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Abstract. This paper explores the e�ects of thermal radiation, buoyancy force, chemical
reaction, and activation energy on magnetohydrodynamic (MHD) nanouid ow past a
stretching vertical surface. The non-linear momentum, energy, solute, and nanoparticle
concentration boundary layer equations are simpli�ed using similarity transformations. The
transformed equations are numerically solved using the shooting technique. Corresponding
results for dimensionless velocity, temperature, solute, nanoparticle concentration pro�les,
skin friction, local Nusselt number, local Sherwood number, and local nanoparticle
Sherwood number are shown for various related parameters. It is observed that the
temperature and concentration pro�les of nanoparticles increased with the increase in the
parameters of thermal radiation and the temperature di�erence. With increasing regular
buoyancy parameters, the local Nusselt number decreased by increasing the adaptation
rate, the Biot number, and the thermal radiation parameters.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

The e�ect of chemical reactions on Magnetohydrody-
namics (MHD) buoyancy-induced nanouid ow is an
important application in many industrial processes,
such as chemical coating of at plates, polymer ejec-
tion, and hot rolling as observed by Ibrahim and
Makinde [1]. The inuence of chemical reaction and
activation energy in a mixed convection uid ow
over a stretching sheet studied by Jabeen et al. [2].
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Niranjan et al. [3] investigated the chemical reaction
e�ect in MHD mixed convection ow over a plate in
a porous medium. They found that in the generative
scenario, raising the velocity and concentration pro�les
increases the chemical reaction parameter, whereas, in
the destructive situation, it decreases. Mallikarjuna
et al. [4] analyzed the impact of chemical reactions
on heat transfer and ow of a viscous nanouid
in a variable porous medium along a vertical cone.
Hayat et al. [5] investigated the chemical reaction
and double strati�cation of Williamson nano liquid
using a stretched sheet in the MHD stagnation point
ow. The e�ect of the chemical reaction and magnetic
�eld on the three-dimensional ow behavior of an
elastic-viscous nanouid over a stretching sheet was
discovered by Ramzan and Bilal [6]. Sivasankaran et
al. [7] investigated the e�ects of slip, chemical reaction,
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and radiation on mixed convection and convection
boundary conditions of the viscous uid ow on a plate.
They found that with increasing the chemical reaction
parameter, the rate of mass transfer increases while the
rate of heat transfer falls.

The mass transfer process, as well as the chemical
reaction and activation energy, has numerous applica-
tions in food processing, water mechanics, geothermal
reservoirs, and oil emulsions, among others. Dhlamini
et al. [8] investigated the e�ects of activation energy
and chemical reaction in a mixed convective nanouid
ow with a convective boundary condition. They found
that as the chemical reaction parameter increased, the
thermophoresis increased. Makinde et al. [9] investi-
gated the natural convection unsteady ow with nth
order reaction under the inuence of activation energy.
Maleque [10] proposed an exothermic/endothermic
reaction with activation energy in mixed convection
ow. Hayat et al. [11] examined the characteristics
of activation energy and exponential dependent heat
source in Carreau uid ow with cross-di�usion e�ect.
Awad et al. [12] used the modi�ed Arrhenius function
to study the rotating ow of binary uid over a
deformed impulsive surface. Makinde and Gnaneswara
Reddy [13] examined the e�ect of velocity slip on the
peristaltic ow of electrically conducting Casson uid
in a channel embedded with a porous medium. They
observed that when the magnetic �eld and Casson uid
parameters increased, the velocity and temperature
pro�les decreased. Anuradha and Yegammai [14]
explored the combined e�ects of activation energy and
radiation on the MHD chemically reacting nanouid
ow over a vertical plate. Nanouid is a colloidal
solution made up of nanoparticles ranging in size from
1 to 100 nm that are uniformly distributed in the whole
base uid. Nanouids are used in a variety of industrial
and engineering applications. The physical charac-
teristics of Newtonian Carreau uid immersed in the
nanouid near a point of stagnation towards thermal
radiation stretching sheet were investigated by Zaib et
al. [15]. Isa et al. [16] provided the explicit numerical
analysis for a mixed convection MHD ow of Casson
uid over an in�nitely permeable shrinking sheet.
As the magnetic parameter, aligned angle, nanosolid
volume fraction parameter, and slip parameter values
increase, the temperature of the nano solid increases,
as reported by Ganga et al. [17]. Ullah et al. [18]
found that radiation and MHD ow have an impact
on Marangoni convection nano liquids. They observed
that the temperature increased when the radiation and
heat generation/absorption parameters were increased.
Nanouids have the potential to provide substantial
thermal enhancement with a lower pressure drop in
comparison to water, according to Sivasankaran and
Narrein[19]. Alsaadi et al. [20] explored the generation
of entropy in the nonlinear convective mixed ow of

nanouid in porous space that is a�ected by thermal
radiation and activation energy.

At very high temperatures, radiation a�ects the
ow of heat and MHD, and understanding heat ra-
diation transfer is crucial to the design of speci�c
devices. In manufacturing industries, the heat radia-
tive ow and mass transfer play an important role in
the designing of aircraft, space vehicles, gas turbines,
nuclear power plants, satellites, energy utilization, and
numerous agricultural applications. Ganesh et al.
[21] investigated the e�ect of radiation on incompress-
ible hydromagnetic water-based nanouid ow past a
stretching sheet. Dar [22] and Kho et al. [23] analyzed
numerically the e�ects of Casson nanouid radiation
on the heat of the MHD ow and mass transfer over a
stretching sheet. Ullah et al. [24] observed the radiation
parameter and nanoparticles volumetric fraction are
qualitatively similar concerning temperature. In the
presence of suction, Daniel et al. [25] explored the un-
steady MHD ow of electrically conducting nanouid
past a stretching sheet with radiation and chemical
reaction. Hamid et al. [26] and Chandrakala and
Raj [27] studied the e�ect of radiation on MHD ow
passing through an impulsively induced in�nite vertical
plate. Ahmed and Sarmah [28] examined the e�ect
of magnetic �eld and thermal radiation on transient
non-gray uid ow past an impulsive vertical plate.
Mukhopadhyay [29] studied the e�ects of thermal radi-
ation on the mixed convection ow and transfer of heat
over the porous stretching surface. Hayat et al. [30]
discussed the Marangoni thermosolutal convective ow
of nano liquid under the e�ect of space-dependent
exponential thermal radiation and internal heat source.

Some natural and forced ows are a�ected, for
example, by magnetic �elds during pumping, stirring,
and heating. Sheikholeslami et al. [31] studied the
e�ect of radiative heat transfer on MHD non-Darcy
nanouid. The heat transfers on the MHD boundary
layer ow over a stretching sheet were studied in [32-
34]. They found that uid velocity decreases when
increasing the magnetic �eld parameter. Chutia and
Deka [35] studied an unsteady and MHD Couette ow
of incompressible, electrically conducting, viscous uid
between two in�nitely long porous parallel plates in the
presence of a transverse magnetic �eld. Devi et al. [36]
examined the impact of heat and mass transfer on
the MHD ow of an incompressible and radiating uid
over an exponentially stretched sheet, and they found
that the uid is thicker due to magnetic parameters.
Under convective boundary surface conditions and over
a vertical plate, Makinde and Olanrewaju [37] studied
the e�ect of buoyancy forces on thermal boundary
layers. Ramzan et al. [38] found that the velocity �eld
would decrease to increase the value of the buoyancy
ratio parameter. Under the e�ect of the chemical
reaction and activation energy, Mustafa et al. [39]



92 G. Lakshmi Devi et al./Scientia Iranica, Transactions B: Mechanical Engineering 29 (2022) 90{100

conducted a numerical study on the convective ow of
the magnetic nanouid.

In light of all the above-mentioned works, we
conducted a numerical study. The main purpose of
this article is to explore the e�ects of thermal radiation,
buoyancy, chemical reactions, and activation energy on
the ow of two-dimensional MHD nanouid ow past
a stretching vertical surface. As far as we know, these
combined e�ects on MHD buoyancy-induced nanou-
idics have not occurred in the past. Using similarity
transformation, the nonlinear governing equations are
transformed into a system of ordinary di�erential equa-
tions. Using the Shooting technique, these transformed
equations are then solved numerically. The graphs are
used to explain the impact of physical parameters.

2. Mathematical formulation

Let us consider a steady, incompressible, laminar,
MHD nanouid ow over a vertical stretching sheet.
In this problem, the combined e�ect of the chemical
reaction and activation energy are considered. In
the coordinate system (x; y), `x' is chosen along the
surface and `y' is chosen normal to the surface. The
velocity components u and v are taken as along x and
y directions respectively (Figure 1).

B0 is the intensity of the uniform magnetic �eld
applied perpendicular to the stretchable sheet. Let us
assume that the sheet surface is stretched by the linear
velocity uw = ax in the vertical direction, where a > 0
indicates the stretching rate. Let us consider that at
ambient state surface temperature Tw is greater than
the uid temperature. The governing equations could
be written as:
@u
@x

+
@v
@y

= 0; (1)
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Figure 1. Schematic diagram of the problem.
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. Subject to the boundary
conditions for the present problem is as follows:
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where u and v are the velocity components in the (x; y)
axes, respectively. The temperature of the uid is T ,
the kinematic viscosity of a uid is � = �

� and the
thermal conductivity is k. The radiative heat ux qr is
given by:

qr = � 4��
3K 0

@T 4

@y
: (7)

The heat ux (qr) radiative term in Eq. (3) is simpli�ed
using the Rosseland approximation. Using Taylor
series we can extend T 4 about T1 and ignore higher-
order terms. It can be expressed as a linear function
of temperature T , i.e., T 4 = T 41+ 4T 31 (T � T1) + � � �
then:

T 4 � 4T 31T � 3T 41:

Finally, we get:

qr = �16��T 31
3K 0

@T
@y

: (8)

Now we de�ne the following non-dimensional functions
f (�), � (�), � (�), � (�) and similarity variable � as:

� =
r
c
�
y;  (x; y) =

p
c� xf (�) ;

v = �pc�f (�) ; � (�) =
T � T1
Tw � T1 ;
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� (�) =
S � S1
Sw � S1 ; � (�) =

C � C1
CW � C1 : (9)

The stream function  (x; y) is de�ned as:

u =
@ 
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and v = �@ 
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: (10)

The governing equations (Eqs. (1){(5)) are transformed
into the ordinary di�erential equations by using Eqs.
(8){(10) as follows:
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The corresponding boundary conditions, Eq. (6), is as
follows:
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Now we introduce the following dimensionless quanti-
ties:
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The physical quantities describing the skin friction
(Cf ), the Local Nusselt number (Nux), the local
Sherwood number (Shx), and the local nanoparticle
Sherwood number (Nnx) are shown below:
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Using the non-dimensional functions and similarity
variable given in Eq. (9), we obtain:
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where Rex = xUw(x)
� is de�ned as the local Reynold

number.

3. Results and discussion

This study considered the combined e�ects of chemical
reactions, activation energy, thermal radiation, and
buoyancy on the ow of the MHD nanouids ow on
a stretching vertical surface. By using appropriate
boundary conditions, the governing problem is solved
numerically by the MATLAB bvp4c. The present
numerical results are compared with the results of
Mustafa et al. [39] for dissimilar values, and they
are exposed in Table 1. This provides certainty for
the numerical results we will communicate later. The
e�ect of local Nusselt number ��0 (0), thermophoresis
parameter (Nt) and mixed convection parameter (�)
are tabulated. It can be seen that as the local Nusselt
number increases, the Prandtl number and mixed con-
vection parameters increase, and the thermophoresis
parameter decreases.

Figures 2 and 3 depict the e�ect of various values
of regular buoyancy parameters (Nc) on the velocity
pro�le (f 0 (�)) and solute concentration pro�le (� (�)).
Figure 2 shows the increment of the velocity of the
uid with regular buoyancy parameter and gradual
decrement in the thickness of the boundary layer. As
is clear from Figure 3, the value (Nc) increases as the
value of the solute concentration pro�le decreases, and
the thickness of the boundary layer gradually decreases.
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Table 1. Comparison of wall slope of temperature ��0 (0) values with �ndings of Mustafa et al. [39] for M = Nr = 0:5,
� = 1, and Sc = 5.

Pr Nt E � n � Mustafa et al. [39] Present study
2 0.5 1 1 0.5 0.5 0.706605 0.706831
4 { { { { { 0.935952 0.936056
7 { { { { { 1.132787 1.132900
10 { { { { { 1.257476 1.257032
5 0.1 1 1 0.5 0.5 1.426267 1.426012
{ 0.5 { { { { 1.013939 1.038594
{ 0.7 { { { { 0.846943 0.846593
{ 1.0 { { { { 0.649940 0.649752
10 0.5 1 2 0.5 0.0 1.032281 1.032085
0.5 { { { { { 1.056704 1.056294
3.0 { { { { { 1.154539 1.154956
5.0 { { { { { 1.215937 1.216012

Figure 2. Velocity pro�le for various values of regular
buoyancy parameter Nc, when M = 0:1,
� = �1; P r = 7; Rd = 0:3, E = 2,
Nb = Nr = Nt = n = 0:5, � = � = Bi = Sc = 1.

Figure 3. Solute concentration pro�le for various values
of regular buoyancy parameter Nc, when Nr = 0:1,
Pr = 7, Rd = 0:3, E = 2, � = Nb = Nt = n = 0:5,
� = � = M = Bi = Sc = 1:

Figure 4 to Figure 6 indicate the e�ect of diverse
values of thermal radiation (Rd) on velocity pro�le
(f 0 (�)), temperature pro�le (� (�)), and nanoparticle
concentration pro�le respectively. Here, as the thermal
radiation parameters increase, the velocity, temper-

Figure 4. Velocity pro�le for various values of thermal
radiation parameter Rd, when Nc = 0:1, Pr = 7, E =
Nb = Nr = Nt = 0:5; � = � = � = M = Bi = Sc = n = 1:

Figure 5. Temperature pro�le for various values of
thermal radiation parameter Rd, when Nc = 0:2,
Pr = 7; � = Nr = 0:1; � = Nb = Nt = n = 0:5; � = E =
M = Bi = Sc = 1:

ature, and liquid concentration increase, creating a
thin boundary layer that gradually decreases. Through
thermal radiation, we can control the uid temperature
because the temperature is very sensitive to thermal
radiation. This means more heat ux at the surface.
Figure 7 shows the impact of Biot number (Bi) on the
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Figure 6. Nanoparticle concentration pro�le for various
values of thermal radiation parameter Rd, when
Nc = 0:2; P r = 7; � = Nr = 0:1; � = Nb = Nt = n =
0:5; � = E = M = Bi = Sc = 1:

Figure 7. Temperature pro�le for various values of Biot
number Bi, when Nc = 0:2; Rd = 0:3; P r = 7; � = Nr =
0:1; � = E = M = Sc = 1; � = Nb = Nt = n = 0:5:

Figure 8. Temperature pro�le for various values of
temperature di�erence parameter �, when
Pr = 5; Nc = Nr = Rd = 0:1; � = Nb = Nt = 0:5; � =
E = M = Bi = Sc = n = 1:

temperature pro�le. It shows that the temperature of
the uid increases and the boundary layer decreases
gradually as the values of (Bi) increase. The increase in
Biot number is associated with low Brownian motion,
which helps to spread the concentration quickly on
the surface. Figures 8 and 9 show the e�ect of dif-
ferent values of temperature di�erence parameters (�)

Figure 9. Nanoparticle concentration pro�le for various
values of temperature di�erence parameter �, when
Pr = 5; Nc = Nr = Rd = 0:1; Nb = Nt = � = 0:5; � =
E = M = Bi = Sc = n = 1:

Figure 10. Solute concentration pro�le for various values
of Schmidt number Sc, when Pr = 5; Nr = Nc = Rd =
0:1; � = Nb = Nt = 0:5; � = � = E = M = Bi = n = 1:

on temperature pro�le and nanoparticle concentration
pro�le respectively. Figures 8 and 9 illustrate that
the temperature and nanoparticle concentration pro�le
increase as the values of `�' increase, and the thickness
of the boundary layer decreases gradually. The impact
of various values of the Schmidt number (Sc) on the
solute concentration pro�le is shown in Figure 10. It
is observed that the Schmidt number increases as the
concentration of solute decreases and the thickness
of the corresponding boundary layer decrease rapidly.
Figure 11 shows the e�ect of various values of non-
dimensional activation energy (E) on the velocity
pro�le. It can be seen that the uid velocity decreases
as `E' increases, and the thickness of the boundary
layer gradually decreases.

Figure 12 shows the increase of skin friction by
increasing the values of regular buoyancy parameter
(Nc) and �tted rate constant `n', i.e., friction on
the vertical surface is increased. Figure 13 illus-
trates the local Nusselt number for varying values of
regular buoyancy parameter `Nc', against the �tted
rate constant. From the stretching boundary, it is
clear that heat ux is inversely proportional to the
regular buoyancy force. Moreover, ��0 (0) decays in a
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Figure 11. Velocity pro�le for various values of
non-dimensional activation energy E, when
Pr = 7; Nc = 0:1; Rd = 0:3; � = Nb = Nr = Nt = n =
0:5; � = � = M = Bi = Sc = 1:

Figure 12. Skin friction for various values of Nc and n,
when Pr = 7; Nr = 0:1; Rd = 0:3; Nb = Nt = � = 0:5; � =
� = E = M = Bi = Sc = 1:

Figure 13. Local Nusselt number for various values of
Nc and n, when Pr = 7; Nr = 0:1; Rd = 0:3; � = Nb =
Nt = 0:5; � = � = E = M = Bi = Sc = 1:

nonlinear fashion when `n' increases. For the increment
of regular buoyancy parameter (Nc) and �tted rate
constant the local nanoparticle Sherwood numbers and
the layer thickness increases as shown in Figure 14. It
indicates the e�ectiveness of mass convection on the
surface. Figure 15 depicts skin friction with regular
buoyancy parameters and Biot number. It is observed

Figure 14. Local nanoparticle Sherwood number for
various values of Nc and n, when Pr = 7; Nr = 0:1; Rd =
0:3; � = Nb = Nt = 0:5; � = � = E = M = Bi = Sc = 1:

Figure 15. Skin friction for various values of Nc and Bi,
when Pr = 5; Nr = 0:1; Rd = 0:3; � = Nb = Nt = 0:5; � =
� = E = M = Sc = n = 1:

Figure 16. Local Nusselt number for various values of
Nc and Bi, when Pr = 5; Nr = 0:1; Rd = 0:3; � = Nb =
Nt = 0:5; � = � = E = M = Sc = n = 1:

that the vertical surface friction increases with `Nc',
but decreases with `Bi' and layer thickness decreases
gradually. Figure 16 depicts the reduced heat transfer
rate with increased regular buoyancy parameter and
increased thermal ux with Biot number.

The local Sherwood number decreases as the Biot
number increases, as shown in Figure 17. The heat
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Figure 17. Local Sherwood number for various values of
NC and Bi, when Pr = 5; Nr = 0:1; Rd = 0:3; � = Nb =
Nt = 0:5; � = � = E = M = Sc = n = 1:

Figure 18. Local Nusselt number for various values of
Nc and Rd, when Pr = 5; � = Nr = 0:1; � = Nb = Nt =
0:5; � = E = M = Bi = Sc = n = 1:

Figure 19. Local nanoparticle Sherwood number for
various values of Nc and Rd, when Pr = 5; � = Nr =
0:1; � = Nb = Nt = 0:5; � = E = M = Bi = Sc = n = 1:

transfer ow decreases as the regular buoyancy param-
eter increases, but as the thermal radiation increases,
the layer thickness decreases, as shown in Figure 18.
Figure 19 clearly shows the increase in Sherwood's
number of local nanoparticles with regular buoyancy
parameters. But as the thermal radiation increases,
the Sherwood number of local nanoparticles decreases.

4. Conclusion

The collective impact of chemical reaction, activation
energy, thermal radiation, and buoyancy force on
magnetohydrodynamic (MHD) nanouid ow over a
stretching vertical surface is described numerically.
Our investigation revealed the following:

� The velocity pro�le over the vertical surface in-
creases with the increase of regular buoyancy pa-
rameters and thermal radiation but decreases with
the increase of activation energy;

� The temperature of the uid raises with the increase
of thermal radiation, Biot number, and temperature
di�erence parameter;

� Nanoparticle concentration of the uid is increases
on increasing the thermal radiation and temperature
di�erence parameter;

� The uid solute concentration reduces on increasing
of regular buoyancy parameter and Schmidt num-
ber;

� Skin friction of the uid at the vertical surface in-
creases with regular buoyancy parameter and �tted
rate constant, i.e. velocity of the uid is decreasing.
But Skin friction reduces with increasing the Biot
number and thermal radiation, i.e. uid velocity is
increasing.

Nomenclature

B0 Strength of magnetic �eld
C Concentration
DB Brownian di�usion coe�cient
DT Thermophoretic di�usion coe�cient
E Nondimensional activation energy
Ea Activation energy
F 0 Dimensionless velocity
Grx Local Grashof number
g Gravitational acceleration
K Boltzmann constant
K 0 Mean absorption coe�cient
k Thermal conductivity
k2
r Reaction rate
M Magnetic �eld parameter
Nb Brownian di�usion parameter
Nc Regular buoyancy parameter
Nr Buoyancy ratio parameter
Nt Thermophoresis parameter
n Fitted rate constant
Pr Prandtl number of base uid
qr Radiative heat ux
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Rd Thermal radiation parameter
Rex Local Reynolds number
Sc Schmidt number
T Temperature

Greek symbols
� Mixed convection parameter
� Dimensionless reaction rate
� Temperature di�erence parameter
v Kinematic viscosity
�e Electrical conductivity
�� Stefan-Boltzmann constant
�f Density of the uid
� Coe�cient of thermal expansion
�p Nanoparticle density
� Thermal di�usivity of the base uid
� Ratio of the e�ective heat capacity of

the nanoparticle material and
the heat capacity of the uid

(�c)f Heat capacity of the base uid

(�c)p E�ective heat capacity of the
nanoparticle material

� Dimensionless temperature
� Dimensionless solute concentration
� Dimensionless nanoparticle

concentration
Subscripts
w Condition on the wall
1 Condition at free stream
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