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Abstract. In cast alloys with a long freezing range such as ZA-27, casting defects like
porosity and shrinkage may occur in case of failure to control casting variables. In this
study, the role of casting variables in the formation of shrinkage and micro-porosity defects
in ZA-27 was investigated. The defects of casting were predicted using Arti�cial Neural
Network (ANN) algorithms. To this end, cooling rate, solidi�cation time, temperature,
liquid phase, initial mold temperature, and %shrinkage were obtained from a series of
simulation-experimental tests. The heat transfer coe�cient of ZA-27 and graphite die was
calculated as 2000 W/(m2K). In the samples poured into the mold heated at 350�C, the
minimum feeder shrinkage volume was observed. Locations of the chronic hotspot and
shrinkage problem were determined and evaluated. It was observed that the casting heated
to 150�C caused deep shrinkage on the upper and lateral surfaces of the feeder. A good
correlation was obtained between the modeling results of the ANN and the experimental
results. Optimum ANNs were designed, trained, and tested to predict the shrinkage rate
at di�erent initial mold temperatures and in various physical conditions. Thanks to the
sigmoid (sigmoaxon) function training, the most systematic modeling ANN set was revealed
with 99% (vol. 7.65%shrinkage) prediction.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Zinc-Aluminum alloys can act as feasible alternatives
to many ferrous and non-ferrous alloys in various en-
gineering applications due to their outstanding advan-
tages such as superior mechanical, physical and tribo-
logical properties, corrosion resistance, high damping
capacity, castability, environmentally friendliness, and
low cost-energy ratio [1{5]. Industry branches employ-
ing zinc include automotive parts, transportation [6],
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electronic/electrical systems, water taps, sanitary �t-
tings, household goods, fashion products, safety belt
blocks, locking mechanisms, wiper motor housings,
cylinder locks, some electronic connectors, handles,
tap systems, zippers, belt buckles, spring adjuster
in bikes, costume jewelry, appliances, etc. have been
reported [3]. Recently, more than 25 commercial zinc
alloys have been reported for use in the foundry indus-
try. International standards for these alloys are referred
to as EN 12844. The commercial and academic names
of the mentioned zinc alloys are Zamak 2 (AC43A),
Zamak 3 (AC40A), Zamak 5 (AC41A), Zamak 7, ZA-
8, ZA-12, ZA-27, ACuZinc 5, ACuZinc 10, ALZEN
305, ALZEN 501, and ZEP®. Following engineering
evaluations of all Zinc-Aluminum alloys, ZA-27 alloy
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has proven the best in terms of mechanical, tribological,
and physical properties [1]. The digit \27" indicates
the nominal weight percentage of aluminum in zinc [7].
ZA-27 alloy can be produced through permanent die
casting [8]. However, some of the main problems
in casting technology of cast ZA alloys are listed
as gassing, oxidation, grain coarsening, uncontrolled
cooling rate, heterogeneous microstructure, and micro-
porosity. Nevertheless, the superior mechanical prop-
erties are strongly a�ected by processing parameters,
casting temperature, initial mold temperature, cooling
rate, liquid phase, and alloying elements [2,3,5,9{12].
In order to obtain reliable mechanical properties, the
production parameters must be properly controlled.
For example, the e�ect of processing parameters such
as solidi�cation time and initial die temperature in
squeeze gravity casting of zinc alloys was studied by
Yang [13]. Production by casting is a very complex
process and product quality depends on many process
parameters. However, the current design of metal
foundries is mainly based on \trial and error". The
product quality of casting parts and the elimination
of possible casting errors are largely determined by
the experience of casting designers. It is di�cult to
optimize the e�ect of casting parameters with con-
ventional mathematical calculations [14{16]. In order
to produce quality casting, the casting parameters
should be controlled experimentally or with the aid of
engineering and production systems such as Computer-
Aided Simulation (CAS) [10,15]. The defects men-
tioned above occur in the castings due to wrong choice
in selecting the process variables. Aravind et al. em-
ployed MAGMASOFT software to simulate the casting
process undergoing solidi�cation. Their simulation
results demonstrated the possible areas that might be
subjected to defects or any other malfunctions [17].
In fact, even computer simulation programs do not
provide accurate results in case of su�cient data. This
is due to the di�erent physical properties of the foundry
where the software is tested and the foundry materials
are used in the foundry where the software is used. For
example, in the case of ZA-27 casting into the graphite
mold examined in this article paper, in the graphite
mold casting, although the thermal conductivity coe�-
cient of graphite at room temperature was incorporated
into the simulation programs, there is still a limited
scope of proper data on the thermal conductivity
coe�cient of the mold in case of preheating the mold
to 150�C degrees or higher. Similarly, there is a
limited scope of data on how to change the conductivity
coe�cient values and cooling rate of the solutions to
prevent liquid metal from sticking to the surface of
the graphite mold. However, casting defects can be
reduced by calibrating the data obtained from casting
simulation software with real experimental castings
and Arti�cial Neural Networks (ANNs) approach. On

the other hand, a more realistic estimation of casting
errors can be made using ANN and based on foundry
conditions, humidity in the air, ambient temperature,
residence time in the furnace, the e�ect of nucleating,
degassing processes, mold temperatures, and changes
in these mold temperatures due to the lack of data not
introduced to computer simulation software. One of
the most critical of these casting defects is the extent
of porosity in the casting. In the casting process,
shrinkage forms due to the rejection of gas from the
liquid metal during solidi�cation and/or failure of the
liquid to be fed through the interdendritic regions.
Such porosity may occur in the form of micro or macro
shrinkage. The macro shrinkage can be compensated
by a feeder and a good runner design, while the micro
shrinkage is often di�cult to predict. Micro shrinkage
occurs inside of the cast part, while macro shrinkage
occurs mostly out of the parts.

The objective of the present work is to design
CAS and ANN models so as to predict micro-porosity
and shrinkage problems of ZA-27 alloys as functions
of processing parameter and initial mold temperature
using ANN sigmoidaxon and ANN tanhaxon transfer
functions. The results of this research and those not in
the literature are given in the following.

CASs are widely used for predicting and prevent-
ing casting defects. However, no CAS studies have
been found to predict micro-porosity, surface sink, and
shrinkage formation of the ZA-27 alloy. In addition, the
micro-porosity and shrinkage formations measured by
CAS have been compared with experimental studies.
The examination of experimentally produced samples
has been carried out with both Radiographic Inspection
(RT) and physical techniques. By using graphite die,
industrial-scale ZA-27 castings were made without ad-
hesion, and temperatures in the mold were calculated
simultaneously. Finally, in addition to experimen-
tal and computer-assisted casting and solidi�cation
simulation, speci�c ANN modeling was performed to
estimate micro-porosity and shrinkage. This research
paper considers the application of CAS and ANN to
predicting shrinkage and making a correlation of initial
mold temperature, pouring time, temperature, liquid
phase, and cooling rate with the shrinkage percentage
in ZA-27 casting alloys.

2. Materials and methods

2.1. Materials and experimental studies
The alloy ZA-27 was chosen as the casting material due
to its popular use in many industries, high strength, low
production cost, and low pouring temperature [2,18].
The chemical composition of ZA-27 alloy is given in
Table 1.

All data, casting processing, and material prop-
erties were calculated by the computer programs and
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Table 1. The chemical composition of ZA-27 alloy (wt.%).

Chemical Zn Al Mg Cu Fe Pb Cd

Composition% 72.6 25.00 0.01 2.26 0.07 0.01 0.01

Figure 1. The technical drawing of the high-density graphite permanent mold (dimensions are in mm).

Table 2. The thermal and physical properties of ZA-27.

Temperature
(�C)

Density
(kg/m3)

Speci�c
heat

(J/kg/�C)

Heat
conduction
(W/m/�C)

20 5930 525 122,500

350 5780 | |

620 5370 | |

800 5300 | |

engineering database. The physical and thermal prop-
erties of casting material are shown in Table 2.

The casting temperatures of 550�C, 600�C, and
650�C were chosen for each di�erent mold with a
preheating temperature. The high casting temperature
increases 
uidity and reduces the cooling rate at the
metal/graphite mold interface. Since ZA-27 has a
wide solidi�cation range, the casting temperature is
preferred to be 650�C so that the 
uidity required to
�ll the mold can be provided. The reason why the
casting temperature is preferred at 550�C is to obtain
a low-cost product and a �ne-grained microstructure
in metallurgical terms. This condition causes mi-
crostructural changes such as grain size and a�ects the
mold life. Also, in ANN models, casting temperature

of 550�C min and maximum casting temperature of
650�C, which are assumed as input values, directly
a�ect the estimated shrinkage percentage in the output
layer. The graphite mold is designed in the form of a
rectangular shape to measure temperature distribution
during the mold �lling and solidi�cation. The technical
drawing and a photograph of the high-density graphite
permanent mold are shown in Figure 1. To measure
the temperature and record the cooling data during
the solidi�cation process, 3 holes were drilled through
the mold walls and 3 K-type (Ni-Cr) quartz-insulated
tube thermocouples were placed in these holes. Ther-
mocouples can feasibly monitor the temperature of the
mold, cavity surface, and heat transfer medium (e.g.,
the coolant) [12]. Quartz-insulated tube thermocouples
prevented the contact of NiCr thermocouple wires
with liquid metal during casting, impeded short circuit
formation, and facilitated obtaining continuous tem-
perature data. As shown in Figures 2 and 3, di�erent
thermocouples were placed from top to bottom with
the numbers 3, 2, and 1. During casting, the holes
were sealed with a paste made of a mixture of zircon
sand and sodium silicate to prevent liquid metal from

owing out of the mold through the mold edge and
thermocouple holes. This paste is practically gluing
two half molds and exhibits refractory properties, even
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Figure 2. The high-density graphite permanent mold and
quartz-insulated tube for thermocouples setup.

Figure 3. Thermocouples' locations in the mold: (a)
before casting and (b) after casting.

at high temperatures. Thermocouples placed on the
mold before casting and mold photos after casting are
given in Figure 3. In order to achieve the required heat
transfer and minimum distortion, the mold thickness
was determined as 75 mm. Graphite has high thermal
conductivity and is suitable for machining; therefore,
it was chosen as a molding material. Silicon Carbide
(SiC) heating elements are mounted on all exterior
surfaces of the graphite mold at certain intervals. In
this way, the mold preheating was carried out in a
controlled manner.

Casting research was performed 4 times by chang-
ing initial mold temperature as 150�C, 250�C, 300�C,
and 350�C. Here, it would be useful to explain
why mold preheat temperatures are preferred between
150�C and 350�C. Temperatures below 150�C trans-
form the microstructure into a �ner-grained form by
making a chill e�ect with rapid solidi�cation. It is
known that metals with a �ne-grained microstructure
have better mechanical properties. However, increasing
the mechanical properties in this way is subject to high
costs as a disadvantage. Production carried out under
industrial conditions is focused on quality and product
quantity. In these conditions, product (casting)/hour
rates are very important. In a foundry producing a ZA-

27 alloy valve, the mold (metal) temperature increases
after each casting. The heat of the liquid metal is
transferred to the mold through conduction. If the
initial mold temperature begins with a temperature like
100�C, it will gradually increase to 500�C, which is the
melting temperature \after 10 castings for example".
In this case, it is necessary to constantly cool the heated
mold with a liquid, air, or gas, causing cost, complexity,
and environmental risks. In this case, factories use
more than one metal mold and in case the heated molds
are cooled, they are cast. Cold molds are exposed to
the risk of liquid metal splashes. Another problem
that deserves attention is the risk of condensation of
water vapor remaining in the cold molds. Casting in
a mold containing moisture can be life-threatening due
to vapor expansion. The mold life cycle is reduced
if the mold temperature is low. In addition, at low
mold temperatures, the viscosity of the metal decreases
and the mold-�lling problem arises. Therefore, the
lowest mold preheating temperature is preferred to be
150�C. On the other hand, high mold temperatures
decrease the number of productions per casting at
a given time in metal casting and prolong the mold
opening time. Furthermore, the high mold temperature
technically carries the risk of adhesion between the
liquid metal and graphite-die and causes graphite-die
to deform and erode rapidly. At the same time, hot
molds (400{450�C) reduce the mechanical properties
of the solidi�ed metal. Because the cooling rate is slow
in hot molds, a coarse-grained microstructure forms.
Moreover, the risk of shrinkage and porosity is much
higher in hot molds. Therefore, it is not preferred
industrially. For these reasons, the preheating mold
temperature range was chosen between 150{350�C.

For each casting, the liquid metal was fully poured
in the mold at 550�C, 600�C, and 650�C, respectively,
and solidi�cation data were logged. After the solidi�ca-
tion, all data including initial mold temperature, solid-
i�cation duration, temperature-time gradient, cooling
rate, liquid phase, and shrinkage data were obtained
and exported so as to use an Excel table. Di�erent
initial mold temperatures of the ZA-27 cast products
taken after casting are given in Figure 4.

2.2. Modelling with casting simulation
From the experimental castings, 100 temperature mea-
surement data sets were collected from three di�erent
regions with Picolog Data Logger. Each temperature
data set was transferred to the simulation program
and 6 di�erent Heat Transfer Coe�cient (HTC) values
were used to simulate experimental cooling curves
and simulation cooling curves. These studies were
performed separately for each preheat temperature
to match the experimental data with the simulation
data. Thus, the HTC of the preheated graphite was
determined exactly. As a matter of fact, in many
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Figure 4. ZA-27 alloys produced by casting poured into the mold at 4 di�erent temperatures.

Figure 5. Heat Transfer Coe�cient (HTC) determined
by simulation and experimental calculation.

simulation software products, the data recorded in
the database is presented only as room temperature
HTC by default. In the simulation studies, primarily,
the HTC between the mold and ZA-27 casting was
determined. These studies are given in Figure 5. The
most important point here is that the values measured
from all the three thermocouples are the same as those
in simulation. Six di�erent designs were made so that
simulation and experimental data could be the same
and as a result, it was observed that design 5 was
similar to the experimental casting.

After determining the correct HTC, �lling and
solidi�cation simulations were done at di�erent mold
preheating temperatures. Micro-porosity and shrink-
age analyses were carried out for the ZA-27 alloy
poured at each mold temperature using the veri�ed and
calibrated HTC and cooling curves.

2.3. Radiography and metallographic
examination

The amount and location of the porosity formed in the
experimentally produced ZA-27 alloys were determined
by radiography and metallographic examination from
sections. RI or short wavelength electromagnetic
radiation was applied to the material to �nd internal
structure defects such as industrial X-ray, casting

cavity, and inclusion. X-ray and a radioactive source
(IR-192, Co-60 or, in rare cases, Cs-137) were used in
the experiments in the RT system. The parameters
used in RT investigations are optimized for ZA-27 alloy
and determined as X-ray: current = 5 (mA); voltage
= 165 (kV); and exposure time = 120 s. In the
metallographic examination, the routine method was
examined and the hardness values for the samples were
also measured. In this way, a general opinion about
the mechanical properties was obtained.

2.4. Modeling with an ANN
Abiodun et al. reported the details of feedforward and
feedback propagation ANN models for research focus
based on data analysis factors like accuracy, processing
speed, latency, fault tolerance, volume, scalability,
convergence, and performance [19]. In addition, the
hybrid GA-PSO framework modeling in data mining
has been investigated and researched [20]. According to
literature researches, it is understood that ANN model
is frequently used in di�erent disciplines by processing
non-linear data among many arti�cial learning rules,
and the results could act as a more common alternative
to those of methods such as fuzzy control [21]. In
the article published by Sharma, activation functions
in neural networks sigmoid, tanh, softmax, ReLU,
and leaky ReLU were explained. It is understood
that sigmoid, tanh transfer functions explained by
Sharma [22] and Cavaleri [23] will ideally predict the
geometric form of the cooling curve that occurs due
to die temperature, Critical Liquid Fraction (CLF),
and metallurgical ZA-27 alloy phase transformations
after metal casting. ANN modeling, with a wide
range of applications, was used to predict casting
defects of ZA-27 alloy. Casting parameters and amount
of shrinkage determined by experimental and casting
simulations were applied to arti�cial intelligence and
learning modules, and the amount of shrinkage was
estimated. ANN modeling is de�ned as a nonlinear
statistical analysis technique [24]. ANN is becoming
more and more important research area due to the
ability of ANN applications to test experimentally
obtained topologies and experimental parameters using
computer bandwidth. An ANN is a mathematical
model that consists of several large layers of highly
interconnected processing elements organized into units
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called neurons, the geometry and functionality of which
have been likened to those of the human brain [2,18,25].
Compared to most of the soft computing techniques,
ANNs work optimally if the relationship between the
inputs and outputs is highly non-linear. ANNs are
favorably acceptable for solving problems and no al-
gorithms or a speci�c set of rules should be adopted
to resolve the problem [26]. In particular, such
substitute models can be established through a training
process with limited available data which can be used
to predict pre-selected parameters, thus reducing the
need for time- and cost-consuming experiments [23].
Moghaddam and Kolahan modeled and optimized Elec-
trical Discharge Machining (EDM) process using ANN
and Particle Swarm Optimization (PSO) algorithm by
establishing a neural network with back propagation
algorithm (BPNN). Their results demonstrated that
the proposed modeling method (BPNN) accurately
simulated the real EDM process with less than 1%
error and the PSO optimization algorithm with less
than 4% error. However, because the ZA-27 alloy has
a wide solidi�cation range and the continuous phase
transformations occur during solidi�cation depending
on the temperature, error greater than 4% was ob-
tained in the PSO model [27]. Therefore, the PSO
model was not preferred for the percentage shrinkage

estimation a�ected by the die preheat temperature and
phase transformation. Feed-Forward Neural Network
(FFNN) is the most commonly used ANNs archi-
tecture. It consists of a layer of input, a layer of
output, and one or more hidden layers of neurons for
full interconnection between input and output layers.
According to the electrical potential change of the creep
test of composites, the ANN-FFNN model was studied
by Altabey et al. [28] Some of the models in our current
study were similar to those of Altabey et al. [28]. The
basic network structure of the multilayer feedforward
ANN for shrinkage estimation is shown in Figure 6.
This structure consists of an ANN, an input layer, two
hidden layers, and an output layer.

Five data sets were used as inputs: initial mold
temperature, pouring time, casting temperature, cool-
ing rate, and % critical liquid phase. Two hidden layers
of the performed models consist of 14 and 7 neurons
(node or processing element), respectively. Finally,
%shrinkage and %porosity were set as output (desired)
parameters. Using a small number of neurons in hidden
layers will cause under�tting. Under�tting occurs when
there are a small number of neurons to adequately spec-
ify signals in a complex data set. On the other hand,
using too many neurons in the hidden layers can result
in di�erent problems such as over�tting. Over�tting

Figure 6. The structure of the Arti�cial Neural Network (ANN) used in modeling the ZA-27 casting and solidi�cation.
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occurs when the neural network must process a lot
of information, while the training set does not have
enough information to train all neurons. From time
to time, another problem can arise even if the training
data are su�cient. Excessive numbers of neurons in
hidden layers can increase the time required to train
the network or even make it impossible to train the
neural network adequately. Evidently, some alignment
must be done between too many and too few neurons
in hidden layers. Various combinations of neurons have
been also studied to obtain optimum results from the
model. These studies are generally carried out through
trial and error. Tangent transfer function is used in
the model. Details of input variables can be seen below.
Hashim et al. [29] evaluated the welding properties and
weld defects using ANN models. In his paper, ANN
algorithms such as Multilayer Perceptron, Adaptive-
Network-Based Fuzzy Inference System, Feedforward
Backpropagation, and Self-Organizing Map were eval-
uated to detect weld defects. It was stated that the
defects in the welding process would mostly be related
to solidi�cation, shrinkage, and CLF [30,31]. For
this reason, the methods suggested by Hashim were
preferred for shrinkage modeling of ZA-27 alloy using
ANN given that the Feedforward Backpropagation
algorithm has a quick and high percentage of accuracy
that can be obtained. Hashim stated that 95% ac-
curacy was achieved via Feedforward Backpropagation
algorithm [29]. For all tests of the current ZA-27
alloy, 2646 data sets were obtained. All values used
in sigmoid function were normalized between 0 and 1
by using linear scaling; at the same time, all values were
normalized between {1 and 1 for tangent function. The
sigmoid function was used in the activation function
of the neural network. The most important reason
behind choosing the sigmoid function is that its value
lies between (0 and 1). It is particularly preferred in
models by which we need to estimate the probability
as an output. Randomly selected 1901 data sets were
used for training the network, 303 data sets for testing,
and 440 data sets for production. Then, the ANN
simulation and modeling approaches were applied. The
network was arranged as �ve input parameters and
one output parameter. Hence, the architecture of
ANN becomes 5 - 14 - 7 - 1: 5 corresponding to
the input values; 14 to the number of hidden layers
with 1 neurons; 7 to the number of hidden layers
with 2 neurons; and 1 to the outputs. Also, genetic
algorithms operating on networks model were used
for training data. The modular neural network was
employed for the systems. Modular neural networks
represent a special class of multilayer perceptron. The
feedbacks of error were given using Back Propagation
Algorithms (BPAs). For the model training, two
di�erent functions were utilized: sigmoid (sigmoaxon)
and tangent (tanhaxon). Momentum learning rule and

on-line weight update were employed for each function.
Optimal ANNs were once designed, trained, tested, and
used to predict shrinkage ratio for various sets of initial
mold temperature and physical conditions.

The most important parameter of the proper
functioning of a neural network model is to train the
network system. In this proposed network system, to
conduct porosity estimation, training was conducted
using BPA. BPA is the gradient descent method used
to minimize the square error function and the most
commonly used formula in ANN is given below [32]:

E = 1=2
pX
j=1




y(i) � d(i)



2
: (1)

The subscripts \i", \ith" given in this formula refer
to the input patterns. The symbols \y" and \d" are
the calculated outputs and the desired outputs of the
model, respectively. The learning procedure in the
BPA consists of 10 mathematical operations and is
listed as follows. In the �rst operation, weights and
threshold values are initialized; all weights and thresh-
old are set to small random values. In the second oper-
ation, continuous value input vectors, X1; X2; � � � ; Xn,
and the desired outputs, �1; �2; � � � �n; � � � , are explicitly
given. Usually, training sets are normalized to values
between {0.9 and 0.9 during training. In the operation,
used in Eq. (3), the outputs of each node in the hidden
layer are calculated, as shown in Eq. (2).

hj = f

0@ nX
j=1

WijXi � �k
1A ; (2)

where Wij is the weight between the input and hidden
layers, �k is the bias between the input and hidden
layers, and f is the activation function. Activation
functions are used for nonlinear transformations in
multi-layer ANNs. The output of hidden layers is
normalized by some activation functions to obtain
backward derivatives in hidden layers (the di�erence in
learning is taken together with backward derivatives).
Some of these activation functions include sigmoid,
tanch, ReLu, PreLu, and so on. In the next operation,
the output of each node in the output layer is calculated
through the following formula:

Qkj = f

 
nX
J=1

WkjXki � �k
!
: (3)

The symbol Q in Eq. (3) is the vector of the output
layer nodes, Wkj is the weights of the hidden and
output layers, and �k is the bias between the hidden
and output layers.

f(x) =
1� e�ax
1 + e�ax ; (4)

�k = �k(1��k)(Y ��k): (5)
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�k is the target of the output layer and �k represents
the error vectors of each output node. Then, the hidden
layer error is calculated.

�j = hj(1� hj)
mX
k=1

�k!kj ; (6)

where �k is the error vector for each hidden layer.
In the operation shown in Eq. (6), the output

layer error between the target and observed outputs
is calculated. This operation (Eq. (6)) is the same as
that in Eq. (5). In the next step, hidden layer error
is calculated using Eq. (6). Then, using Eq. (7), the
weights and thresholds for the output layer should be
adjusted.

!kj =(t+1)=!kj(t)+��khj+�(!kj(t)�!kj(t�1));
(7)

�k(t+ 1) = �k(t) + ��k: (8)

The symbol � is the learning rate known as the
convergence ratio between the current solution and
the global minimum. The gradient is a vector-valued
function and as a vector, it has both direction and
magnitude. The gradient descent algorithm multiplies
the gradient by a number, e.g., learning rate or step
size, to determine the next point. This formula also
uses the momentum value that helps the network
overcome the local minimum level and, then, adjusts
the weights and thresholds on the hidden layer.

!n =(t+1)=!ji(t)+��jhi+�(!ji(t)

�!ji(t�1)); (9)

�j(t+ 1) = �j(t) + ��t: (10)

Finally, for each layer and each neuron, the output layer
error is repeated using operations in Eqs. (2) and (9)
in each pair of patterns until the error is within the
speci�ed tolerance [32].

The data derived from the casting process used in
this ANN modeling were collected from our foundry
laboratory. The reason for this is to control the
experimental parameters much more precisely. While
planning the scenario of this article, the items listed
below were primarily determined in a systematic man-
ner:

Question 1. In the �eld of metallurgy, which area
in the industrial process parameters and
production is the most di�cult to con-
trol?

Question 2. What is the metallurgy �eld with the
largest control and number of variables?

Question 3. What are the materials that are com-
mercially needed in many engineering
�elds?

Question 4. What are the metals that do not have
su�cient technical documents and arti-
cles about their production?

Question 5. How should complex process parameters
be controlled in an economical and prac-
tical way?

The questions mentioned above have been thoroughly
discussed. As a result, such issues as welding, heat
treatment, plating, coating, forging, rolling, extrusion,
powder metallurgy, casting, etc. were evaluated and
consultations were made with industry representatives
and engineers. The casting process which includes
many technical issues such as melting, smelting, casting
calculations, molding, phase transformations, volume
changes, solidi�cation, heat transfer, and material
selection was chosen according to the received feedback.
Materials that are commercially needed in many engi-
neering �elds are known as steel, cast iron, aluminum,
copper, and zinc. Zinc is the fourth metal in the
world after iron, aluminum, and copper and is the most
prominent of all these metals. In an up-to-date review
article published by Pola et al., the importance of zinc
was explained in detail with technical data [3]. On the
other hand, when a detailed literature search is made
on zinc alloys, it is understood that a much more lim-
ited research is done compared to other common metals
such as steel and aluminum. Moreover, studies have
been made on the use of zinc alloys as biomaterials due
to their biodegradable and load-bearing properties [33].
The ZA-27 alloy is a zinc-aluminum alloy in the Zn-Al
alloy group, with an aluminum content of wt.27%Al,
high strength (400 MPa), high melting temperature,
and lowest density. Zinc alloys are usually produced by
cold chamber die-cast casting methods due to their low
melting temperatures. In this way, mass production
can be made. However, the weight and dimensions of
the parts produced by cold chamber die-cast machines
are limited. Numerically, although the weight of a work
piece produced by a die casting machine is unlimited,
these weights are extremely narrow from an engineering
point of view. For example, when the catalog data of
a company that produces die-cast machines commer-
cially are examined, the weight limits of the cast part
are 1/14 oz (2 g) to 3/4 lb (337 g). On the basis of
size, it is in the form of minuscule to 400 � 400 � 100 [34].
In this case, it is very di�cult and even unreasonable
in engineering terms to produce ZA alloys weighing
400 grams or more with any pressure die-cast casting
machine. On the other hand, the crucial problem of
die casting is porosity. If porosity in the product
be detrimental to engineering function, it should be
clearly de�ned before die design since it is actually
impossible to accomplish zero porosity in die casting.
As a result, it is an extremely important problem in
which the weight and dimensions of the work piece in
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die casting are limited and that the porosity trapped in
the work piece cannot be prevented. In this case, it is
necessary to develop alternative casting techniques for
the production of work pieces that are both heavier
than 500 grams and do not contain porosity. In
addition to the problems explained above, this study
aims to produce ZA-27 alloy or other alloys by the
casting technique without any problem by increasing
the mechanical properties. In this study, the process
parameters that are of critical importance in terms
of metallurgical quality and their e�ects on casting
properties were examined by changing a certain range.
The mentioned parameters include the following:

- Liquidus temperature: 500�C;

- Solidus temperature: 380�C;

- Casting temperature: 550{650�C;

- Casting time (pouring duration): 3{12 sec;

- Cooling rate from 10�C/sec to 50�C /sec;

- Latent heat: 190 kJ/kg;

- Latent heat eutectic: 124 kJ/kg;

- CLF from 40% to 60%;

- Surface tension coe�cient 0.8 N/m.

The estimated volumetric shrinkage and porosity per-
centage in the output layer were determined as min
0% and max 10%, respectively. The data collection
procedure for this study was carried out via the follow-
ing explanations. In laboratory conditions, a total of
25 castings were performed through 5 times repetition
for each casting. Many temperature measurements
from 3 di�erent regions including inside the mold, from
the mold interface, outside the mold and inside the
melting crucible were performed and recorded for 10
milliseconds. As casting parameters, the porosity and
shrinkage ratios of the cast work piece were determined
by changing the initial mold temperature in a wide
temperature range from 150�C to 350�C. The obtained
data were modeled with ANN, the most ideal parame-
ters of which were determined within the framework of
the current learning rules and the casting quality at a
temperature without casting experiment was evaluated
within the scope of porosity and shrinkage output.

Using experimental castings, simulation studies,
and ANN modeling, a synergistic study was performed
at initial mold temperatures of 150�C, 200�C, 250�C,
300�C, and 350�C degrees and the amount of shrinkage
was calculated for each temperature. With this triple
veri�cation, experimental results, simulation data, and
ANN models at initial mold temperatures of 150�C,
250�C, 300�C, and 350�C were considered and the
amount of shrinkage at the initial mold temperature
of 200�C was estimated as learning output data.

3. Results and discussions

Hot spot is de�ned as the hottest location of the
metal that solidi�es in the mold, and it is the location
that cools down later than other locations because
the heat cannot be transferred adequately. Feeding
e�ciency and shrinkage are two of the most important
parameters in the solidi�cation process that take place
after casting and a function of these two parameters
are location and temperature of the isolated hot spots.
It is essential that the location and temperature of
the isolated hot spots be determined [35,36]. For
this reason, hotspot locations are determined primarily.
The simulation report showing the hot spot locations
is given in Figure 7. The temperatures given in the
images in Figure 7 are the initial temperatures of the
molds.

As a result of the hotspot simulation performed
at each initial mold heating temperature, it was un-
derstood that the hotspot locations were inside the
feeder and the hotspot formed a larger volume with
the increasing mold temperature. It is understood
that the hotspot volume and the initial mold heating
temperature are proportional, which is because of the
slower cooling of the mold heated to 350�C. The
hotspot indicates that adjacent areas in the casting can
be e�ectively fed and the hotspot must be inside the
feeder to ensure perfect casting [37].

Another computer simulation study has been
run to assess the porosity and shrinkage percentage
and distributions in the mold (Figure 8). Shrinkage
(surface depression or sink) is a casting defect caused
by metal density variation during solidi�cation and it
usually occurs on the upper surface of the casting work
piece [38]. During solidi�cation, the density increases
and the liquid metal volume decreases as a function
of solidi�cation and phase transformation. Afterward,
the liquid metal shrinks and micro-macro porosities
and shrinkages occur in/on the solidi�ed metal. The
formation of shrinkage in liquid metal continues up
until solidus temperature. Shrinkage can be prevented
by the feeder added to the upper surface of the casting
according to the modulus criteria. The section view
of 3D %shrinkage in the casting part evaluated by
simulation is given in Figure 8. According to Figure 8,
it is observed that the percentage and geometry of
shrinkage vary depending on the cooling rate. The
shrinkage shown in Figure 8 (150�C) is narrow on
the top of the cast part on the Y and X axes. The
shrinkage observed at the top of the feeder at a mold
temperature of 150�C is in the form of an ellipse,
and as the mold temperature increases, it turns into
a rectangular form with a small radius at the corners.

It can be realized that the shrinkage type in zinc
alloys can be a�ected by an initial mold temperature in
gravity die casting. Due to the gravity e�ect of the liq-
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Figure 7. Hotspot FS time locations.

Figure 8. % surface porosity forming on the upper surfaces of feeder after casting at di�erent mold preheating
temperatures.
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Figure 9. Shrinkage formation on upper surfaces of ZA-27 alloy after casting at di�erent mold preheating temperatures.

uid metal �lled into the mold, surface cavities generally
appear on the upper surfaces. The di�erence between
the �nal porosity types given in Figure 8 depends on
the cooling rate. The cooling rate depends on the initial
mold temperature. The shrinkage and sink (7{8%) in
the mold heated to 150�C are narrowed in the direction
of X and Y axes. The shrinkage (3{6%) of the cast,
which was heated to 300�C, expanded to the surface
and became a blunt cone. Such surface shrinkages are
slightly visible in the macroscopic examination. The
macroscopic examination of experimentally cast ZA-27
alloy poured at the di�erent initial mold temperatures
is given in Figure 9.

The shape di�erences for these porosities can be
justi�ed by the phase transformations and the CLF
due to the change in cooling rates. According to
Akhter and Islam, the solidi�cation of ZA-27 alloy
begins with phase �0 dendrites and, then, with the
peritectic reaction of the Zn-� rich phases around the
edge of the �0 phase. Increase in the cooling rate
decreases the peritectic reaction by increasing the solid
Zn crystals in the liquid phase. Rapid cooling leads
to the formation of some irregular particles such as
� and � during the phase � transformation at the
eutectoid temperature [39]. Peter et al. studied phase
transformations and dendritic microstructural segrega-
tion of the eutectoid ZnAl22 alloy at di�erent cooling
rates. They found that an increase in the cooling
rate during casting could determine the enhancement
of the ratio of the eutectic transformation energy
to the total melting energy and to the solidi�cation
energy, respectively. Their study illustrated that the
solidi�cation of the alloy examined was visible in the
non-equilibrium condition. The separation of Al at
the level of dendrites and the presence of eutectic
transformation were expressed. The most important
e�ect of dendritic separation was reported on the
variation in the ratio of di�erent phases. In general, it
is found that di�erent eutectoid transformations take
place at di�erent cooling rates, hence the formation

of a di�erent microstructure. Therefore, it is possible
that the amount of critical 
uid in the microstructure
may vary as a result of o�-balance solidi�cation, which
leads to a di�erent solid-liquid interface [40]. There-
fore, at high cooling rates, due to rapid solidi�cation,
shrinkage is trapped in the casting and at slow cooling
rates, the porosity is shifted towards the mold top
region. The ZA-27 alloy has a wide solidi�cation
range (110�C) [41]; while cooling continues in this
range, the liquid requirement for the perturbation of
the solidi�ed dendrites can be compensated by the 
ow
of the interdendritic 
uid. The growth of dendrite
in the liquid continues to a certain fraction in the
solidi�cation range. Interdendritic liquid metal 
ow
is not possible after this critical fraction level. In
casting and foundry terminology, the blocking of liquid
metal between dendrites is de�ned as \critical liquid
fraction" [10]. In the critical fraction of the solid/liquid
phase, liquid feeding is still necessary, but the solidi�ed
liquid creates a pressure decline and resistance to the
liquid 
ow increases. If this negative pressure in the
solid dendrite-liquid region cannot be compensated for
by the 
ow of liquid due to blockage of the dendrite
arms, it may lead to shrinkage and porosity [42]. In
order to better investigate the e�ect of CLF on the
surface porosity of ZA-27 alloy, a speci�c 1/2 feeder
and rectangular prism mold design was performed.
Then, CLF values were selected as 40, 50, and 60
and simulation studies were performed. According
to the simulation results, surface shrinkage geometry
and total shrinkage percentage exhibited a signi�cant
di�erence. The total porosity of CLF 60 was 97.9% and
it formed a deep cavity into the casting piece. The total
porosity of CLF 50 and CLF 40 was 96.9% and 96%,
respectively, with the porosity forming a shallow and
wide cavity towards the surface of the casting piece.
It is known that in order to obtain sound casting, the
porosity must be within the feeder volume and the total
porosity must be minimum. Therefore, in this design,
if the CLF is less than 40% or the feeder volume is
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larger, the porosity will be completely shifted out of the
casting part. Furthermore, the CLF value a�ects not
only macro surface porosity but also interdendritic mi-
croporosity. Macro porosity defects or surface sink are
detected by visual inspection, while micro-shrinkage
defects are detected by machining or RT. Microporosity
defects are particularly observed during solidi�cation
of alloys with a wide solidi�cation range, such as ZA-
27. With an equation developed by Niyama et al.,
micro-shrinkage errors can be predicted. The Niyama
criterion is expressed by the formula G=

p
R. G and R

in this formula indicate the temperature gradient and
the cooling rate, respectively. The Niyama Criterion
can be calculated as a function of the alloy composition
and below a certain threshold indicates that micro
porosity may occur in that area [43]. Micro porosity
is predominantly important for machine parts that
require high strength and equipment subjected to
high pressure. This is the reason why possible micro
porosity formation criteria and their location in the ZA-
27 alloy were investigated. In this cast, the distribution
of micro porosity in the ZA-27 alloy poured into
molds at 3 di�erent mold preheating temperatures was
examined, similar to the simulations described above.
The simulation results given in Figure 10 were achieved
based on the Niyama criterion and were applied to
determine possible microporosity locations.

In the ZA-27 alloy poured into graphite molds pre-
heated to 150�C, 250�C, and 350�C, it was found that
the micro porosity shifted towards the feeder region
as the mold preheat temperature increased, whereas it
was mostly detected in the central part of the casting
part at the preheated mold temperature of 150�C. It
can be stated that with the increase in the pre-heating
temperature of the mold, a casting with less risk com-
pared to the Niyama criterion was realized. As a matter
of fact, volumetric porosity defects accumulating in a
certain region can decrease the strength values and
cause sudden damage. The Niyama criteria observed

Figure 11. Radiographic test of ZA-27 castings poured
at di�erent mold preheating temperatures.

according to the simulation results were detected by
Static Radiographic testing. According to the results of
the radiographic examination, it was understood that
no cracks or micro porosities were clearly seen in the
castings made to the graphite mold heated to di�erent
temperatures. This situation is seen in the radiographic
photographs in Figure 11. The applied voltage for
radiography was increased from 165 kV to 265 kV; no
micro porosity was found even in this range. As a result
of the experimental studies and simulation studies, it
is understood that the mold preheating temperature
has greater e�ect on the surface shrinkage and feeder
hotspot rather than the microporosity, cooling rate,
and Niyama. This is clearly evident from the surface
sink and feeder shrinkage occurring in the feeder parts

Figure 10. Niyama criterion of ZA-27 castings poured at di�erent mold preheating temperatures.
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of the experimentally poured samples, both in the
lateral and vertical directions. It is understood that the
shrinkage occurring in the feeder is higher at low mold
temperatures (150�C{250�C) and decreases at higher
mold temperatures (300�C{350�C). In addition, a dif-
ferent feeding behavior was found when a preheating
gradient was used in the mold. The lower parts of the
mold were heated to 150�C and the upper feeder part
to 350�C. As a result of this experiment, a result similar
to the feeding behavior of the mold preheated to 300�C
was obtained.

Using the experimental data obtained from pre-
heating, ANN algorithms were employed to predict
the feeding behavior and %shrinkage of the ZA-27
alloy. The %shrinkage, which is calculated by ANN
prediction method, is a very important parameter
for foundry engineering and casting design. When
the metal poured into the mold, the metal heat is
lost through radiation, convection, and conduction.
Following the �lling of the liquid metal with the mold,
heat transfer from the liquid metal to the mold surfaces
occurs, followed by nucleation, grain growth, and phase
transformations with heat drop. The data obtained
from the experimental studies were compared with the
simulations using Novacast and Magmasoft simulation
software. After this study, simulation results were mod-
i�ed to provide high similarity with the experimental
data. After this process, the second derivatives of the
cooling curves obtained in the experimental study were
calculated and, thus, the cooling rate and transfor-
mation temperatures were determined. As a result
of experimental studies, cooling rate, cooling curve,
phase transformations, liquid phase, and shrinkage
data % were determined. The data obtained during the
solidi�cation is very important for understanding the
metallurgical and mechanical properties of the cast ZA-
27 alloy. The cooling rate is related to the nucleation
of the casting material and subsequent morphology of
the grain structure and directly a�ects the mechanical
properties. At high cooling rates, a �ne-grained struc-
ture is formed, thus increasing mechanical strengths
such as tensile and yield strengths. After cooling the
ZA-27 zinc alloy from the melt to room temperature,
the subsequent phase transformations (�+L), �, (�+
�), and (�+�) are formed. By alloying a small amount
of Cu to the ZA-27 alloy, an intermetallic compound
CuZn4 forms through a triple eutectic reaction (L !
�+�+") at 377�C. At temperatures below 268�C, ("+
�! T 0+�), transformation takes place and the ternary
phase known as Al4Cu3Zn is formed. These phases
formed during cooling have di�erent lattice structures
and di�erent densities and they a�ect porosity and
%shrinkage. Peter et al. discussed and examined
all qualitative and quantitative investigations of Zn-Al
eutectoid alloy (22% Al) structures in equilibrium and
non-equilibrium states and in this composition. They

revealed that dendritic separation determined eutec-
tic transformation. They found that the conditions
causing phase separation during eutectic and eutectoid
transformation would determine the structural modi�-
cations of the alloy when the Al segregation occurred at
the dendrite level. In addition, using thermal analysis,
they found that the phase transformation temperatures
and microstructure could undergo changes due to
di�erent cooling rates [40]. The cooling rate of the
molten zinc is determined by the balance of thermal
energy released from melt to mold wall [44].

In the next experiment and learning study, data
processing was performed through ANN and Mean
Square Error (MSE) and, then, EPOCH diagrams
were produced. Five data sets were used as inputs
including initial mold temperature, solidi�cation time,
temperature-time gradient, cooling rate, and liquid
phase. MSE gives the user the di�erence between
observation and simulation. The lower the MSE
value, the better the approach between observation
and experiment. The stabilization of MSE is the ideal
result; and if it is unstable and scattering, it means
that the ANN has di�culty �nding the most suitable
solution and that the con�guration is not ideal.

The training results using sigmoid and tangent
activation functions are given in Figures 12 and 13.

Figure 12. The MSE (Mean Square Error) and epoch
diagram using Sigmoidaxon function.

Figure 13. The MSE (Mean Square Error) and epoch
diagram using Tanhaxon function.
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Following all of the conducted simulation tests,
the shrinkage (output data) values were obtained
through both sigmoaxon and tanhaxon training func-
tions. The simulation results of sigmoid and tangent
functions were compared with real values and each
other. The results of this investigation using tangent
and sigmoid activation functions illustrate that the feed
forward MLP neural network consists of four layers:
input, hidden 1, hidden 2, and output layers composed
of 14 nodes in the 1st hidden and 7 nodes in the
2nd hidden, thus producing the best results. The
output data for sigmoid and tangent functions were
compared with the real (experimental) data, with the
results given in Figure 14. The original parameters
given in Figure 14 point to the shrinkage percentage
of the ZA-27 alloy obtained after experimental casting
in the laboratory. The dashed (red) and dashed-
dotted (gray) lines, similar to the original shrinkage
curve, show the modeling curves of the tanhaxon and
sigmoidaxon functions, respectively. The long (black)
dashed line is the temperature curve on the Y -axis
given on the left. The data obtained in this curve
were collected from thermocouples placed in the mold.
This curve is typically known as the solidi�cation or
cooling curve. It is an extremely useful method for
detecting both critical liquid phase ratio and phase
transformations. The time expression given on the X
axis refers to the time elapsed after casting into the
mold. In the graphic given in Figure 14, the initial
mold temperature is set at 200�C degrees. Cooling

Figure 14. The %shrinkage comparison of sigmoidaxon,
tanhaxon function, and experimental data.

rate data are calculated by taking the second deriva-
tive of the cooling curves obtained as a function of
time. Between the outputs and targets, the correlation
coe�cient, R2, makes an evaluation of how well the
variation in the output is explained by the targets and
outputs. In the estimation of shrinkage percentage, the
determination coe�cient (R2) was measured at R2 =
0:9985827797, which indicates a good match between
the experimental and predicted data. Mean Absolute
Deviation (MAD) is used for assessing the e�ciency in
process analysis. In this study, the MAD value was
found to be 3.594500918.

Upon the comparison of the experimental studies
and simulation results in Figure 14, it is seen that
the curves produced by both sigmoidaxon function and
tanhaxon function are very close to the experimental
data. After the reduction of the mold temperature
to 150�C, there was a di�erence between sigmoidaxon
function and tanhaxon function. This may be due to
the derivatives of the tanhaxon function. However, as
a result of the procedure performed with sigmoidaxon
function, the experimental data were obtained perfectly
and the porosity rates were estimated. The %shrinkage
ratio of ZA-27 alloy, with a wide solidi�cation range,
was measured at 7.65% which was formed due to phase
transformation and interdendritic spaces.

4. Conclusions

This study poured ZA-27 alloy into a graphite mold
preheated to di�erent temperatures, investigated met-
allurgical properties, and applied an Arti�cial Neural
Network (ANN) algorithm to predict the %shrinkage
in ZA-27 casting alloy. The results obtained are listed
below. The highest rate of surface sink and shrinkage
was observed on the upper and lateral surfaces of
the feeder at the mold preheating temperature of
150�C. The lowest amount of shrinkage occurred in the
graphite mold preheated to 350�C. The shrinkage in the
mold heated to 150�C is in the form of a pointed funnel
elongated in the direction of gravity. The shrinkage of
the cast, which was heated to 300�C, moved to the top
surface and became a blunt cone in the feeder.

It was determined that the most e�cient feeding
was at 350�C preheating and according to the Niyama
criteria, the lowest porosity occurred at high mold
temperatures. In molds preheated to 150�C and 250�C,
it was measured that during solidi�cation, air gap
was formed between the feeder and the graphite mold
and the heat transfer decreased to 20 W/(m2K). The
optimum heat transfer coe�cient (h) between ZA-27
alloy and graphite mold was found at 2000 W/(m2K).
The most e�ective feeder e�ciency was detected in the
mold preheated to 350�C and no microporosity was
detected according to the radiography results.

ANN architecture was designed as in the following
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arrangement (5-14-7-1): 5 inputs, 1 output, 14 hidden
layers (1 neuron), and 7 hidden layers (2 neurons).
In addition, the network model operated by Genetic
Algorithms (GA) was used in the training data. Two
di�erent functions called sigmoid (sigmoaxon) and
tangent (tanhaxon) were used for training the model.
Momentum Learning Rule and Online Weight Update
were employed for each function. Optimum ANNs were
designed, trained, and tested to predict shrinkage rate
at various initial mold temperatures and in physical
conditions. Good results were obtained in both func-
tions. Thanks to the sigmoid (sigmoaxon) function
training, the most systematic modeling ANN set was
revealed with 99% (Vol. 7.65% shrinkage) prediction.

An ANN model along with sigmoidaxon and
tanhaxon function with one input, two hidden and one
output layers was applied to the prediction of %shrink-
age. The calculations using the obtained models are
in good agreement with experimental data. The ANN
model is a very useful tool to identify the shrinkage
parameters which are signi�cant for the metal cast
materials and they can be used as practical tools in
production control in metal casting foundries.
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Nomenclature

ZA Zinc-Aluminum
ANN Arti�cial Neural Network
CAS Computer-Aided Simulation
RT Radiographic inspection
SiC Silicon Carbide
HTC Heat Transfer Coe�cient
GA Genetic Algorithm
PSO Particle Swarm Optimization
ReLU Recti�ed Linear activation function
PReLU Parametric Recti�ed Linear Unit
EDM Electrical Discharge Machining
BPNN Back Propagation Neural Network
FFNN Feed-Forward Neural Network
CLF Critical Liquid Fraction
BPA Back Propagation Algorithms
MSE Mean Square Error
MAD Mean Absolute Deviation
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