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Abstract. Lattice Boltzmann Method (LBM) has emerged as a fast, precise, and e�cient
numerical solution to solve di�erential equations. There seems to be a lack of research
on the use of LBM to solve groundwater 
ow in uncon�ned aquifers. Therefore, in this
study, considering the D2Q9 scheme, an innovative numerical solution based on LBM was
introduced to solve the groundwater 
ow in uncon�ned aquifers. The solutions obtained
from the proposed LBM were compared to results that stemmed from three di�erent
uncon�ned groundwater problems with known solutions. Both steady and transient
conditions for groundwater 
ow were considered in simulations. The results showed that
the proposed LBM can satisfactorily simulate uncon�ned groundwater 
ow.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

The Lattice Boltzmann Method (LBM) is considered
a robust numerical technique to solve time-dependent
problems, bene�ting from high accuracy, simulation
of complicated boundary conditions, and simplicity
in the computer code operation [1]. Moreover, the
LBM bene�t from the fast computational ability and
admirable stability, especially in time-dependent prob-
lems. This method show superior capability to ful�ll
the requirements of parallel programing techniques
using graphics processing units [2,3]

This method has various applications in the simu-
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lation of di�erent physical phenomena such as solitary
wave [4], convection-di�usion equations [5], shallow
water [6], heat conduction [7], and kinetic equations [8].
In the last decade, this method has been employed to
simulate mass transfer problems such as groundwater

ow equation and solute transport equation. The
di�usion equation governs groundwater 
ow, while
the advection-di�usion equation describes the solute
transport [2,9,10]. It is worth noting that various
lattice con�gurations have been developed for LBM
to solve mass transfer equations, containing D1Q2 and
D1Q3 for one-dimensional problems, D2Q4, D2D5, and
D2Q9 for two-dimensional problems, in addition to,
D3Q15 and D3Q19 for the three dimensions [3,11{13].

Regarding the advection-di�usion equation, bulks
of studies have been carried out to solve this equation
using the above-mentioned lattice forms. Early studies
were focused on the solution of the advection-di�usion
equation with constant coe�cients [12,14{16]. In re-
cent years, the advection-di�usion equation with vari-
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able constant in Cartesian or cylindrical coordinates
has also been solved using LBM [17{20]. It is worth
noting that in the numeral simulation using LBM [21{
24], the applications of two or More Relaxation Times
(MRT) instead of a single relaxation time are also
considered. Regarding MRT-based schemes, Guo et al.
indicated that the collision matrix in the MRT-based
LBM for advection-dispersion equation guarantees the
second-order accuracy of the half-way anti-bounce-back
scheme [24]. Recently, taking into account the moving
boundary conditions, Zhang and Misbah developed an
LBM to solve the advection-dispersion equation [25].
Moreover, Du and Liu employed double-distribution
functions to solve fractional advection-di�usion prob-
lem combined with incompressible Navier-Stokes equa-
tions [26].

Considering di�usion equation as groundwater

ow, Wolf-Gladrow [27] used LBM to solve the di�usion
equation for the �rst time. Lin et al. [28] used LBM to
describe reaction-di�usion of �ve chemical components
in a porous catalyst with a macro-mesopore structure.
In the context of groundwater 
ow, Zhou solved the
groundwater equation using LBM in both one and
two dimensions [29]. The results showed that LBM
has high accuracy in simulating groundwater 
ow in
a con�ned aquifer. Furthermore, Zhou improved the
application of LBM in the rectangular lattice con�g-
uration to simulate the groundwater 
ow [30]. Anwar
and Sukop [31] simulated solute transport and transient
groundwater 
ow using both di�usion-based LBM and
Navier-Stokes-based LBM. In doing so, they employed
the altered-velocity model in the simulations with the
latter method. Moreover, the lattice Boltzmann solu-
tion for groundwater 
ow in non-orthogonal structured
lattices was developed by Budinski et al. [32].

In addition, the joint solutions of groundwater

ow and pollutant transport using LBM have so far
been performed in several studies [33,34]. The combi-
nation of LBM and other numerical schemes has also
been used to solve mass transportation problems. For
instance, a lattice Boltzmann solution was developed
by Liu et al. to solve the radiative transfer problems
in both steady and transient states. They employed
a forward di�erence scheme for the time derivative
of the source term in the evolution equation, which
guarantees stability and accuracy [35]. Yu et al.
developed a coupled lattice Boltzmann/�nite di�er-
ence method to simulate the dynamics of 
uid 
ow,
advection, di�usion, and adsorption in porous media.
In this approach, the single-relaxation time LBM is
hired for the 
uid dynamics, while the advection-
di�usion equation is solved by using the �nite di�erence
method [10].

To the best of our knowledge, the existing lattice
Boltzmann solutions for groundwater 
ow are mainly
associated with a con�ned aquifer, where the state

variable is head. The general form of groundwater
equation in three dimensions is written as Eq. (1) [36]:

@h
@t

=
T
S
r2h+

R
S
; (1)

where h is the groundwater head, T and S represent
transmissivity and storativity, respectively, and R is
the recharge function. This equation describes tran-
sient groundwater 
ow in both con�ned and uncon�ned
aquifers. However, for the case of an uncon�ned
aquifer, the new location of the water table at every
time step should be considered in the mesh generation.
In other words, adaptive mesh re�nement should be in-
cluded in the simulations. Assuming the 
ow happens
through the entire vertical cross-section, Eq. (1) may
be converted to a two-dimensional equation as follows:

@h
@t

=
K
Sy

�
@2(h2=2)
@x2 +

@2(h2=2)
@y2

�
+
R
Sy
; (2)

where K is the hydraulic conductivity and Sy repre-
sents the speci�c yield. It is worthy to note that Sy is
a dimensionless quantity, ranging between 0 and 0.4.

In terms of an uncon�ned aquifer wherein the
state variable (i.e. h2) is of second order, the solution of
groundwater 
ow using lattice Boltzmann has not been
described satisfactorily. Therefore, in this research,
an innovative framework is introduced to solve the
problem of groundwater 
ow in the uncon�ned aquifer
(i.e. Eq. (2)). For solving di�erential equations using
LBM, the form of the balanced distribution function
plays a key role in the formulations. Here, a new
local equilibrium distribution function related to the
D2Q9 con�guration is proposed to solve the problem of
groundwater 
ow in uncon�ned aquifers. Accordingly,
Eq. (2) is recovered from the Chapman-Enskog expan-
sion using the new proposed equilibrium distribution
function. To validate the new formulations, not only
the steady problem in the uncon�ned aquifer but also
the transient problem are considered. Also, sensitivity
analysis of relaxation time is performed considering 8
di�erent values.

2. Lattic Boltzmann Method (LBM)

The lattice Boltzmann equation (Eq. (3)) is ap-
plied to formulate groundwater 
ow in an uncon�ned
aquifer [11]:

fk(x+ ck�t; t+ �t) = fk(x; t)

+
1
�

[feq
k (x; t)� fk(x; t)] +

R
aSy

�t; (3)

where fk is the particle distribution function, feq
k

represents the local equilibrium distribution function,
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Figure 1. Nine-velocity rectangular lattice (D2Q9).

�t is the time step, x is the space vector in x, y
coordinate system, ck is the particle velocity vector,
� indicates the single relaxation time, and a is the
number of the particle velocity. Herein, the D2Q9
lattice con�guration was employed for the numerical
solution (Figure 1), consequently, a = 9. In addition,
ck, which represents the celerity cx = �x=�t, is de�ned
by Eq. (4) [37]:

ck = (0; 0) k = 0;

ck = (�cx; 0); (0;�cy) k = 1; 2; 3; 4;

ck = (�cx;�cy) k = 5; 6; 7; 8: (4)

In Eq. (3), fk is de�ned by Eq. (5):

fk(x; t) = wkh(x; t); (5)

where h(x; t) is the water head and w is a weight
factor for every direction according to the following
expressions:

w0 =
4
9
;

w1 = w2 = w3 = w4 =
1
9
;

w5 = w6 = w7 = w8 =
1
36
: (6)

2.1. Boundary conditions
In the problems considered in this study, four types
of boundary conditions are considered in the simu-
lation of groundwater 
ow, including the Dirichlet
and Neumann boundary conditions, in addition to
the open and solid boundary conditions in line with
Eq. (7) to Eq. (10) [38]. It should be pointed out

Figure 2. Solid boundary condition.

that the boundary conditions for each groundwater 
ow
problem are described in Section 5.

Considering Figure 2, the distribution functions
at solid boundary (southern boundary) is estimated
using Eq. (7):

f2 = f4; f5 = f7; f6 = f8: (7)

If the open boundary is assumed for the easternbound-
ary in Figure 2, then Eq. (8) is used to compute
distribution functions:

f3(i= m; j)=2�f3(i=m�1; j)�f3(i=m�2; j);

f6(i=m; j)=2�f6(i=m�1; j)�f6(i=m�2; j);

f7(i=m; j)=2�f7(i=m�1; j)�f7(i=m�2; j): (8)

In terms of Dirichlet boundary condition at the western
boundary in Figure 2, Eq. (9) is applied so as to
calculate the distribution functions:

f1 = (w1 + w3)� h� f3;

f5 = (w5 + w7)� h� f7;

f8 = (w8 + w6)� h� f6: (9)

The distribution function in the case of Neumann
boundary condition (northern boundary in Figure 2)
is determined from Eq. (10):

f4(i:j = n) = f4(i:j = n� 1);

f7(i:j = n) = f7(i:j = n� 1);

f8(i:j = n) = f8(i:j = n� 1): (10)

3. Derivation of uncon�ned groundwater
equation from LBM

Zhou [1] introduced a new local equilibrium distribu-
tion function to solve the convection-dispersion equa-
tion. Inspiring from the above-mentioned methodology,
the following equation was innovatively de�ned in this
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study for the equilibrium distribution function (feq
k ) as

follows:

feq
k =h� K

Sy

�
1

�tc2(� � 0:5)

�
h2

2
k = 0;

feq
k =

1
4
K
Sy

�
1

�tc2(� � 0:5)

�
h2

2
k=1; 2; 3; 4;

feq
k =�K

Sy

�
1

4�tckxcky(��0:5)

�
h2

2
k=5; 6; 7; 8:

(11)

Eq. (11) satis�es three properties, including mass bal-
ances, momentum, and energy conservation according
to Eqs. (12){(14):X

k

feq
k (x; t) = h(x; t); (12)

X
k

ckifeq
k (x; t) = 0; (13)

X
k

ckickjfeq
k (x; t) =

�
K
Sy

�
ij

�t(� � 0:5)
h2(x; t)

2
: (14)

Taking into account the proposed equilibrium distribu-
tion function (Eq. (11)) and their properties (Eqs. (12){
(14)), groundwater head is obtained using Eq. (15):

h =
X
k

fk(x; t): (15)

To correlate the head obtained in Eq. (15) with the
groundwater 
ow equation in the uncon�ned aquifer
(Eq. (2)), the Chapman-Enskog expansion is used.
Assuming small t(�t = ") and substituting " instead
of �t, Eq. (3) is converted to Eq. (16):

fk(x+ ck"; t+ ") = fk(x; t)

+
1
�

[feq
k (x; t)� fk(x; t)] +

R
aSy

": (16)

In line with the Chapman-Enskog expansion, f is
described by Eq. (17) [11]:

fk = f0
k + "f (1)

k + "2f (2)
k : (17)

Employing the centered scheme suggested by Zhou, the
recharge function is expressed by Eq. (18) [37]:

R
aSy

=
R
aSy

�
x+

1
2
ck"; t+

1
2
t
�
: (18)

Considering Taylor expansion, Eqs. (19) and (20) are
derived from Eqs. (16) and (18) stated as:
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R
aSy

�
x+

1
2
ck"; t+

1
2
t
�

=
R
aSy

(x; t)
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@
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+ cki
@
@xi

�
R
aSy

: (20)

If Eqs. (17) and (20) are inserted in Eq. (19), the
following relations are achieved for the coe�cients of
"0, "1, and "2:

coe�cients of "0:

f (0)
k = feq

k ; (21)

coe�cients of "1:�
@
@t

+ cki
@
@xi

�
f (0)
k = �1

�
f (1)
k +

R
aSy

; (22)

coe�cients of "2:�
@
@t

+ cki
@
@xi

�
f (1)
k +

1
2

�
@
@t

+ cki
@
@xi

�2

f (0)
k

= �1
�
f (2)
k +

1
2

�
@
@t

+ cki
@
@xi

�
R
aSy

: (23)

The placement of Eq. (22) into Eq. (23) leads to
Eq. (24):�

1
2�
� 1
��

@
@t

+ cki
@
@xi

�
f (1)
k =

1
�
f (2)
k : (24)

Afterward, Eq. (25) is derived by considering "�
Eq. (24) and adding it to Eq. (22):�

@
@t
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1� 1

2�
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@
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�
f (1)
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(f (1)
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k ) +
R
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and Eq. (26) is obtained by substituting Eq. (21) into
Eq. (25) and then applying the summation (

P
):
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Table 1. Coordinates of pumping wells and the values of their pumping rates [29].

Number 1 2 3 4 5 6 7 8 9 10

X (m) 1250 2250 3250 1250 2250 3250 1250 2000 2500 3250
Y (m) 8500 8500 8500 5000 5000 5000 3500 3500 3500 3500
Q (m3/day) 7000 7000 7000 5960 4503 5949 6729 4282 4230 6807

The above equation is transformed to Eq. (27) by
replacing " with �t, taking into account the properties
of feq:

@h
@t

=
K
Sy

@2(h2=2)
@x2

i
+
R
Sy

+"
�
�� 1

2

�
@
@xi

@
@t

X
k

ckif
(0)
k :
(27)

According to the properties of feq, the last term on
the right-hand side of Eq. (26) is also zero, thus the
groundwater 
ow equation in the uncon�ned aquifer
(Eq. (2)) is derived.

4. Validation of the proposed LBM

Three uncon�ned groundwater problems with known
solutions were considered to validate the accuracy
and capability of the proposed LBM to solve the
groundwater 
ow in an uncon�ned aquifer. The
solutions of two real problems were documented in
U.S. geological survey modular �nite di�erence 
ow
model (MODFLOW), whereas an analytical solution
was found in the study of El-Ghandour and Elsaid [39].

4.1. Problem 1
A groundwater problem, solved analytically by El-
Ghandour and Elsaid in 2013 [39], was considered for
the validation of the proposed LBM (Figure 3). In this
problem, water was extracted from 10 pumping wells in
an uncon�ned aquifer with a length of 10000 m, a width
of 4500 m, and a thickness of 100 m. The hydraulic

Figure 3. Plan view of aquifer (Problem 1) [39].

conductivity and the speci�c yield are 50 m/day and
0.1, respectively. A constant head of 20 m was
considered for both northern and southern boundaries,
whereas a solid boundary condition (no 
ow boundary)
was assumed for the left and right borders. The
location and pumping rates of the mentioned wells are
reported in Table 1. In addition, a recharge rate of
0.001 m/day was assumed.

4.1.1. Results of problem 1
The steady-state solution was considered in this prob-
lem. The head contour lines stemmed from LBM,
and analytical solutions are depicted in Figure 4.
Accordingly, high levels of agreement are qualitatively
observed between the analytical and numerical head
values. In addition, the small Relative Errors (REs)
con�rm the high consistency between the analytical
solution results and the lattice Boltzmann results . The
REs between the estimations from LBM and analytical
solution (Eq. (28)) at the location of wells (see Figure 4)
are given in Table 2, indicating an average value of
0.0053. The grid size along the x and y direction
was chosen to be 50 m (200 � 90 square lattices).
In the above computations, the relaxation time was

Figure 4. Head contour obtained from analytical solution
and Lattic Boltzmann Method (LBM) (Problem 1).
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Table 2. Relative Errors (REs) at the location of wells (Problem 1) with the grid size of 50 m.

Wells w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

RE 0.005 0.007 0.004 0.005 0.004 0.006 0.007 0.005 0.004 0.006

Table 3. Relative Errors (REs) at the location of wells (Problem 1) with the grid size of 25 m.

Wells w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

RE 0.004 0.005 0.004 0.004 0.004 0.005 0.005 0.004 0.004 0.004

considered to be 0.75, and a time step of 0.002 day
(considering stability criteria) was selected.

RE =
LBM� analytical solution

analytical solution
: (28)

It is worth noting that the groundwater 
ow solution
in which the numerical methods are used is not as
accurate as of the related analytical solution. In
addition, the computational time of analytical solutions
is usually lower than that of the numerical methods.
However, the analytical solution is not available for
every geometry and boundary condition. In this
example, it was observed that the presented LBM
has satisfactory accuracy compared to the analytical
solution.

4.1.2. The e�ect of grid size
To examine the e�ect of the mesh size on the afore-
mentioned problem, the 25 m grid size along the x and
y directions was also considered. The relative errors
(REs) between the results of the LB method and the
analytical solutions for each well location are shown in
Table 3. Accordingly, the REs are nearly 0.001 smaller
than the errors reported in Table 2, indicating that by
halving the grid dimension, the increase in accuracy
could be considered negligible.

4.1.3. Sensitivity analysis regarding relaxation time
In order to check the e�ects of relaxation time on the
numerical solution, sensitivity analysis was performed.
Figure 5 shows the estimated relative errors at every
well for di�erent � values. The relaxation times varied
between 0.72 and 0.85. Accordingly, the RE values
are small when the relation time is between 0.72 and
0.77. However, the REs increase once the relaxation
becomes greater than 0.8. It should be noted that the
above-mentioned sensitivity analysis is associated with
Problem 1 since the value of relaxation time depends
on the problem conditions and mesh resolution [1].

4.2. Problems 2
There are several instances of uncon�ned groundwater

ow examples with analytical solutions in the liter-
ature [40{45]. However, these solutions are mainly
associated with regular borders. To assess the ability of
the proposed LB procedure in irregular borders, an un-
con�ned groundwater example shown in Figure 6 was

Figure 5. Relative errors between the water head
considering � = 0:75 and the other values of � at the
location of wells (Problem 1).

Figure 6. Plan view of aquifer (Problem 2) [46].

considered. The hydraulic conductivity of 160 m/day
and speci�c yield of 0.06 was assumed in this problem.
Along the eastern and western sides of the aquifer,
the boundaries were set as solid boundaries. In the
southeastern corner, a mountain (curve boundary) is
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presumed. In the northern border, a constant hydraulic
head of 15 m (Dirichlet condition) was assumed, while
a speci�ed 
ux rate of 0.0672 m3/day per meter
(Neumann condition) was considered on the southern
edge. The aquifer was 10000 m long, 6000 m wide, and
25 m deep, containing 9 pumping wells. Depending
on the pumping rate on the plain, both steady and
transient conditions were considered [46].

In the steady-state problem (�rst step), the
pumping rates were zero, whereas the recharge rate
on the plain was 0.00025 m/day. The initial head
in the borders was 16 m. The results of steady-state
simulation were used as the initial starting heads for
the transient state. When the pumping wells start
water extraction from the aquifer, the problem becomes
transient (second step). Therein, the pumping rates
were equal to 3888 m3/day during the 8-month of dry
seasons. In the third step, it is assumed that there is
no pumping for the 4-month wet season after the 8-
month dry season. Herein, the recharge rate is set to
0.00075 m/day. It should be noted that the results
obtained at the termination time of the prior step
consider the initial conditions for the transient problem
in the third step.

4.2.1. Results of Problem 2
This problem was simulated in three steps of steady
and transient states in three steps. The head contours
of all steady and transient steps, arisen from both LBM
and MODFLOW simulations, are depicted in Figure 6.
Accordingly, a high level of match is perceived between
the head contours, indicating the capability of the in-
troduced LBM for modeling this problem. In addition,
the values of REs between the heads resulted from both
methods (LBM and MODFLOW) were compared in
the observation wells, as shown in Figure 7. In line with
Table 4, the small values of REs con�rm appreciable
agreements between the estimations of MODFLOW
and LBM. The average values of RE for the �rst,
second, and third steps were 0.003, 0.006, and 0.003,
respectively. The results demonstrate the proposed
LBM has a good ability to model the uncon�ned aquifer
with curve boundaries. In this problem, the mesh size
for the �rst and third steps was set to �x = �y =
500 m. For the second step, a square mesh of 167 m
was considered. Considering the stability criterion, the
values of � and �t were equal to 0.75 and 0.001 day,
respectively.

Table 5. Relative errors (REs) at P1-P5 locations
(Problem 3).

Points P1 P2 P3 P4 P5

Location Row 25 25 25 25 25
Column 5 15 25 35 45

RE step one 0.003 0.002 0.001 0.001 0.002
RE step two 0.001 0.001 0.002 0.002 0.001

4.3. Problem 3
For the third case, an uncon�ned aquifer with the do-
main size of 1000 m long, 1000 m wide, and 120 m high
was considered (Figure 8) [46]. A pumping well exists
in this aquifer at x = 800 m and y = 500 m (Figure 8).
The hydraulic conductivity of the aquifer is 0.5 m/day
and the speci�c yield is 0.001. There is a constant head
of 100 m and 80 m at the eastern and western bound-
aries, respectively. The southern and northern bound-
aries are considered solid boundaries. The problem is
solved in two steps only under steady-state conditions.
In the �rst step, a recharge rate of 0.00323 m/day is
considered. The initial head is shown in Figure 8.

In the second step, the recharge rate and well
pump 
ow rate were 0.00323 m/day and 2000 m3/day,
respectively. The head obtained in step one is used as
the initial conditions for this step.

4.3.1. Results of Problem 3
Figure 9 depicts the head contours obtained from
LBM and MODFLOW in both steps, indicating the
close agreement between the solutions of LBM and
those of MODFLOW. For these two steps, the RE
between LBM and MODFLOW simulations at the
points displayed in Figure 8 are given in Table 5. The
average values of RE are 0.002 and 0.001 for steps
one and two, respectively, con�rming small di�erences
between LBM and MODFLOW solutions. Herein,
�x = �y = 20 m, � = 0:7, and �t = 0:01 day. These
results obtained from the above-mentioned problems
indicated that the introduced LBM is an appropriate
numerical method for the solution of the groundwater
problems in uncon�ned aquifers.

5. Conclusions

In the present study, the groundwater 
ow in an
uncon�ned aquifer was solved innovatively using Lattic
Boltzmann Method (LBM). A new form of equilibrium

Table 4. Relative Error (REs) at the location of wells (Problem 2).

Wells w1 w2 w3 w4 w5 w6 w7 w8 w9

RE step one 0.004 0.003 0.002 0.002 0.003 0.003 0.002 0.003 0.003
RE step two 0.005 0.005 0.004 0.006 0.005 0.006 0.004 0.007 0.008
RE step three 0.003 0.004 0.002 0.003 0.002 0.004 0.002 0.003 0.002
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Figure 7. Head contour obtained from MODFLOW and
Lattic Boltzmann Method (LBM): (a) step one, (b) step
two, and (c) step three (Problem 2).

Figure 8. Plan view of aquifer and initial head for step
one (Problem 3).

Figure 9. Head contour obtained from MODFLOW and
Lattic Boltzmann Method (LBM): (a) step one, and (b)
step two (Problem 3).
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distribution function was introduced for this purpose.
Three di�erent steady and transient problems were
solved with the introduced LBM. Di�erent conditions
of boundary conditions and several states of recharge
and pumping rate were also considered in the prob-
lems. The results indicated that the introduced LBM
gives rise to a satisfactory numerical solution for the
groundwater 
ow in uncon�ned aquifers, wherein the
state variable is of second order.
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