Optimization of FFU synthetic sleeper shape in terms of ballast lateral resistance

Guoqing Jing a, Lu Zong b, Yameng Ji c, Peyman Aela* d

a Professor, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China. Email: gqjing@bjtu.edu.cn
b Master student, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China. Email: 19121223@bjtu.edu.cn
c Master student, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China. Email: 17121199@bjtu.edu.cn
d Ph.D. Candidate, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China. Email: 17119002@bjtu.edu.cn, Mobile No.: +8615501030115

Abstract

Fiber-reinforced foamed urethane (FFU) synthetic sleeper is used in ballasted track with the potential problem of insufficient lateral resistance due to lower weight and smooth surface compared with concrete sleepers. In this paper, the lateral resistance of prototype and modified FFU synthetic sleepers was investigated by single tie push tests and DEM analysis, where the real shape of ballast particles was created using the 3D scanning technique. Results indicate that due to the smooth surface of sleeper facets, the lateral resistance of prototype FFU sleepers is reduced by 10-15% and governed by the interactions of shoulder ballast and sleeper ends. On the other hand, modification of the sleeper shape by adding FFU strip block along sleeper base and sides increased lateral resistance up to 19% of prototype sleepers with higher interlocking ability between ballast and sleeper sides. Results could be used to develop modified FFU sleepers for application in various ballasted tracks.

Keywords:
Ballast, FFU, Lateral resistance, STPT, DEM

1. Introduction

The selection of sleeper type is a key issue in the lateral stability of ballasted railway tracks. Timber sleeper is one of the most common types of sleepers widely used in ballast railway tracks due to the adaptability to be fitted with all types of railway tracks, proper electric insulation, and damping of vibration [1]. However, fungal decay, end splitting, and corrosion are the main causes of failure
of timber sleepers, as shown in Fig. 1a,1b [2]. In addition, the lateral resistance of timber sleepers
was minimum in comparison with other types of sleepers [3,4]. Previous studies confirmed that
different types of concrete sleepers have higher lateral resistance due to the high weight and rough
surface of sleeper facets [5,6]. Nevertheless, center-bound damage, cracks, and deterioration of
rail-seats are the major problems of concrete sleepers (Fig.1c,1d) [2].

Recently, there is an increasing tendency for the application of composite sleepers as the
substitution of existent alternatives due to the high strength to weight ratio, eco-friendly material,
and thermal and electrical-insulating properties [7,8]. Despite all advantages, the high cost of
manufacturing is the main challenge of using composite sleepers in railway tracks [9]. Generally,
composite sleepers are divided into two groups of Engineered Polymer Composite (EPC) and
Engineered Wood Product (EWP) [10]. Fiber-reinforced polymer composite sleeper (FFU) is a
type of EPC sleeper manufactured by Pultrusion. As depicted in Fig. 2a, after mixing glass fibers
with polyurethane, the linkage is hardened at a high temperature to provide high strength FFU
products. Different shapes of FFU sleepers can be produced, as shown in Fig. 2b. Currently, FFU
sleepers have been widely installed in many countries with an expected service life of more than
50 years [11,12] (Fig. 2c).

As mentioned by Sakdirat, K et al. [13,14], laboratory and field tests on mechanical properties
are vital for the sustainable development of composite sleepers. Results of laboratory tests,
including bending test, electrical resistance test, fatigue test, pull-out test of sleeper screws, and
impact load test, confirmed the high performance of FFU sleepers in all aspects [12]. However,
the lateral resistance of FFU sleepers with 160 mm in height was as low as wooden sleepers (~9
kN). Sleeper type, size, shape, weight, spacing, and surface texture are influencing factors on the
lateral resistance as well as ballast properties and ballast confinement between sleepers [15–19].

To meet this issue, surface texturing is an efficient method recommended by AREMA standard
[10], to increase lateral resistance by 100% in comparison with the typical composite sleeper. In
this regard, the construction of bottom-rise sleepers could increase lateral resistance up to 10 kN
(Fig. 3) [20]. In this regard, ballast components (crib, shoulder, and base) have a significant
influence on lateral resistance increment. Results show that the contribution of shoulder ballast,
crib ballast, and ballast bed to the lateral resistance of concrete sleepers were about 22.5 %, 32.5 %,
and 37.5 %, respectively [21]. In another study, Ferro et al. [22] reported that the number of
contacts between composite sleeper and ballast is higher than that of concrete sleeper/ballast
interface.

Up to now, there is no investigation on the interaction of sleeper/ballast components as a
factor of the lateral resistance of FFU sleepers, as well as the impact of the shoulder height and
width on the lateral resistance. In addition, the use of sleeper wings could be another solution to
improve lateral stability of composite sleepers which have been already implemented for concrete
sleepers [23,24]. In this paper, lateral resistance of different shape of FFU synthetic sleepers was
assessed by a single tie push test (STPT) to make a comparison between lateral resistance of prototype, winged and bottom-rise FFU sleepers. In the next section, numerical modeling of STPTs was conducted using 3D-laser scanning method and PFC3D to measure the contribution of ballast components to the lateral resistance of FFU sleepers. In the final section, a sensitivity analysis was performed to optimize the dimensions of the textured sleeper.

2. Material and method

2.1. Ballast properties

In the present study, basalt aggregates with LAA 18 were used with the particle size distribution according to China National Standard TBT 2140 (Fig. 4). It should be mentioned that the bulk density of the ballast layer after compaction was about 1700 kg/m³.

2.2. Composite sleeper

In this paper, FFU synthetic sleepers produced by KEBOS are used for the tests, which have already been used across China's rail transit system, including conventional railway, urban transit, and heavy haul railway, etc. The FFU sleeper characteristics are shown in Table 1. In this paper, in order to increase the sleeper/ballast interlocking capacity, the optimized types of FFU sleepers were fabricated by adding strip blocks or wings with the same material to the FFU sleeper. In the following, the characteristics of each type are described.

2.2.1. Optimized Type A

Two forms of optimizing in the structure are shown in Fig. 5b, 5c. The extrude block are set to their outside to increase the disturbing ballast aggregates of the crib ballast. Due to the lower ballast confinement between sleepers, there is a low average contact force between crib ballast and sleeper sides. The added blocks are used to increase the confinement pressure to crib aggregates and increase the number of contacts as well. The added blocks are 60 mm * 60 mm * 260 mm in length, width, and height, respectively, and it is made of the same material as FFU.

2.2.2. Optimized Type B

Other forms of FFU sleepers presented in Fig. 5d, 5e, consisted of strip blocks with the dimensions of 10 mm * 10 mm * 240 mm on the sleeper base for type B1 and strip blocks with the dimensions of 10 mm * 10 mm * 200 mm on lateral sides for type B2, and 100 mm spacing between blocks for both sleeper types.

2.3. Test method and plan

2.3.1. Test procedure

In this paper, the STPT method was applied to evaluate the lateral resistance of FFU sleepers. Fig. 6 shows the instrumentation of the panel for the measurement of lateral force-displacement.
Firstly, ballast bed was poured into four layers so that each layer was compressed five times by a vibrating compactor. The second step, after placing sleepers, crib ballast was poured into three layers compacted by vibrating compactor. It should be noted that the spacing of the sleepers was 600 mm for all tests. The lateral displacement of sleepers was measured by installation of two Linear Variable Differential Transformer (LVDTs) to the sleeper end. In order to apply the lateral force, a hydraulic jack with the maximum value of 10 ton loading was fixed by steel rods. In the end, the lateral displacement of the sleeper was equal to the mean of the values obtained from LVDTs. The data logger INV3018A was used to record the lateral resistance force, which was corresponding to 2 mm displacement of the sleeper. The experiment was repeated three times under every test condition, and finally, the average number was considered as sleeper lateral resistance.

2.3.2. Test plan

In order to examine the influence of changes in shoulder height and shoulder width, firstly, STPT tests were performed on different sleepers with a shoulder width of 300, 400, and 500 mm and a shoulder height of 0 and 150 mm, as shown in Table 2. In the next step, since the higher shoulder width led to the higher lateral resistance of ballast, STPTs of 4 types of FFU synthetic sleepers with a shoulder width of 300 and 500 mm, and a shoulder height of 0 and 150 mm was measured.

3. Results and analysis

Fig. 7 shows the lateral resistance of sleepers for three sets of sleepers with different test conditions at the horizontal displacement of $d = 2$ mm. In the following, STPTs results are discussed further regarding shoulder height and shoulder-width variations, as showed in Table 3.

3.1. The influence of shoulder height and width

As depicted in Table 3, along with the growth of shoulder-width from 300 to 500 mm and height from 0 to 150 mm, the lateral resistance of both sleepers are all rising. The data for lateral resistance shows an ascending trend throughout the increase in the shoulder width and height so that changes in shoulder width from 300 to 500 mm lead to 27.6 % lateral resistance increment of the composite sleeper. On the other hand, there was about a 10.5 % increase in the lateral resistance by rising shoulder height up to 150 mm for panels with a shoulder width of 500 mm. It should be mentioned that the lateral resistance of the concrete sleeper was much higher than the composite one under the same condition, so that the resistance of the concrete sleeper with the shoulder width and height of 500 and 150 mm was about 21.7 % higher than that of the prototype composite sleeper.

3.2 Lateral resistance of modified FFU sleepers
As illustrated in Fig. 7, with the application of wing-shaped FFU sleepers, type A1 and A2, the lateral resistance increased compared with the prototype composite sleeper. According to the data, sleeper type A2 has a better performance than type A1, but the increment is not significant for the same ballast condition. The lateral resistance of FFU sleepers type B1 and B2 with the strip blocks along sleeper sides and the bottom surface was higher than all types of composite sleepers used in this research. According to the results, sleeper type B2 could increase resistance by an average of 18.5%. However, no types of composite sleepers can meet the lateral resistance of the concrete sleeper in the same ballast layer condition.

In addition, the growth of shoulder width and height lead to an increase in lateral resistance. For instance, the increase of shoulder width of sleepers type A2 and B2 from 300 to 500 mm resulted in 25.4% and 28.1% resistance increment, while the increase of shoulder height from 0 to 150 mm resulted in 12.5% and 8.2% resistance increment, respectively. Therefore, a variation of shoulder-width has a higher impact on the lateral resistance of sleepers which was already proved by previous studies [25,26].

4. DEM simulations of STPT

The DEM simulation of the single tie push test (STPT) was performed using PFC3D and validated with experimental tests in previous studies [24,27]. The impact of the irregular shape of particles on the increase in inter-particle friction angle and the consequent increasing in the lateral resistance of the ballast layer is undeniable [28]. So far, some research has been carried out on simulations of ballast with the real shape [29,30]. Since there is an insignificant difference between the performance of real shape particles and those created by a limited number of overlapped spheres [31–33], where the geometry of each particle was filled with 20-25 pebbles. In this regard, 3D images of aggregates were captured to simulate the angularity and surface texture of 3D particles in STPT modeling. In this section, firstly, the DEM modeling of ballast aggregates was performed by 3D scanning method to simulate STPTs. In the next stage, a sensitivity analysis was performed on different shapes of composite sleepers to optimize the sleeper geometry.

4.1 Ballast layer generation

In the first stage, 3D images generated by the laser scanning technique were used to model ballast particles, as shown in Fig. 8. In the next stage, the irregular shape of ballast particles was simulated by overlapping a sufficient number of spheres. In order to define the contact between particles, the linear contact model was employed with the allocation of normal and shear contact stiffness (Table 4). It should be noted that the generation of particles was according to the particle size distribution of ballast in experiments. Afterward, wall elements were used to create the geometry of the sleeper in the PFC3D environment. The weight of the sleeper was applied by the wall servo command, which is the equivalent translation velocity in the z-direction [34]. The final porosity of the ballast layer was 0.32 by using cycle command to achieve the equilibrium state. In the end, the contact force between the sleeper and ballast was measured during the displacement of the sleeper with a rate of 1e-5 mm/step.
4.2 Validation of numerical modeling

In order to conduct a sensitivity analysis on the optimization of the FFU prototype sleeper, firstly, the calibration of the numerical model was considered based on the result of the experimental test on a panel with SW_500 and SH_150. As illustrated in Fig. 9, the results of numerical modeling is in good agreement with the experimental results so that the difference between results is about 8.2 % at the displacement of 2 mm. The gradual growth of resistance in the initial stage of the DEM simulation might be associated with sleeper sliding along the ballast bed. Since the stability of a DEM model is defined by the average ratio, the stability of a model is not the same as the real condition in the final state. Therefore, the steady-state of simulation occurs after more cycles than that of the experiment. According to the force-displacement curve of a simulated sleeper, the lateral resistance of FFU sleeper could be estimated by the following equation:

\[L_r = -2.3468x^2 + 9.3166x - 0.572 \]

(1)

Where \(L_r \) is lateral resistance and \(x \) is the corresponding displacement.

5. Numerical Results and discussion

5.1. Contact force distribution

Fig. 10 shows the distribution of contact force for FFU sleepers simulated in PFC. It is obvious that the shape of the sleeper is the main feature for changes in sleeper lateral resistance as well as the interaction of the ballast layer and sleeper. For prototype sleepers, due to the smooth surface of sleeper facets, the resistance of the shoulder ballast against sleeper movement is higher than that of ballast bed and crib ballast. This result has a good agreement with those already reported by Ferro, E [22]. In the case of using side blocks (wings) in sleeper type A2, there is an increase in the contact force between crib ballast and sleeper sides with non-uniform force distribution through the ballast bed. On the other hand, using strip blocks in the sleeper type B2 led to increasing of force chain uniformly along with the ballast depth as well as crib ballast. Consequently, there was an increase in the contribution of the crib ballast to lateral resistance of sleeper type B2.

5.2. Lateral resistance

In this section, the contribution of the end, bottom, and sides were measured for FFU sleepers with the shoulder height and width of 0 mm and 500 mm, respectively. As illustrated in Fig. 11, the resistance of the bottom surface is approximately equal (about 3 kN) for all types of simulated sleepers. This result indicates that the influence of the sleeper bottom surface on resistance increment is insignificant. On the other hand, the smooth surface of the FFU prototype sleeper resulted in less resistance in sleeper sides (19 %), while the presence of wings and strip blocks caused 30 % and 43 % of total resistance for sleepers type A2 and B2. In this regard, due to the
continuous bumps of the sleeper type B2, interlocking between sleeper sides and crib ballast increased. Consequently, the side-resistance considerably raised, corresponding to 0.4 mm sleeper displacement. Due to the higher contribution of sleeper sides to the lateral resistance of sleeper type B2, the sleeper end had the lower contribution, while the prototype and sleeper type A2 had almost the same contribution (35% - 38%) during the sleeper movement. Overall, the ballast/sleeper interaction led to the higher total resistance of the sleeper type B2 in comparison with other types of sleepers, which was 10 kN, 9.5 kN, and 8.03 kN for sleepers type B2, A2, and prototype, respectively.

5.3. Sensitive analysis

In order to optimize the dimensions of sleeper blocks, a series of sensitivity analyses were performed on the sleeper type A2 with a shoulder width of 500 mm and a shoulder height of 0 mm. In this regard, the numerical analyses were performed on the width of blocks for sleeper type A2 in the range of 6, 8, and 10 cm. It should be noted that the limited sleeper spacing (S = 60 cm) leads to practical difficulties in using blocks with a width of higher than 10 cm. Consequently, this value is considered as the maximum width of the sleeper blocks.

As illustrated in Fig. 12, the lateral resistance of the sleeper type A2 increased with changes in the width of sleeper blocks from 6 to 10 cm. In general, according to the results and considering the conditions required for the ballast tamping and the slight difference between the lateral resistance of sleepers reinforced by blocks with the width of 8 cm and 10 cm, the width of 8 cm can be considered as the optimum size for implementing this type of sleepers in ballasted tracks with regard to railway maintenance and operation practice.

6. Conclusion

Fiber-reinforced polymer composite sleeper (FFU) is recently used in ballasted tracks due to the lower weight and high resistance against vertical loading induced by passing trains. However, it is crucial to study the influence of the low sleeper weight on the lateral resistance of FFU sleepers. Therefore, a series of STPTs were conducted on the ballasted track to investigate the lateral resistance of the prototype FFU synthetic sleeper and its modified types. In the experiments, the shoulder ballast height and width were investigated as effective factors on the lateral resistance of sleepers. On the other hand, DEM simulations were performed to determine the contribution of ballast components to the lateral resistance as well as the optimization of the width of wings for the sleeper type A2. The following results can be drawn from this research.

1. The lateral resistance of the prototype FFU synthetic sleeper is 10-15% lower than that of the concrete sleeper.
2. Modified composite sleepers could be applied to increase the lateral resistance. For instance, the resistance increment for composite sleeper type B2 is about 25% increase compared to the prototype.

3. Based on DEM simulations and maintenance operation in railway tracks, blocks with a width of 8 cm could be used for FFU sleepers.

Acknowledgments

The paper was supported by the Natural Science Foundation of China (Grant No. 51578051).
References

List of Figures

Fig. 1 (a) Rotting timber sleepers, (b) Sleeper corrosion, (c) Broken sleeper, (d) Sleeper cracking.

Fig. 2 Application of FFU sleeper on a bridge or ballast track for different functions [12]

Fig. 3 Effect of rising sleeper bottom in rail seats on lateral resistance [20]

Fig. 4 Particle size distribution curve

Fig. 5 Different shapes of FFU composite sleepers

Fig. 6 STPT tests set up

Fig. 7 Lateral resistance of the prototype composite sleeper

Fig. 8 (a) Ballast aggregate 3D scanning, (b) simulated particles, (c) Simulation of STPT

Fig. 9 Experimental tests and DEM simulations of FFU prototype sleeper

Fig. 10 Contact force distribution between ballast particles and sleepers

Fig. 11 The contribution of sleeper facets to the lateral resistance

Fig. 12 DEM sensitivity analysis

List of Tables

Table 1 FFU synthetic sleeper characteristics [12]

Table 2 Test plan for STPT

Table 3 Shoulder width and height effects on lateral resistance of the prototype sleeper

Table 4 DEM simulation parameters
Fig. 1 (a) Rotting timber sleepers, (b) Sleeper corrosion, (c) Broken sleeper, (d) Sleeper cracking
Fig. 2 Application of FFU sleeper on a bridge or ballast track for different functions [12]
Fig. 3 Effect of rising sleeper bottom in rail seats on lateral resistance [20]
Fig. 4 Particle size distribution curve
<table>
<thead>
<tr>
<th>Sleeper type</th>
<th>Sleeper views</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype composite</td>
<td>(a)</td>
<td></td>
</tr>
<tr>
<td>Composite type A1</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Composite type A2</td>
<td>(c)</td>
<td></td>
</tr>
<tr>
<td>Composite type B1</td>
<td>(d)</td>
<td></td>
</tr>
<tr>
<td>Composite type B2</td>
<td>(e)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5 Different shapes of FFU composite sleepers
Fig. 6 STPT tests set up
Fig. 7 Lateral resistance of the prototype composite sleeper
Fig. 8 (a) Ballast aggregate 3D scanning, (b) simulated particles, (c) Simulation of STPT
Fig. 9 Experimental tests and DEM simulations of FFU prototype sleeper

\[L_r = -2.3468x^2 + 9.3166x - 0.5726 \]

\[R^2 = 0.9955 \]
<table>
<thead>
<tr>
<th>Type</th>
<th>Side view</th>
<th>Top/Bottom view</th>
<th>End view</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype</td>
<td> </td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type A2</td>
<td> </td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type B2</td>
<td> </td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 10 Contact force distribution between ballast particles and sleepers
Fig. 11 The contribution of sleeper facets to the lateral resistance
Fig. 12 DEM sensitivity analysis
Table 1 FFU synthetic sleeper characteristics [12]

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Beech new</th>
<th>FFU synthetic wood new</th>
<th>FFU synthetic wood 10 years</th>
<th>FFU synthetic wood 15 years</th>
<th>FFU synthetic wood 30 years</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>kg/m³</td>
<td>750</td>
<td>740</td>
<td>740</td>
<td>740</td>
<td>740</td>
<td>JIS Z 2101</td>
</tr>
<tr>
<td>Flexural strength</td>
<td>kN/cm²</td>
<td>8</td>
<td>14.2</td>
<td>12.5</td>
<td>13.1</td>
<td>11.7</td>
<td>JIS Z 2101</td>
</tr>
<tr>
<td>Elastic modulus</td>
<td>kN/cm²</td>
<td>710</td>
<td>810</td>
<td>800</td>
<td>816</td>
<td>816</td>
<td>JIS Z 2101</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>kN/cm²</td>
<td>4</td>
<td>5.8</td>
<td>6.6</td>
<td>6.3</td>
<td>6.0</td>
<td>JIS Z 2101</td>
</tr>
<tr>
<td>Shear strength</td>
<td>kN/cm²</td>
<td>1.2</td>
<td>1.0</td>
<td>0.95</td>
<td>0.96</td>
<td>0.93</td>
<td>JIS Z 2101</td>
</tr>
<tr>
<td>Hardness</td>
<td>kN/cm²</td>
<td>1.7</td>
<td>2.8</td>
<td>2.5</td>
<td>2.7</td>
<td>2.4</td>
<td>JIS Z 2101</td>
</tr>
<tr>
<td>Impact flexural strength + 20°C</td>
<td>J/cm²</td>
<td>20</td>
<td>41</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>JIS Z 2101</td>
</tr>
<tr>
<td></td>
<td>J/cm²</td>
<td>8</td>
<td>41</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>JIS Z 2101</td>
</tr>
<tr>
<td>Impact flexural strength - 20°C</td>
<td>J/cm²</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>JIS Z 2101</td>
</tr>
<tr>
<td>Water absorption</td>
<td>mg/cm²</td>
<td>137</td>
<td>3.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>JIS K 6852</td>
</tr>
<tr>
<td>Insulation resistance Dry</td>
<td>Ω</td>
<td>6.6 * 10⁷</td>
<td>1.6 * 10¹³</td>
<td>2.1 * 10¹²</td>
<td>3.6 * 10¹²</td>
<td>8.2 * 10¹¹</td>
<td>JIS K 6852</td>
</tr>
<tr>
<td>Insulation resistance Wet</td>
<td>Ω</td>
<td>5.9 * 10⁴</td>
<td>1.4 * 10⁸</td>
<td>5.9 * 10¹⁰</td>
<td>1.9 * 10⁹</td>
<td>-</td>
<td>JIS K 6852</td>
</tr>
<tr>
<td>Pull-out force dog rail</td>
<td>kN</td>
<td>25</td>
<td>28</td>
<td>28</td>
<td>23</td>
<td>22</td>
<td>RTRI</td>
</tr>
<tr>
<td>Pull-out force screw</td>
<td>kN</td>
<td>43</td>
<td>65</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RTRI</td>
</tr>
<tr>
<td>Sleeper type</td>
<td>Shoulder width-Shoulder height (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300-0</td>
<td>300-150</td>
<td>400-0</td>
<td>400-150</td>
<td>500-0</td>
<td>500-150</td>
<td></td>
</tr>
<tr>
<td>Prototype composite</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Composite type A1</td>
<td>√</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Composite type A2</td>
<td>√</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Composite type B1</td>
<td>√</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Composite Type B2</td>
<td>√</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Shoulder width and height effects on lateral resistance of the prototype sleeper

<table>
<thead>
<tr>
<th>Shoulder width (mm)</th>
<th>Shoulder height (mm)</th>
<th>Impact of shoulder height increment (from 0 to 150 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>300</td>
<td>5.97 kN</td>
<td>6.67 kN</td>
</tr>
<tr>
<td>400</td>
<td>7.06 kN</td>
<td>7.71 kN</td>
</tr>
<tr>
<td>500</td>
<td>7.62 kN</td>
<td>8.42 kN</td>
</tr>
</tbody>
</table>
| Impact of shoulder width increment (from 300 to 500 mm) | 27.6 % | 26.2 %
Table 4 DEM simulation parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Clump</th>
<th>Sleeper (wall)</th>
<th>Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang's Modulus(N/m²)</td>
<td>2.3e7</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>Normal stiffness, kn (N/m)</td>
<td>6.5e7</td>
<td>1e8</td>
<td>1e8</td>
</tr>
<tr>
<td>Shear stiffness, ks (N/m)</td>
<td>0.75e7</td>
<td>1e8</td>
<td>1e8</td>
</tr>
<tr>
<td>Density (kg/m³)</td>
<td>2700</td>
<td>740</td>
<td>_</td>
</tr>
<tr>
<td>Static friction</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Technical biography of authors

1. Guoqing Jing:

Prof. Jing has research interests in testing and modeling of ballasted track, i.e., (1) Sleeper ballast aggregates interactions, 3D characterization of ballast using imaging techniques, as well as GPR in the railway system. (2) Recycled material for modern ballasted track and innovative structure, i.e., composite sleeper, under sleeper pad or hybrid sleeper, analyses of recycled materials into ballasted track such as tire rubber, asphalt, glass, fiber into the concrete sleeper, and even modern steel sleeper. (3) Modeling of ballast using discrete and finite element methods and mechanistic-based design. (4) Ballast flight of HSR and ballast tamping maintenance. Dr. Jing has served as an investigator on over 20 research projects with grants received from NSFC, CRC, CREC, CRCC, CCCC government, and railway-related industry; Dr. Jing is invited as chief consultant for Mexico, Iran, Russia HSR, and Tanzania railway projects.

2. Lu Zong:

Zong Lu received the Bachelor Degree in Civil Engineering from Lanzhou Jiaotong University in 2017. She is currently studying for Master Degree in Highway and Railway Engineering from Beijing Jiaotong University. Her main research is railway ballasted track.

3. Yameng Ji:

Yameng Ji received a bachelor's degree in Civil Engineering from Shijiazhuang Tiedao University in 2017 and a Master's Degree in Highway and Railway Engineering from Beijing Jiaotong University in 2020. In her undergraduate period, her main research is a railway ballasted track. She is currently studying for Doctoral Degree in Civil Engineering at the University of Nantes, France. Her research focuses on building materials of 3D printing and application to the construction of the structural walls of buildings.

4. Peyman Aela:
Peyman Aela is now a PhD candidate at the Department of Civil Engineering at Beijing Jiaotong University since 2017. After graduating with a BEng (Civil Engineering) from the Isfahan University of Technology, Iran, in 2014, he was trained as a railway engineer and completed a master's degree from Iran University of Science and Technology in 2017. His main research expertise lies in modeling the ballast railway tracks using the Discrete Element Method (DEM). In this regard, he published 10 SCI papers in the field of lateral track stability.