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Abstract. An Regional Market Manager (RMM) is supposed to take into account
a variety of items including the participants in the market, technical constraint, price
variation/reaction, electricity-price uncertainty, and types of the applied demand response
program, to name a few. One of the demand response programs is Emergency Demand
Response Program (EDRP) which is employed in this paper. In the present study,
the objective function of the RMM is formulated in a market environment in order to
determine the optimal demand, incentive, and power purchased with considering some of
technical constraints such as incentive limits, demand limits, power purchased, and power
balance. Co-evolutionary Improved Teaching Learning-Based Optimization (C-ITLBO) is
applied to maximize the RMM's pro�t. In addition, the demand level in the EDRP is
determined based on a logarithmic model that includes Price Elasticity Matrix (PEM).
The reserve supplied due to Aggregators (AGGs) is also prioritized using Reserve Margin
Factor (RMF). Further, Information-Gap Decision Theory (IGDT) is applied to model
uncertainty in the initial electricity price. The above-mentioned items are modeled in a
multi-level formulation.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Load growth in the power system leads to an increase
in the electricity price, level of the daily load curve,
transmission line loading, and even system instability.
In this respect, management or optimization of the
energy consumption pattern through Demand Side
Management (DSM) gains signi�cance [1]. The DSM,
by de�nition, refers to the activities that reduce or shift
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electricity consumptions in order to decrease the load-
ing of the distribution system, especially during peak-
load hours. One of the most prominent DSM types
that has been developed in recent years is Demand
Response Program (DRP). In such programs, cus-
tomer's electricity consumption changes in accordance
with the changes in the electricity prices over time or
even the monetary incentive payments [2]. A type of
DRP is called Emergency Demand Response Program
(EDRP) that can be used as a tool for maintaining the
con�dence ability in the emergency situations when a
regional market is facing a shortage of supply resources
and, thus, lack of power reserve, which incurs high
electricity prices. Peak-load hour is another common
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example of emergency situation. In these situations,
the RMM recalls customers or their representatives
who are prepared to participate in the EDRP so as
to reduce their consumptions [3]. In this study, each
representative is considered as an AGG. In exchange
for reducing their consumptions, the participants in
the EDRP receive funds as incentives from the RMM.
Participation in the EDRP is optional, and the RMM
does not consider penalties for the customers or their
Aggregators (AGGs) who did not answer the phone at
the time of calling [4,5].

In recent years, many studies have been con-
ducted on the price and demand determination of
the DRPs and EDRP based on de�nite, random, and
uncertainty models among which uncertainty models
become more prominent. For example, in [6{12] the
price de�nite models in the DRP was used. More
speci�cally, the EDRP was applied in [6] where a
market-based incentive model was proposed to encour-
age subscribers to reduce their energy consumption.
In [7], in order to improve Voltage Stability Margin
(VSM), a strategy based on Whale Optimization Algo-
rithm (WOA) was allocated to the EDRP in a range
acceptable in the emergencies. In [8], the e�ects of
the EDRP on the reliability improvement of power
generating units were investigated. In [9], a hybrid
model of Wind Turbine (WT) and DRPs including
the EDRP was presented whose objective function was
to minimize the operation cost of the RMM. In the
presence of wind and gas turbines, a combination of
the DRPs including incentive-based programs such as
the EDRP [10] was studied. This combination was
applied in a random market-clearing framework by the
RMM who intended to reduce the pollution as well
as the operation costs. In [11], an optimal pricing
model for DRP was proposed which was based on the
demand-price elasticity. The model was then applied to
maximize the pro�ts, reduce the price uctuations, and
improve the system reliability. In [12], a DRP model
was developed for the combined programs of the EDRP
and TOU based on the concepts of the customers'
bene�t function and exible demand elasticity. In
order to determine the optimal demand from the view-
points of \load characteristics" and \economy", Multi-
Attribute Decision Making (MADM) was employed as
an e�ective method. In [13{15], the random price
and demand models were incorporated in the DRP.
In [13], the e�ect of participation in the EDRP on
the performance of a microgrid was investigated in
the presence of random models such as the failure of
generating units, transmission line outages, and load-
forecast error. In [14], a Scenario-Based (SB) stochastic
programming framework was used to model the load
and wind uncertainty in a problem based on Combined
Heat and Power (CHP), WT, and DRP. In addition,
Particle Swarm Optimization (PSO) algorithm was

employed to achieve the optimal solution. In [15], a
model was presented for the optimal control and long-
term evaluation of a CHP and Heat Bu�er Tank (HBT)
in the presence of market price uncertainty. Price
uncertainty was modeled using Least-Squares Monte
Carlo Regression (LSMCR) random control model.
Since the de�nite methods fail to provide an acceptable
and accurate analysis to evaluate the sharp uctuations
of the electricity prices in the market considering the
EDRP program [16], Information-Gap Decision Theory
(IGDT) uncertainty method was used in the current
study. In [17{20] the DRP uncertainty models were
employed in a Combined Heat and Power Economic
Dispatch (CHPED) problem. To minimize the CHP
costs in [17], the DRP price uncertainty was addressed
through robust optimization due to the limitations
like minimum number of start-ups and shutdowns as
well as the ramp rate limits and minimum up/down-
time limits of generating units. In [18], to deal with
the uncertainties of the wind energy in WT and load
demand in DRP, an optimization approach considering
unit commitment reliability was proposed based on the
RMM with the aim of maximizing the overall social
welfare. This issue can be considered as a multi-level
programming problem that was formerly employed in
the Benders approach to obtain an optimal robust unit
commitment schedule. In [19], the IGDT theory was
used to analyze the uncertainty of the DRP electricity
prices. The optimal bidding strategy for the DRP was
presented in order to buy energy from a day-ahead
market. In [20], the optimal performance of a microgrid
including photovoltaic, fuel cell, and battery in the
presence of the DRP was evaluated, taking into account
the uncertainty of the electric price to minimize the
total cost of the microgrid. The IGDT theory was
further employed to model the mentioned uncertainty.

A noticeable criterion, here, is the increase in the
power reserve after the EDRP implementation. Obvi-
ously, a higher level of participation in the EDRP leads
to further reserves of the RMM during emergencies.
For this reason, a need is felt to propose an appropriate
formulation and encourage more participation in the
EDRP since it can boost the economic bene�ts for the
participants as well as the technical bene�ts for the
regional market. An important technical bene�t is the
reliability improvement resulting from the increased
power reserve. Among the literature pieces mentioned
above, the power reserve and reliability were studied
in [21{24]. Optimum reserve capacity required in the
electricity market was studied in [21]. Purchasing spin-
ning reserves and allocating cost with the application of
social-welfare analysis were discussed in [22]. In [23],
multi-objective stochastic programming was provided
for both clearing energy and reserve markets at the
same time. In [24], reliability-based unit commitment
was solved, and the obtained results were used to clear
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Table 1. Summary of the literature review about DRP and electricity market.

Ref. No. DRP Uncertainty
parameters DRP

Uncertainty model Objective function

load price

[6] IBP No No No Min cost
[7] EBDR No No No Min cost
[8] IBP No No No Min cost
[9] EDRP No No No Min cost
[10] EDRP No No No Min cost & air pollution
[11] IBP No No No Non-heuristic
[12] EDRP & TOU No No No Non-heuristic
[13] EDRP Yes No Scenario based stochastic Min cost & incentive
[14] IBP Yes No Scenario based stochastic Maximize Genco & DRP pro�t
[15] IBP Yes No LSMCR stochastic Maximize Genco & DRP pro�t
[17] IBP No Yes Robust uncertainty Min cost, air pollution & DRP
[18] IBP No Yes Robust uncertainty Min cost
[19] IBP Yes No IGDT uncertainty Clear power market
[20] IBP Yes No IGDT uncertainty Min cost
[24] TBP Yes No IGDT uncertainty Clear reserve market

Proposed method EDRP No Yes IGDT uncertainty Max Pro�t of the RMM
Note: EDRP: Emergency Demand Response Program; IBP: Incentive-Based Programs;
TBP: Time-Based Programs; TOU: Time Of Use; Non-heuristic: The optimization algorithm is not used;
IGDT: Information-Gap Decision Theory; RMM: Regional Market Manager; LSMCR: Least Squares Monte Carlo regression;
DRP: Demand Response Program; and Genco: Generation Company.

the reserve market in the presence of the DRP. In
addition, the IGDT was applied to include uncertainty
of the load demand. Based on the above research and
other studies in this �eld, four main research gaps in
the study of DRPs can be as follows:

� In many studies [6{12], it is assumed that the
initial electricity demand and price in the model
are constant. However, according to [17{20], these
parameters are uncertain in DRP;

� Some studies, such as [13{15], used a random
model to examine the uncertainty parameter in the
proposed problem. However, this model requires a
large number of scenarios and su�cient knowledge
about Probability Density Function (PDF) to obtain
the appropriate answer. Therefore, their approach
is complicated, and the solving method will be
di�cult [16];

� Some studies, such as [13{18], established di�erent
frameworks to examine the uncertainty features
including fuzzy optimization, scenario-based, and
robust optimization. These methods depend on the
historical data related to the uncertain variables; in
case these data are incorrect or not available, the
made decisions are not reliable. However, the most
important advantage of the IGDT is that it can
be implemented with the least available information

about the uncertain parameters. In addition, if the
number of scenarios increases in these methods, the
computational load of the problem will increase, as
well. In addition, the robust optimization is involved
with the two-level optimization which is usually
di�cult to solve; however, a de�nite framework is
considered in the IGDT that can reduce the burden
and time of the calculations. In addition, the
IGDT technique is also able to investigate extreme
uncertainty in the DRP issues.

The proposed model in this paper is developed,
considering the reviewed points in Table 1. Although
various aspects of the DRPs from the RMM's per-
spective have been explored in the studies given in
Table 1, DRPs' interactions with the RMM have not
been modeled in detail yet due to some factors such
as reserve settlement and price uncertainty in a day-
ahead market, for instance. In this paper, the upstream
market is considered price-maker for electrical energy.

During the peak hours, the RMM decides to
invoke the EDRP in case of high electricity price and
probability of insu�cient reliability. It is assumed
that customers participate in the EDRP through their
agents, i.e., the AGGs. These AGGs communicate with
the customers or electricity end-users and inform the
RMMs the extent to which they will participate in the
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EDRP according to the received incentive amounts.
It is assumed that the RMMs seek to maximize their
pro�ts by considering these o�ers, electricity demand,
network technical constraints, and energy prices. To
model the price uncertainty, the IGDT approach is
selected where the RMM decisions to trade energy
with the AGGs depend on the level of the RMM price
risk. In the current study, the AGGs indicate the
degree of their participation in the EDRP based on the
logarithmic model as well as the participation factors.
The reason why a logarithmic model was chosen is
because the previous studies, i.e., [25], had con�rmed
the success of this model in providing more conser-
vative responses than values of this model are better
than other models. In addition, the Co-evolutionary
Improved Teaching Learning-Based Optimization (C-
ITLBO) algorithm was used to determine the optimal
incentive and demand for the RMM's pro�t maximiza-
tion. The problem related to the above points is solved
in a 24-hour period.

The main contributions of the current study can
be summarized in the following:

1. De�ning a new objective function to calculate
the RMM's pro�t in the presence of the EDRP,
incorporating the price uncertainty in a day-ahead
market environment;

2. Presenting a new formulation applied by the RMM
to prioritize the reservation o�ered by the AGGs;

3. Proposing a robust strategy obtained from the
robustness function of IGDT approach;

4. Developing an opportunistic strategy obtained from
the opportunity function of the IGDT approach.

The rest of the study is organized as the following:
Section 2 describes the deterministic model of the
proposed problem. Section 3 elaborates the proposed
algorithm and its implementation in problem solution
and describes the IGDT technique to address the
uncertainty of the electricity prices in the considered
problem. Section 4 presents the simulation results.
Finally, Section 4 concludes the study.

2. Original deterministic problem model

In this section, in addition to describing the problem
formulation from the RMM point of view, the EDRP
model and reserve margin factors are also explained.

2.1. Objective function
In the proposed model, the objective function of an
optimization problem is related to determining the
purchased demand and received incentives in such a
way that the RMM's pro�t is maximized during the
studied periods according to Eq. (1) shown in Box I,
where, sentence 1 refers to the revenues received by the
RMM including the electricity sales to the AGGs, and
sentences 2 and 3 refer to the costs paid by the RMM
including the cost incurred by electricity purchase from
the upstream market and payment to the AGGs based
on the EDRP contract. In the mentioned equation,
formulation of the third sentence is in accordance with
Ref. [26]. Here, the EDRP contract means paying the
RMM to the AGGs to reduce the load during peak
hours to implement the EDRP. The relation between
the applied factors is assumed to be !i + !C = 1,
0 � !i � 1, and 0 � !C � 1, meaning that the RMM
can create a trade-o� between !i and !C .

2.2. Constraints
2.2.1. Incentive limit
The payable incentive for the EDRP is assumed to be
in the following range:

incmin(ti) � inc(ti) � incmax(ti) 8ti 2 'T : (2)

This range is applied to the incentive provided
by the RMM to the AGGs. The upper and lower
limits are considered to be 10� �0(ti) and 0:1� �0(ti),
respectively [4].

2.2.2. Demand limits
According to Eq. (3), the incentive provided by the
RMM should not exceed the upper and lower limits of
the daily load demand [18]:

min
nX
k=1

d0(k; ti)�d(ti)�max
nX
k=1

d0(k; ti) 8ti2'T :
(3)

TOF = Max

(
Wi �

" P
ti2'T

�Pn
k=1(�A(ti)� d(k; ti))

�
1

#
�Wc �

" P
ti2'T

�
�U(ti)� Pgrid(ti))�

2

+

" P
ti2'Peak

�
inc(ti)� (d0(k; ti)� d(k; ti))

�
3

#)
: (1)

Box I
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2.2.3. Power purchased
It is assumed that the power purchased by the RMM
is in the following range [26]:

Pmin
grid � Pgrid(ti) � Pmax

grid 8ti 2 'T : (4)

It should be noted that this limitation represents
the exchangeable power between the RMM and up-
stream grid.

2.2.4. Power balance constraint
The following equation shows the power balance con-
straint:

Pgrid(ti) = d(ti) + PL(ti) 8ti 2 'T : (5)

The mathematical expression of power transmis-
sion loss between the power purchased and customers
can be obtained based on the following formula [26]:

PL(ti) = B0 � Pgrid(ti) 8ti 2 'T : (6)

2.3. EDRP model
In this study, the optimal incentive rate and optimal
demand rate for the EDRP at the peak hours are deter-
mined through the logarithmic model, and the RMM
announces this incentive rate to the AGGs. Then, the
AGGs declare the level of their participation in the
EDRP to the RMM based on the model mentioned in
Eq. (5), considering the incentive rate and participation
factors (PF1, PF2, etc.) of the AGGs. Since there is a
competition among the AGGs to receive the incentive
payments, it is assumed that the AGGs are prioritized
based on a factor of reserve margin according to their
provided reserve. This factor is related to the reserve
provided due to participation of the AGGs in the
EDRP. Therefore, based on the logarithmic model [26],
the EDRP model for AGGk can be written as:

d(k; ti) = d0(k; ti)�
�

1 + PFk �
24X
t=1

E(ti; tj)

� Ln
�

(�(tj) + inc(tj))
�0(tj)

��
8ti2'T : (7)

2.4. Reserve margin factors
Based on the above-mentioned model, Eqs. (1){(7)
calculate the amount of the provided reserve in a
peak-load hour by each of the AGGs participating in
the EDRP and announce the obtained number to the
RMM. The provided reserve amounts were prioritized
in this study based on the reserve margin factors that
can be de�ned as the following:

RMF (k; ti) =(
R(k;ti)�RSP (k)�RV (ti)

MAR(ti) 8ti 2 'Peak
0 8ti 2 'T � 'Peak (8)

where:

R(k; ti)=

(
d0(k; ti)� d(k; ti) 8ti 2 'Peak
0 8ti 2 'T�'Peak (9)

RSP (k) =
24X
t=1

RV (ti)PR(k; ti) 8ti 2 'Peak (10)

RV (ti) =8>>>>><>>>>>:
RVnew = RVold �

�
dold�dnewP

k2PeakLoadHours
d(k;ti)�d0

avg(ti)

�
8t(i) 2 'Peak

0 8t(i) 2 'T � 'Peak
(11)

MAR(ti) =(Pn
k=1 d

0(k; ti)� d(ti) 8ti 2 'peak
0 8ti 2 'T � 'peak (12)

Therefore, the relations of RV (ti) and R(k; ti) are
expressed based on Refs. [21] and [24], respectively.
According to Eq. (11), the highest demand indicates
the highest reserve value, which is equal to 1. Upon
decreasing the demands from the highest to the lowest
value, the reserve value decreases from one to zero. In
case the AGG o�ers the reserve at hour ti and this
period belongs to the peak hours, PR(k; ti) is equal to
1; otherwise, it is equal to zero. In this regard, based
on Eq. (11), the AGG with a greater RMF is given
higher priority for providing the reserve at ti hour.
If MAR(ti) from Eq. (12) is greater than the reserve
capability of the considered AGG, another AGG with
the next priority will be called for the reserve provision.
This procedure continues in the same way until the
MAR is achieved.

3. Proposed method and implementation
process

This part includes three subsections: An overview of
C-ITLBO in Subsection 3.1; uncertainty analysis based
on IGDT in Subsection 3.2, and implementation steps
in Subsection 3.3.

3.1. Overview of C-ITLBO
As mentioned earlier, the current study uses the C-
ITLBO algorithm in conjunction with Genetic Algo-
rithm (GA) operators, i.e., crossover and mutation.
In order not to be trapped in local optima, an im-
provement phase was added to the Co-evolutionary
Teaching Learning-Based Optimization (C-TLBO) to
enhance its performance. Here, group means a number
of students in a classroom who are trying to learn
a lesson together. Then, a speci�c vector was used
to denote each one of the students. The C-ITLBO
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algorithm is elaborated in the following. During the
teacher phase of the algorithm, a student who is more
knowledgeable and well informed plays the role of the
teacher and tries to increase the classroom knowledge
level by teaching other students. In other words, when
there is a student who is more quali�ed than the
previous one, the previous one (teacher) is substituted.
Eq. (13) expresses the formulation of how a new student
or teacher, i.e., Snew, is generated from the previous
student (Sold) [27]:

Snew = Sold +m� (T � TF � �Sold): (13)

The relationship for TF is given as the following:

TF = round[1 + rand(0; 1)]: (14)

At the student phase of the algorithm, students
acquire knowledge based on the quality of the instruc-
tion provided by the teacher as well as the status of the
students in the classroom. In other words, when two
random and distinct students interact with each other,
i.e., one with higher quality (Sbetter) and another with
lower quality (Sworse) than the others, a new student
will be generated using Eq. (15) and be substituted
with the one with lower quality [27]:

Snew = Sworse + r � (Sbetter � Sworse): (15)

There are accordingly six main steps in this
algorithm: 1) initialization, 2) competition, 3) teacher
phase, 4) student phase, 5) GA operator's application,
and 6) improvement phase. In the �rst step (initializa-
tion), two groups of students with equal size of Pn are
generated and assessed. Here, PA and PB represent
these groups. Then, the other three steps (steps 2{
4) are repeated and once the termination criterion is
met, the algorithm stops. In order to consider the
competitiveness, a competition is carried out among
the students of both groups, and the student with the
highest level of competitiveness in each group is chosen
to be the teacher.

Therefore, TA is the teacher of the group or class
A and TB is the teacher of class B. In step 5, followed
by applying the crossover and mutation operators of
the GA, a new population of students is generated. In
order to prevent the algorithm from being trapped in a
local optimum and improve its convergence, the GA op-
erators are applied. The GA operators allow students
to compete with each other in acquiring knowledge
and becoming a teacher. At the improvement phase
(step 6), the students' knowledge level is elevated based
on the technique of self-adaptive mutation. Given that
students usually move in the direction of the teacher
in the C-TLBO, there is a chance that they will be
trapped in the local optimum points, which will lead to
the reduction of convergence rate. Accordingly, each
student moves randomly towards the teacher or the

worst student at the improved phase. If this number
is less likely to be mutated, the student will perform
the mutation; otherwise, he/she will not perform. The
mutation can be described as:

Snew =

(
Sold + !(T � Sold) if ! > 0
Sold + !(W � Sold) if ! � 0

(16)

The parameter ! is applied as shown below:

! =
1p
h
exp

�
�
�

1
2

��'
h

�2
cos
�
!d
�'
h

���
; (17)

where !d is selected as a probability number from 0
to 1. In case ! value is positive, the student moves
towards the teacher; otherwise, the student moves to
the opposite side. Given that 99% of the total energy of
the central frequency of the wavelet is located between
[�2:5; 2:5], the parameter ' is randomly chosen taking
a value between [�2:5h; +2:5h]. In this equation, h is
the dilatation factor, which varies at each iteration, as
shown below:

h = exp
�
� ln(�)� (1� L

Lmax
)� + ln(�)

�
: (18)

The upper limit as well as the shape of h are de�ned by
two parameters of � and �. In this study, the value of �
is considered equal to 2, and the value of � is obtained
from the following equation:

� = �min +
�
�max � �min

2:5

�
; (19)

where �min and �max are 1 and 3, respectively.

3.2. Uncertainty analysis based on IGDT
The de�nite model of the considered problem is com-
prised of Eqs. (1){(12) through which the objective
function is formed to determine the optimal values of
the price of and demand for the purchased power in
terms of the above constraints. The reserve provided
by the AGGs is then prioritized using the RMF. Given
that the price is an uncertain parameter, IGDT is
used to address this uncertainty. The IGDT uses the
opportunity and robustness functions to determine the
risk-seeking and risk-averse levels in the considered
problem. In other words, followed by determining the
value of the objective function of the abovementioned
de�nite model, the minimum and maximum limits
of the value that the objective function is allowed
to change are determined by the opportunity and
robustness functions, respectively [28]. The IGDT
consists of three parts namely the system modeling,
operating requirements, and uncertainty modeling.

3.2.1. System modeling
The system modeling requires a system of input/output
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structure. The system model used in this paper is
the TOF which is used for evaluating the system
response. In other words, the objective function in
Eq. (1) represents the system model. In this model,
d(k; ti),inc(ti), and Pgrid(ti) are the decision variables,
and �U (ti) is the uncertainty variable.

3.2.2. Uncertainty modeling
Through the IGDT method, uncertainty can be ex-
pressed in di�erent ways [28]. Here, a limited pocket
model [29] is used where the value of deviation is
proportional to the known value of the uncertainty
parameter. Thus, the relation of the uncertainty
parameter in the �nite packet model at time ti is
expressed in Eq. (20):

U(�; ~PU (ti)) =
�

�PU (t) :
j �PU (ti)� ~PU (ti)j

~PU (ti)
� �

�
� � 0: (20)

In IGDT, � must be determined such that the value
of the objective function will not exceed a certain level
compared to the base value.

3.2.3. Operating requirements
In this section, the operating requirements of the stud-
ied system are presented in the form of two objective
functions. These operating requirements may lead to
higher or lower TOF . Operating requirements are
evaluated based on the robustness and the opportunity
functions and these two functions must be set for the
current problem. In addition, for the TOF , these
functions are introduced in the followings:

�̂(TOFr) = Max
�
f� : Min(TOF ) � TOFrg ; (21)

�̂(TOFO) = Min
�
f� : Min(TOF ) � TOFOg : (22)

Based on the risk-seeking and risk-averse strate-
gies, two di�erent operations of the objective function
can be de�ned in an IGDT model. A risk-averse
decision-maker tends to plan to tolerate the adverse
deviations of the uncertainty parameter. In the IGDT
method, immunity against such adverse deviations is
modeled using the robustness function. In this regard,
�̂(TOFr) exhibits resistance to the rise of the electricity
prices, hence being more valuable than the desired
�̂(TOFr). It should be noted that the total objective
function in this function is more than that in a pre-
de�ned TOF . Conversely, a risk-seeking decision-
maker wants to take advantage of the desired deviations
of the uncertainty from the expected value. The
information gap method uses the opportunity function
to model these potential bene�ts from the viewpoint of
a risk-seeking decision-maker. The maximum value of
�̂(TOFO) is 1, which provides the minimum estimate of
the total objective function. Therefore, smaller values

of �̂(TOFO) are desirable. It should also be noted that
the total objective function in this function is less than
that in a pre-de�ned TOF . Moreover, TOFr is greater
than TOFO in the above equation.

Robustness function
The robustness function can be modeled by consider-
ing the risk-averse strategy of the negative aspect of
the uncertainty where it is attempted to be immune
against the maximum degree of the price uctuations.
The robustness IGDT function can be expressed as
follows [30]:

�̂(TOFr) = max
�
� : max

l2U(�; ~PU (t))
TOF

� TOFr = (1 + �)TOFb
�
: (23)

The value of the robustness function is obtained by
maximizing � based on the equation given below:

�̂(TOFr) = max�; (24)

subject to:

�̂(TOFr) = Max[Eq(1)] � TOFr; (25)

(1� �) ~PU (ti) � �PU (ti) � (1 + �) ~PU (ti); (26)

Eqs: (2)� (12): (27)

Since the maximum increase in the uncertainty
parameters �PU (ti) = (1 + �) ~PU (ti) is obtained in the
robustness function, the robustness function can be
formulated as:
�̂(TOFr) = max �; (28)

Subject to:

�̂(TOFr) = Max[Eq(1)] � (1 + �)TOFb; (29)

�PU (ti) = (1 + �) ~PU (ti); (30)

Eqs. (2)� (12): (31)

Opportunity function
Any reduction in uncertainty will be bene�cial for the
RMM so that the positive e�ects of uncertainty are
modeled using the opportunity function. In addition,
the related IGDT opportunity function can be ex-
pressed as [30]:

�̂(TOFO) = min
�
� : min

l2U(�; ~PU (t))
TOF

� TOFO = (1� )TOFb
�
: (32)

The opportunity function value can be obtained by
minimizing � as shown below:
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�̂(TOFO) = min�; (33)

Subject to:

�̂(TOFO) = Min[Eq(1)] � TOFO; (34)

(1� �) ~PU (ti) � �PU (ti) � (1 + �) ~PU (ti); (35)

Eqs. (2)� (12): (36)

Since the minimum reduction in the uncertain pa-
rameters �PU (ti) = (1 � �) ~PU (ti) is obtained in the
opportunity function, the opportunity function can be
formulated as:

�̂(TOFO) = min �; (37)

Subject to:

�̂(TOFO) = Min[Eq(1)] � (1� )TOFb; (38)

�PU (ti) = (1� �) ~PU (ti); (39)

Eqs. (2)� (12): (40)

3.3. The implementation steps
According to the owchart shown in Figure 1, the
implementation steps of the proposed method are as
follows:

Step 1: Enter the initial information, related algo-
rithm, optimization functions and constraints, and
required parameters of the formulations for the RMM
ti = 1, � = 0, � = 0:07,  = 0:09, and so on.
Step 2: If � = 0, go to Step 6 and maximize
the proposed pro�t function of the RMM in Eq. (1)
according to the constraints in Eqs. (2){(6), where the
RMM's pro�t is determined without IGDT, TOFb.
Step 3: If the RMM is looking for a risk-taking or
risk-aversion strategy for the uncertainty parameter
of the electricity price, the applied IGDT-based
robustness and applied IGDT-based opportunity op-
timizations should be selected, respectively.
Step 4: If the � iteration is not higher than its
upper limit, go to Step 5; otherwise, set the best value
for the RMM's pro�t for the robustness optimization
and opportunity optimization based on Eqs. (29) and
(38), respectively. Then, �nish the process.
Step 5: For the robustness optimization, substitute
Eq. (30) with �U (ti) and for the opportunity opti-
mization, replace Eq. (39) with �U (ti). Then, go to
Step 6.
Step 6: If the iteration is not greater than its upper
limit, go to step 8; otherwise, report the best values
and save the best demand, power purchased, and
inc(ti), the RMM daily objective function.

Step 7: Prioritize the AGGs from the perspective of
the power reserve during peak-load hours by Eqs. (8){
(12). Next, a+ 0:05 returns to Step 3;
Step 8: If ti is the peak load hours, the inc is
determined by inc = incmin + (incmax � incmin) �
randx(

�
0 1

�
) using Constraint Eq. (2); otherwise,

inc(ti) = 0 and go to Step 9.
Step 9: The amount of 24-hour demand for the
AGGs in the EDRP program is determined via
Eq. (7).
Step 10: The RMM daily objective function is solved
based on Eq. (1), considering the constraints given in
Eqs. (3){(6);
Step 11: If the RMM daily objective function is more
than its previous value, save the best demand, inc(ti),
reserve prioritization, and RMM daily objective func-
tion. Then, consider the next iteration or It+ 1 and
return to Step 6.

4. Results and Discussion

The e�ectiveness and feasibility of the proposed
method are illustrated in nine di�erent scenarios. The
assumptions are listed in Section 4.1, and the results
of the proposed method are presented and evaluated in
Section 4.2.

4.1. Assumptions
The proposed formulations are evaluated in this section
based on the following assumptions:

� Five AGGs are considered with the initial demands
according to Table A.1 in the Appendix and the
participation factors PF1 = 21%, PF2 = 23%,
PF3 = 24%, PF4 = 22%, and PF5 = 24%,
respectively.

� Daily load curve in the considered region and param-
eters of Price Elasticity Matrix (PEM) are depicted
in accordance with Figure A.1 and Table A.2 in the
Appendix.

� In the load curve, the low-load hours range from
24:00 to 9:00; the middle-load hours from 10:00,
11:00, 17:00 to 19:00 plus 23; and the peak-load
hours from 12:00 to 16:00 and from 20:00 to 22:00.

� The initial value of � is 0 and it increases up to
�+ 0:05 at each iteration.

� The prices of electricity sold to the AGGs before
and after the implementation of the EDRP for
the low-load, middle-load, and peak-load periods
are 14, 17, and 20 $/MWh, respectively. These
prices were obtained on conditions that the AGGs
would be encouraged to change their consumption
patterns only by using incentive payments rather
than changing the electricity prices. In other words,
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Figure 1. The owchart of the evaluation process of the proposed formulations.
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Table 2. Studied scenarios.

Scenario Case study PEM Uncertainty model Sensitivity
analysis

Optimization
Power

transmission loss
EDRP model Algorithm

S1 First 0 � � X � �
S2 Second E � X X Logarithmic C-ITLBO
S3

Third
E � � X Logarithmic C-PSO [14]

S4 E � � X Logarithmic C-TLBO [27]
S5 E � � X Logarithmic C-ITLBO
S6 Fourth E � � � Logarithmic C-ITLBO
S7 Fifth 0.5*E � � X Logarithmic C-ITLBO
S8 Sixth E IGDT (Robustness) � X Logarithmic C-ITLBO
S9 E IGDT (Opportunity) � X Logarithmic C-ITLBO

Note: EDRP: Emergency Demand Response Program; IGDT: Information-Gap Decision Theory;
C-PSO: Co-evolutionary Particle Swarm Optimization; C-TLBO: Co-evolutionary Teaching Learning-Based Optimization;
and C-ITLBO: Co-evolutionary Improved Teaching Learning-Based Optimization

there is no change in the electricity prices before and
after the EDRP program.

� Assuming that the percentage of the RMM's share
of revenue obtained from purchasing energy from
upstream market and selling it to the AGGs is 5%,
the market price electricity relation for �A(ti) can be
expressed as �A(ti) = 0:95��U (ti). This assumption
was to motivate the RMM to manage energy in the
regional market.

� The simulation time interval is 24 hours.

� For the Co-evolutionary Particle Swarm Optimiza-
tion (C-PSO), C-TLBO, and C-ITLBO algorithms,
the number of iterations is limited to 200; the size of
the population is 100; and there are eight scenarios,
as shown in Table 2.

4.2. Results of the proposed method
In this section, the results of evaluating the proposed
model are investigated with the aim of maximizing the
RMM's pro�t for 24 hours. In order to describe the
EDRP in a market area from the RMM's viewpoints,
six case studies were conducted according to Table 2.
Case 1 is the model proposed according to Scenario
S1, which is devoid of the EDRP. Case 2 considers
implementation of the sensitivity analysis in the pro-
posed model according to Scenario S2. Case 3 shows
the implementation of the proposed model by applying
the C-PSO, C-TLBO, and C-ITLBO algorithms in
accordance with Scenarios S3 to S5. Implementation
of the proposed model without power transmission loss
in accordance with Scenario S6 is presented in Case 4.
Case 5 presents implementation of the proposed model,
where the PEM is halved in accordance with Scenario
S7. Case 6 includes price uncertainty in the proposed
model by the IGDT model in accordance with Scenarios

Figure 2. Sensitivity of the daily load curve to the
weighting factors.

Figure 3. The e�ect of the EDRP on the daily load
curve.

S8 and S9. Figures 2{7 and Tables 3{6 present the
evaluation results of the above-mentioned paragraphs.

4.2.1. Case study 1: Base case
This case study includes Scenario S1 where the e�ects
of non-implementation of the EDRP in the day-ahead
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Figure 4. Daily load curve in Case 4.

Figure 5. Daily load curve in Case 5.

Figure 6. Daily load curve result of Case 6.

market are evaluated. The values of Wi and WC are
equal to 0.6 and 0.4, respectively, and no optimization
algorithm is applied in this case study. The reason
for choosing the mentioned values for weighting factors
is the outcome of the second case study. Scenario
S1 indicates the base case in relation with the actual
load curve of Figure 2 where the EDRP was not
implemented, and there is no incentive for the AGGs.
According to Table 6, the lowest amount of the RMM
TOF , the lowest incentive rate, and the lowest reserve-
used rate among the scenarios can be observed in

Figure 7. Robust and opportunity functions of the
RMM's pro�t.

Table 3. Evaluation of the sensitivity of the TOF and
incentive rate to the weighting factors.

No. Wi Wc TOF incentive

1 0 1 {367747.20 18.02

2 0.1 0.9 {294403.57 16.15

3 0.2 0.8 {222299.47 15.39

4 0.3 0.7 {150090.73 14.44

5 0.4 0.6 {77925.76 13.49

6 0.5 0.5 {5084.94 11.59

7 0.6 0.4 68124.20 9.17

8 0.7 0.3 141290.11 7.14

9 0.8 0.2 215003.85 4.96

10 0.9 0.1 289065.26 3.15

11 1 0 365900 0

Note: TOF : Total Objective Function

Scenario S1. This shows that for the RMM, EDRP
in each scenario favors its non-implementation.

4.2.2. Case study 2: Sensitivity analysis of TOF
weighting factors

This case study includes Scenario S2 where the e�ects
of the weighting factors, i.e., Wi and WC , on the TOF
and incentive rate are investigated on the basis of the
C-ITLBO algorithm. For this purpose, weight factors
are changed according to Table 3, and the TOF and
incentive rate sensitivities are calculated. It is observed
that upon increasing WC , the RMM cost functions in
the EDRP program become more sensitive than usual.
The incentive rate also increases and, consequently, the
AGGs are more willing to participate in the EDRP
program; however, the RMM's pro�t decreases. In case
the Wi increases, the RMM revenue function shows
higher sensitivity and as a result, the RMM's pro�t
increases. In addition, changes in the load demand
relative to the weighting factors are plotted in Figure 2.
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Table 4. The reserve used by the AGGs in di�erent scenarios during peak hours.

Scenario AGG1 (MW) AGG2 (MW) AGG3 (MW) AGG4 (MW) AGG5 (MW)

S1 0 0 0 0 0

S3 128.526 125.778 143.715 123.014 134.788

S4 127.424 124.699 142.482 121.960 133.632

S5 126.318 123.617 141.246 120.901 132.473

S6 125.209 122.532 140.006 119.840 131.309

S7 73.3624 71.7938 82.0320 70.2164 76.9366

S8 92.4160 90.4400 103.337 88.4529 96.9184

S9 169.170 165.553 189.162 161.916 177.412

Note: AGG: Aggregator

Table 5. Incentive payments to the AGGs in di�erent scenarios.

Scenario AGG1 ($) AGG2 ($) AGG3 ($) AGG4 ($) AGG5 ($)

S1 0 0 0 0 0

S3 1179.5 1154.3 1318.9 1128.9 1237

S4 1169.4 1144.4 1307.6 1119.2 1226.3

S5 1159.2 1134.4 1296.2 1109.5 1215.7

S6 1137 1112.6 1271.3 1088.2 1192.3

S7 807.89 790.620 903.36 773.25 847.25

S8 1102.5 1079 1232.8 1055.3 1156.2

S9 1164.4 1139.5 1302 1114.4 1221.1

Note: AGG: Aggregator

Table 6. The rate of Incentive, reserve used and TOF
RMM in di�erent scenarios.

Scenari
#

Incentive
($/MWh)

Reserve used
(MW)

TOF RMM
($)

S1 0 0 65381.93

S3 9.3702 655.8227 67995.40

S4 9.2736 650.1998 68060.96

S5 9.1770 644.5583 68126.22

S6 9.0804 638.8981 75741.95

S7 11.0124 374.3410 69773.73

S8 11.9301 471.5646 70266.63

S9 6.8827 863.2158 65898.31

Note: TOF : Total Objective Function; and RMM: Regional

Market Manager

It can be observed that upon increasing WC , the
peak load of the demand curve is reduced. However,
increasing Wi results in an increase in the peak load.
Based on the results obtained in Figure 2 and Table 3,

it can be concluded that the best values for the TOF
weighting factors (Wi and WC) can be considered as
0.6 and 0.4, respectively, in order for the RMM to
simultaneously achieve higher pro�t and lower peak
load of the demand curve (with consideration of the
constraints of upstream grid and power generation).

4.2.3. Case study 3: Evaluation of di�erent
algorithms

This case study includes Scenarios S3-S5 in which
the e�ects of the EDRP on the optimal amount of
the incentive rate, power purchased, and demand are
investigated, considering the technical constraints in
the day-ahead market. The values of Wi and WC are
equal to 0.6 and 0.4, respectively, and the value of the
PEM is E. This case study also employs C-PSO, C-
TLBO, and C-ITLBO algorithms. It should be noted
that the reason for choosing these values for weighting
factors is the outcome of the second case study. In this
case study, the assumed lowest reserve and incentive
payments to the AGGs correspond to Scenario S5
(using the C-ITLBO algorithm) in accordance with the
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amounts, as shown in Tables 4 and 5. According to
Table 6, most of the TOF RMMs, the lowest incentive
rate and the lowest reserve are obtained in Scenario
S5 which are 68126.22 $, 9.177 $/MWh, and 644.55
MW, respectively. Moreover, as shown in Figure 3,
the reduction of the peak demand in Scenarios S3 to
S5 is approximately equal. Considering the results of
Figure 3 and Tables 4{6, in this case study, it can
be concluded that the C-ITLBO algorithm is more
accurate than the C-PSO and C-TLBO algorithms.

4.2.4. Case study 4: Ignoring the line losses
This case study includes Scenario S6, in which the ef-
fects of the EDRP on the optimal incentive rate, power
purchased, and demand are investigated by considering
technical constraints except the transmission line losses
in the day-ahead market. Wi and the WC are equal
to 0.6 and 0.4, respectively, the value of the PEM
is E, and C-ITLBO algorithm is applied in this case
study. The reason for choosing the C-ITLBO algorithm
is that it has been found to be more accurate than
the C-PSO and C-TLBO algorithms in the third case
study. Compared to Scenario S5, in this scenario, the
reserve used and the incentive payments to the AGGs
decreased in accordance with the amounts shown in
Tables 4 and 5. Table 6 shows the increase of the TOF
RMM, the reduction of the incentive rate, as well as
the reduction of the reserve rate in Scenario S6, which
are 75741.95 $, 9.0804 $/MWh, and 638.8981 MW,
respectively. Also, Figure 4 shows the reduction of the
peak-load curve peak due to the EDRP execution while
ignoring the transmission line losses. If line losses are
not ignored, the RMM will not need to purchase more
power to compensate for the losses. In this situation,
the upstream network has a greater backup capacity
and the RMM incentive to run the EDRP program is
attenuated; as a result, the RMM receives more pro�t
by ignoring line losses.

4.2.5. Case study 5: Variation in price elasticity
matrix

This case study includes Scenario S7, in which the
e�ects of the EDRP on the optimal incentive rate,
power purchased, and demand are investigated while
considering all technical constraints in the day-ahead
market. Wi and WC are equal to 0.6 and 0.4,
respectively, the value of the PEM is changed as 0:5�E,
and C-ITLBO algorithm is applied. Compared to
Scenario S5, in Scenario S7, the reserve used and the
incentive payments to the AGGs are reduced according
to the amounts shown in Tables 4 and 5. Table 6 shows
that by increasing TOF of the RMM, the incentive
rate increases and the reserve used rate decreases, as
obtained in Scenario S7. In this regard, the related
values are 69773.73 $, 11.0124 $/MWh, and 374.34
MW, respectively. Also, Figure 5 shows the peak-

load curve compared to Scenario S5 when the PEM
is halved. Considering Figure 5 and Tables 4{6,
it can be concluded that if the RMM prefers lower
participation of the AGGs in the EDRP, the PEM
should be decreased. When the PEM is halved, the
AGGs' participation in the EDRP program is reduced
compared to that in Scenario S5. In other words, as
PEM decreases, the sensitivity of the loads of the AGGs
to the incentives in the EDRP program decreases,
as well. As a result, the RMM should increase
the incentive rate to consider this higher sensitivity.
However, in general and according to Tables 4 to 6,
despite the increase of the incentive rate, the tendency
of the AGGs to participate in the EDRP program is
reduced compared to Scenario S5, resulting in fewer
incentives for the AGGs.

4.2.6. Case study 6: Evaluating the e�ects of the
IGDT in the considered issue

This case study includes Scenarios S8 and S9, in which
the e�ects the uncertainties (electricity price) in case
of using the IGDT in the EDRP program on the
optimal incentive rate, power purchased, and demand
are investigated while considering technical constraints
in the day-ahead market. Wi and the WC are equal
to 0.6 and 0.4, respectively, the value of the PEM
is E, and C-ITLBO algorithm is applied in this case
study. The risk-averse strategy is used for determining
the maximum resistance against the rising of the
electricity price by TOFr, that is, the worst situation
of the uncertainty parameter (electricity price) for
the maximum pro�t that the RMM can obtain for
�nding the optimal incentive rate, power purchased,
and demand, as shown in Figure 6. In this �gure, the
consumer demand is plotted for the optimal a = 0:3.
Compared to Scenarios S3 and S5, this �gure shows
that when the primary price of electricity increases
and yet, the price remains the same after EDRP, the
load demand over peak hours increases and the load
curve tends not to be smoother. Moreover, the reserve
used and the incentive payments to the AGGs will
decrease in accordance with the amounts shown in
Tables 4 and 5. According to Table 6, by increasing
the TOF of the RMM, the incentive rate increases, but
the reserve-used rate decreases, which are 70266.63 $,
11.9301 $/MWh, and 471.5646 MW, respectively, as
obtained in Scenario S8. The risk-aversion strategy is
used for determining the minimum resistance against
the lowering of the electricity price by the TOFO, which
translates into the best situation of the uncertainty
parameter (electricity price) for the minimum pro�t
that the RMM can obtain for �nding the optimal
incentive rate, the power purchased, and demand, as
shown in Figure 6. In this �gure, the consumer demand
is plotted for the optimal a = 0:25. As shown in this
�gure, when the primary price of electricity decreases
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but the price remains the same after EDRP compared
to Scenario S5, the load demand over peak hours
decreases and the load curve tends to be smoother
compared to Scenario S3. Moreover, the reserve used
and incentive payments to the AGGs will increase
according to the amounts shown in Tables 4 and 5.
According to Table 6, by decreasing TOF of the RMM,
the incentive rate decreases as well but the reserve-used
rate increases, which are 65898.31 $, 6.8827 $/MWh,
and 863.2158 MW, respectively, as obtained in Scenario
S8. Figure 7 shows the ratio of the alpha to the
TOFr. As indicated, by choosing a higher power price
than the one in Scenario S3 (neutral power price), the
RMM leads to greater TOFr. If the RMM chooses a
higher primary price, a better decision will be made.
Furthermore, Figure 7 indicates the ratio of alpha to
the TOFO. According to Figure 7, when the RMM
reduces the TOFO by choosing a lower primary price
than Scenario S3 (neutral power price), the RMM's
pro�t is reduced in order to have a more risk-seeking
strategy. Therefore, examining price uncertainty in the
considered problem creates awareness for the RMM of
the limitations of the optimal load changes in exchange
for the price changes. This is an acceptable basis for the
RMM in purchasing the electricity from the upstream
market. In contrast, ignoring the price uncertainty
during peak hours makes the RMM vulnerable to the
price changes and as a result, the AGGs will have
lower participation in the EDRP. In general, it can
be concluded that these items can greatly improve
the economic bene�ts, prevent possible outages during
peak hours, and �nally lead to safe operation of the
system.

5. Conclusion

In this article, the RMM-related formulations were
presented in a market environment to determine the
optimal demand, incentive, and power purchased by
taking into consideration some technical constraints
such as incentive limits, demand limits, power pur-
chased, and power balance. In addition, the reserve
provided by the AGGs was prioritized based on the
reserve-margin factors. Due to the uncertainty of the
electricity price, an uncertainty model (IGDT) was
presented for the considered problem. The positive
aspect of uncertainty was represented by the IGDT
opportunity function, while its negative aspect was
presented by the IGDT robustness function. Using
various strategies, the RMM attempted to limit the
price uncertainty. For example, by considering the
risk-aversion strategy, the AGGs were more inclined
to reduce the load during the peak hours and the load
curve tended to be smoother. Furthermore, by con-
sidering the risk-seeking strategy, the AGGs were less
inclined to reduce the load during the peak hours. The

inclusion of the price uncertainty in the EDRP program
can help RMMs prevent the risks of the load changes,
thus greatly a�ecting the economic bene�ts and safe
operation of the system. In addition, the sensitivity
analysis of the e�ects of weighting factors namely TOF ,
the PEM changes, e�ects of line losses, and di�erent
algorithms was conducted and investigated. These
studies can be useful for the RMM to improve the load
curve and prevent unrealistic decisions and �nancial
losses. As for future research, it is possible to extend
the proposed formulations by adding more items to the
mentioned constraints and objective functions, improv-
ing the reserve consideration procedure, applying some
newer meta-heuristic algorithms, and investigating the
possibility of the RMM interaction with the whole-sale
electricity market.

Nomenclature

Sets and Indices

ti; tj ; k Indices of time, time and the AGGs
'T ; 'peak Sets of time, peak load time

Constants

Pmin
grid; P

max
grid Minimum and maximum value of

power purchased from the upstream
grid (MW)

�0(ti); �(ti) Electricity price before and after
implementation of the EDRP at time
ti ($/Mwh)

�0(ti); �(tj) Electricity price before and after
implementation of the EDRP at time
tj ($/Mwh)

PFk Contribution ratio of the AGG no. k
E(ti; tj) Price elasticity matrix at time ti and tj
incminincmin Minimum and maximum value of

incentive given to the AGGs by the
RMM ($/Mwh)

d0(k; ti) Energy consumption before
implementing the EDRP for the
AGG no. k at time ti (MWh)

Variables

RMF (k; tj) Reserve-margin factors for the AGG
no. k at time ti

R(k; tj) Reserve provided by the AGG no. k at
time ti (MWh)

RV (ti) Reserve value for each of the AGGs
which could provide reserve at time ti

PR(k; tj) Reserve o�ers by the AGG no. k at
time ti
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MAR(ti) Maximum achievable reserve for the
RMM at time ti

RSP (k) Reserve service period of the AGG no.
k

inc(ti) Incentive rate from market to the AGG
at time ti ($/MWh)

inc(tj) Incentive rate from market to the AGG
at time tj ($/MWh)

!C Weighting factor for the RMM costs in
the objective function

~PU (ti) Forecasted uncertainty variable at time
ti

TOFb Minimum expected TOF of the RMM
TOFr Critical TOF for robustness function
TOFO Critical TOF for opportunity function
!i Weighting factor for the RMM income

in the objective function
d(k; ti) Energy consumption after

implementing the EDRP for the
AGG no. k at time ti (MWh)

� Percentage increase in TOF for the
RMM

 Percentage decrease in TOF for the
RMM

d(ti) Energy consumption after
implementing the EDRP at time
ti (MWh)

PL(ti) Power transmission loss at time ti
(MWh)

Pgrid(ti) Power purchased from the main grid at
time ti (MWh)

T Teacher (the best student among other
students)

Pn Initial population (initial students
group)

M Randomly selected real number in the
range of 0 to 1

�Sold Average value for all students before
being taught

Sold Teacher's knowledge
Snew A new member or student created to

replace the low-quality member.
TF Teaching coe�cient
H Dilatation factor
!d Central frequency of the wavelet
L Current
Lmax Total iterations
W The worst student
! Probability of mutation to each student
� Uncertainty radius

~PU (ti) Actual uncertainty variable at time ti

Function

TOF Total objective function of the RMM
($)

�̂(TOFr) Robustness function

�̂(TOFO) Opportunity function
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Appendix

In Table A.1, �ve AGGs considered with the initial
demands and in Figure A.1 and Table A.2 daily load
curve and parameters of PEM are depicted.

Figure A.1. The considered daily load curve [25].
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Table A.1. Initial demand of the AGGs.

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Demand of AGG1 (MWh) 163 136 100 100 110 116 115 133 140 156 193 216
Demand of AGG2 (MWh) 130 125 130 110 130 130 110 130 165 176 210 230
Demand of AGG3 (MWh) 147 139 125 125 125 142 150174 217 244
Demand of AGG4 (MWh) 125 130 127 119 125 125 122 130 125 137 180 210
Demand of AGG5 (MWh) 135 120 118 116 110 125 114 135 140 157 200 225

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Demand of AGG1 (MWh) 233 275 216 256 200 166 226 274 275 246 161 123
Demand of AGG2 (MWh) 245 220 210 230 220 200 240 210 220 214 160 150
Demand of AGG3 (MWh) 242 250 254 264 240 214 240 230 260 204 184 160
Demand of AGG4 (MWh) 224 260 245 197 125 112 108 215 210 258 150 140
Demand of AGG5 (MWh) 226 245 240 203 115 108 106 241 215 232 145 127

AGG: Aggregator

Table A.2. The considered self and cross elasticity in di�erent time periods.

Time period Low load Middle load Peak load

12{16 and 20{22 0.024 0.032 {0.2 Peak load
10{11, 17{19 & 23 0.02 {0.2 0.032 Middle load

24{9 {0.2 0.02 0.024 Low load
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