as the prey-predator model was proposed. Numerous
researchers from di�erent �elds have employed this
model to explain di�erent interactive processes includ-
ing chemical reactions. The prey-predator model is
described as follows [35]:

dx
dt

= a1x� a2xy;

dy
dt

= a3xy � a4y; (1)

where x(t) and y(t) represent the population of prey
and predator, respectively, over the time t. Parameters
a1; a2; a3; a4 are positive constants. Parameter a1 is the
natural growth rate of the prey species in the absence
of the predator. Parameter a2 reects the e�ect of the
predator on the prey population, and it is the only
factor that reduces the prey population. Parameter a3
shows the e�ect of the predator on the prey and it is the
only factor that increases the predator population. Any
increase in the population of a species depends on the
number of available resources. Parameter a4 denotes
the rate of natural death of the predator species. Note
that the components of Eq. (1) are not completely
realistic. In fact, the endless increase in the population
of the prey species in the absence of predator (for a2 =
0) is not realistic. Furthermore, the endless decrease
in the predator population in the absence of prey (for
a3 = 0) is not compatible with the laws of nature.
E�ort has been made in this study to compensate for
this de�ciency in the mathematical model by adding a
saturation term to the model equations.

In our proposed model, the HIV virus is the
predator species. It attacks the healthy immune cells
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as the prey species and then, the healthy immune
cells become infected. Hence, the healthy immune cell
population declines. At the same time, the healthy
immune cells attack the viruses and try to destroy
them to preserve the body health. However, as
described for the prey-predator equations, decreasing
the prey population would consequently decrease the
predator population. Further, due to the fundamental
changes in the immune cells created by the virus, the
infected immune cells begin producing virus. The main
di�erences between the interactions of the HIV virus
with the immune system and those in the prey-predator
model are in two key points:

1. In the prey-predator model, the prey is destroyed
upon being hunted by the predator. However, the
immune cells are not eliminated; instead, they are
infected by the HIV virus. Therefore, their internal
structure is changed in a way that facilitates the
proliferation of the virus;

2. In the prey-predator model, the predator consumes
the prey and grows, thus reproducing itself more.
However, the host cells are responsible for the
proliferation of the virus since the virus is not
capable of reproduction by itself.

This relationship between the virus and immune cell
is such a circular causality because the production and
survival of the virus rely on the immune cells, while the
immune cells are also responsible for �ghting the virus.

Given the above considerations, the revised model
is described as follows:

dx
dt

= rx� �xz � dx2;

dy
dt

= �xz � ay � cx2;

dz
dt

= �y � bz � �xz � ez2; (2)

where the variable x is the population of the activated
healthy immune cells. Variable y represents the pop-
ulation of the infected immune cells. The activated
healthy immune cells become infected after the virus
attack. Variable z shows the population of the virus.
Parameter r represents the proliferation of the active
and healthy T cells. The population of the healthy
T cells would decrease when the activated T cells
become infected by HIV at the rate �xz. Parameter
d is the saturation rate of the healthy T cells and it
limits the population of healthy T cells even in the
absence of the virus. Parameters � and c are the
morality rate of the infected T cells and saturation
coe�cient of their population, respectively. Parameter
� is the proliferation of the virus by the infected T
cells. Parameters b and e are the constant morality

Table 1. Parameters of Eq. (2).

Parameter Value

� 0.90

d 0.28

� 1.29

c 0.65

� 0.79

b 0.15

� 1.24

e 0.39

rate and saturation rate of the virus, respectively. The
virus population would be destroyed in a struggle with
the healthy T cells at the rate �xz. The parameter
settings for Eq. (2) are given in Table 1 where r is the
bifurcation parameter. The parameters of the model
were identi�ed by excessive computer search in a way
that the model exhibited chaotic behavior.

4. Equilibrium points

To calculate the equilibrium points of the model, the
right-hand side of Eq. (2) is assumed to be zero.
The parameters are set according to Table 1 and
r is the considered variable. Solving this equation
gives rise to three �xed points as E1 = (0; 0; 0),
E2 = (0; 0;�5=13), and E3 = (25r=7; 0; 0). Conse-
quently, the eigenvalues of the Jacobian matrix of the
model will be [0;�0:15;�1:29] for the �rst �xed point,
[0:35; 0:15;�1:29] for the second �xed point, and�
� r;�2:21r �p4:9r2+0:015r+0:32� 0:72;�2:21r

+
p

4:9r2 + 0:015r + 0:32� 0:72
�
;

for the third �xed point. Therefore, the stability of the
�rst �xed point is unde�ned, and the second �xed point
is clearly unstable for any value of r. By considering
the variation of r at the interval [0:01; 0:04], all of the
eigenvalues of the third �xed point will be negative and
consequently, the third �xed point is stable.

5. Bifurcation analysis and Lyapunov
spectrum

The ability of a biological model to exhibit complex
behavior is a great virtue since biological systems
exhibit unquestionable complexity. Conversely, lack
of such complexity in a model indicates that it is
insu�ciently realistic. To be speci�c, a model can
be appropriate for modeling the biological system
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only if it is capable of demonstrating complex and
rich behaviors. In dynamic systems theory, chaotic
dynamics is recognized as the richest and the most
elaborate dynamics. In this section, the qualitative
behavior of the model through its bifurcation diagram
and state space plot is investigated. The initial
condition for the variables in the numerical calculations
is (x; y; z) = (�0:6;�0:66; 1:03). The model intends
primarily to describe the qualitative characteristics
of the real system and the changes in its dynamical
behavior rather than to make detailed quantitative
predictions. However, the model closely replicates the
behavior reported in real systems including nonlinear
behavior of the HIV virus.

There are numerous proposed di�erential equa-
tion models for HIV virus behavior in the human body.
Given their inadequate richness and functionality, some
of these models cannot exhibit the complex behavior.
In this respect, adding more variables can enhance the
richness of the mathematical model. For example,
in Ref. [13], the interaction between the HIV and
immune system was discussed using a �ve-dimensional
di�erential equation model. The adequate number of
variables helps the model exhibit the chaotic behavior.
However, excessive variables make the model more
complicated due to many irrelevant details. Although
there are also some models with fewer variables, they
are not able to represent the desired chaotic behavior.
Therefore, the necessity of balancing the two factors of
simplicity and richness should be taken into account in
the model. In this regard, the model should be capable
of demonstrating complex and chaotic behaviors with
the least number of variables. To accomplish this
objective, some more realistic hypotheses should be
taken into consideration. As mentioned earlier, the pro-
posed model in this study is based on the physiological
properties of the HIV virus development that employs
the concepts of prey-predator equations. Furthermore,
a saturation phenomenon is assumed to be in the form
of a logistic-like term to prevent an endless increase in
the population of the +activated healthy immune cells,
infected immune cells, or virus.

To illustrate the qualitative behavior of the
model, the bifurcation diagram with a variation of
the parameter r is shown in Figure 1(a). Bifurcation
behavior is observed in a short range of activated
healthy T cells for 0:01 < r < 0:04, as shown in Figure
1(a). This con�rms that the dynamics of the virus
population is sensitive to the rate of activated healthy
T cells. The chaotic behavior was observed for r = 0:01
to r = 0:0141, indicating di�erent development of
the virus in di�erent individuals or under di�erent
circumstances. The dynamics of the system follows a
route to the periodic behavior of r greater than 0:0141.
The periodic development of the virus for 0:0141 <
r < 0:0175 is shown in Figure 1(a). For r > 0:0175, the

Figure 1. (a) The bifurcation diagram of HIV virus
development based on Eq. (2) with a variation of active
healthy immune cells (parameter r) for the parameters in
Table 1 and initial conditions (x; y; z)=({0.6, {0.66, 1.03).
(b) The corresponding Lyapunov exponents. (c) The
corresponding Kaplan-Yorke dimension.

virus dynamics is well controlled and exhibits a period-
1 limit cycle. The corresponding Lyapunov Exponents
(LEs) of the model and the Kaplan-Yorke dimension
(DKY ) were calculated, as shown in Figure 1(b) and
(c), respectively. Figure 1(b) shows that at the interval
of 0:01 < r < 0:0141, there are one positive, one zero,
and one negative Lyapunov exponents and, hence, the
behavior of the model is chaotic. Further, the Kaplan-
Yorke dimension is greater than 2 (Figure 1(c)). At
this interval, there is a periodic window. In the
zoomed window of the Lyapunov spectrum, it can
be observed that in this limited range, the largest
Lyapunov exponent decays to zero and two other
exponents are negative. For r > 0:0141, the chaotic
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Figure 2. The state space plot of the system in Eq. (2) for r = 0:01 and the parameters in Table 1. The initial conditions
are (x; y; z) = (�0:6;�0:66; 1:03).

behavior changes to the periodic and there are two
negative and one zero Lyapunov exponents. Hence,
the Kaplan-Yorke dimension equals one.

For further illustration, the respective state space
plots for di�erent values of r are also displayed. Fig-
ure 2 shows the state space for r = 0:01. As expected, a
chaotic attractor is evident. The case with r = 0:0124
belongs to one of the periodic windows (the widest
one) in the bifurcation diagram. The chaotic behavior
ends abruptly and the system dynamics switches to
the periodic behavior within this tiny window. The
chaotic region contains many narrow periodic windows
that is indicative of the controlled dynamical behavior
of the virus growth, which is very sensitive to even small
changes in the proliferation of active healthy T cells in
di�erent individuals or under di�erent circumstances.
The respective state space is shown in Figure 3 in which
the period-3 behavior is observable. Figures 4 and 5
show the periodic behavior of the virus development
for r = 0:0155 and r = 0:025, respectively.

6. Discussion

In this study, the interaction between the HIV virus
and immune system of the human body was investi-
gated using a new mathematical model. Unlike some
previous studies, this model can exhibit the complex
and chaotic behavior while preserving its simplicity by
involving only three variables. The main di�erence

between our proposed model and the previous ones lies
in the two following key points:

1. A saturation phenomenon is assumed to be in the
form of a logistic-like term to prevent an endless
increase in the population of the activated healthy
immune cells, infected immune cells, or virus;

2. Since the role of the infected immune cells has
not been discussed in the literature, in this model,
the infected immune cells do not play any role in
absorption or elimination of the virus and it is just
the healthy immune cells that struggle with the
virus.

The bifurcation diagram with the variation of activated
healthy T cells (parameter r) exhibits the qualitative
behavior of the model. Chaotic dynamics is observed
for a particular range of the parameter r, explaining
why the virus develops di�erently in di�erent individu-
als or under di�erent circumstances. The chaotic region
also contains some narrow periodic windows in which
the chaotic mode suddenly ends at some critical points
and the system starts a periodic behavior for a tiny
range of the parameter r. This is a complex dynamical
behavior where a periodic dynamic occurs amidst
an otherwise chaotic process. It also suggests the
possibility of controllable development of the HIV virus
even when it is in a random-like phase of the disease.
Furthermore, the system dynamics follows a route to
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Figure 3. The state space of the system in Eq. (2) for r = 0:0124 and the parameters in Table 1. The initial conditions
are (x; y; z) = (�0:6;�0:66; 1:03).

Figure 4. The state space plot of the system in Eq. (2) for r = 0:0155 and the parameters in Table 1. The initial
conditions are (x; y; z) = (�0:6;�0:66; 1:03).
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Figure 5. The state space of the system in Eq. (2) for r = 0:025 and the parameters in Table 1. The initial conditions are
(x; y; z) = (�0:6;�0:66; 1:03).

the periodic development of the virus for some ranges
of the parameter r. Then, di�erent dynamics of the
population of the virus for some speci�c values of the
activated healthy T cells is illustrated in the state space
diagram. For r = 0:01, the system exhibits chaotic
behavior which might represent the high sensitivity of
the virus population to the conditions. However, as
the activated healthy T cells increased, for r = 0:0155
and r = 0:025, for example, the virus population can
be e�ciently controlled, which is demonstrated in the
form of periodic behavior of the activated healthy T
cells.

7. Conclusion

This paper proposed a new simple mathematical model
capable of representing complex behaviors. According
to the �ndings, the healthy immune cells, in turn,
determined whether the virus dynamics was periodic or
chaotic. Moreover, bifurcation behavior was observed
in a short range of activated healthy T cells. The
proposed model could encourage chaotic behavior for
some ranges of activated healthy T cells while following
a route to the periodic behavior for some other ranges.
Moreover, the state space for some modes of the system
was displayed for the sake of comprehensive analysis.

The actual dynamics of the immune cell reg-

ulation or virus proliferation is quite complicated.
Therefore, understanding these dynamical behaviors
could develop better treatments and even theoretical
predictions to optimize the experimental examinations.
The model of HIV virus infection represented in this
study was not perfectly accurate due to many applied
reductions and simpli�cations. However, the strength
of this model lies in its richness and ability to demon-
strate complex chaotic behavior while involving only
three main variables. The main objective of the present
study was to develop theoretical studies and more
particularly, improve the di�erential equation models
used for elaborating some aspects of this disease. To
highlight some of the key works done in this research,
the following points can be mentioned:

� The model was mathematically simple, involving
only three main variables;

� The model was elegant [7];
� The model was rich, capable of representing the

complex chaotic behavior.
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