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Abstract. Modeling nonlinear data is a common practice in data science and Machine
Learning (ML). It is aberrant for the outcome of a natural process to vary linearly with
the values of input variable(s). A robust and easy methodology is needed for accurately
and quickly �tting a sampled dataset with a set of covariates, assuming that the sampled
data can be a complicated nonlinear function. A novel approach to the estimation of
�nite population parameter � , which is a linear combination of the population values,
is considered in this article under superpopulation setting with known Basis Functions
Regression (BFR) models. The problems of subsets selection with a single predictor
using an automatic matrix approach and ill-conditioned regression models are discussed.
Prediction error variance of the proposed estimator is estimated based on widely used
feature selection criteria in ML. Finally, the Expected Squared Prediction Error (ESPE) of
the proposed estimator and the expectation of estimated error variance under bootstrapping
as well as simulation study with di�erent regularizers are obtained to observe the long-run
behavior of the proposed estimator.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

In survey sampling, researchers mostly prefer random
sampling for a valid statistical inference due to its
attractive long run properties such as unbiasedness
and e�ciency in the design-based sense. However,
they ignore the importance of underlying model rela-
tionship between the survey variable and one or more
covariate(s) in the estimation stage. Without exposing
an appropriate model relationship between the survey
variable and the covariates, researchers in the design-
based paradigm have been constructing estimators
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for estimating unknown population quantities such as
population total, mean, variance, etc. relying only on
the mechanism of randomization incurred by sampling.
They have been utilizing sample estimates and known
population parameters of the auxiliary variable(s) in
the estimation stage for e�ciency improvement. Thou-
sands of estimators used for estimating population
parameters have been developed in terms of e�ciency
improvement and bias reduction using the design-based
approach; for instance, some of the related works can
be found in [1{7]. On the contrary, advocates of the
model-based paradigm emphasize that randomization
is a property of error term used in a model; hence, it
is neither necessary nor su�cient for a solid statistical
inference [8]. In a model-based framework, initially,
in [9], a regression model of the response on the
covariates was used to predict the non-sampled values
and their total, which is assumed to be an unknown
and random quantity. Many varieties of model-based
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estimators have been developed for e�ciency improve-
ment, bias reduction, and robustness to model failure
in the last two decades of the 20th century. In [10,11],
researchers worked on estimating a smooth function
to be used for predicting the non-sampled values in
estimating the total �nite population. The asymptotic
bias of the regression estimator of population total does
not account for the division of the sampling distribution
into sampled and non-sampled parts. In [12], a class of
estimators was investigated based on local polynomial
regression that were weighted linear combinations of
the study variables, where the weights were calibrated
to control totals that are known. In [13], a model-
based approach along with the Local Linear Regres-
sion (LLR) was employed to estimate the unknown
parameters of the study variable. They particularly
derived the properties of the proposed estimator and
compared it with NadarayaWatson regression estima-
tor [14,15]. They found that the two estimators were
asymptotically equally e�cient. In [16], it was found
that the calibration estimator based on the columnar
model slightly outperformed the Best Linear Unbiased
Estimator (BLUE) at a higher band width. In general,
the estimator is robust to bandwidth changes and
provides exact unbiasedness as well as minimal variance
for a speci�c weighted balanced sample. Calibration-
based estimators provide insight into the balance sam-
pling framework, which suggests selecting the samples
with the condition of unbiasedness in the presence of
reliable auxiliary data. They noticed that the total
estimators of population total from a nonparametric
regression model provided approximate unbiasedness
without imposing restriction on balancing and results
close to minimal variance. However, in [17], a more
appealing strategy than the kernel regression, e.g.,
the variable bandwidth LLR approach, was uncovered.
In [18], a model-based estimator that worked with
penalized spline regression was proposed and the esti-
mator was extended to two-stage sampling [19]. In [12],
the Classical Local Polynomial Regression (CLPR)
estimator was applied for the regression function to
obtain the model-assisted estimator of the total in
�nite populations. In [20], a method for balancing
which equalized the multivariate densities and reduced
bias without searching for speci�cations was developed.
The regression function with mixed variable was esti-
mated using a modi�ed form of local constant estima-
tor [21]. The properties of a weighted nonparametric
regression estimator were derived using probabilities
as weights for complex surveys under combined in-
ference [22]. Several partial solutions for balanced
sampling are available in [8,23{25]. In [16], a general
method, called the cube method, was proposed which
is appropriate for a set of quantitative or qualitative
balancing variables and allows unequal probabilities of
inclusion. In [26], authors developed a cube method

for selecting approximately balanced samples based on
equal or unequal inclusion probabilities with a number
of auxiliary variables. A balanced sampling strategy
was formed in multi-way strati�cation settings for small
area estimation and used to obtain the planned sample
size for domains belonging to di�erent partitions of the
population (small areas) [27]. The strategy reduces
the sampling errors of domain estimates and provides
threshold values. In [28], the nonparametric estimation
methods were considered for data analysis in complex
surveys. Authors in [29] employed the LLR technique
to assess the properties of the derived estimator and
compared its performance with the existing estimators.
The LLR technique can be also used for evaluating
entrepreneurial opportunities. Therefore, this appli-
cation and the following sentence should be added
here: Note that the LLR technique is employed for
evaluating entrepreneurial opportunities, see [30] for
more information about this topic.

The researches documented in the literature
consist of a wide variety of model-based estimators
constructed under di�erent forms of the relationship
between the outcome and the predictors, see [31{
38]. Although a wide variety of restricted sampling
methods were presented in [8], some of them were
based on the Linear Regression Model (LRM), some
on polynomial models, and some on proportional and
strati�ed population models. Further, we need a gen-
eral framework for predicting responses from nonlinear
(in variable) functions of auxiliary data. The nonlinear
function of the auxiliary variable may be logarithm,
power, or exponential form. The problem of concern
is the prediction of output variable for non-sampled
set based on the relationship between the inputs and
outputs in the sampled set and the known values of
the input variable(s) in the non-sampled set. There is
a lack of data on the non-linear regression model under
general prediction theorem. The existence of natural
processes whose outcome varies linearly with the values
of predictors is aberrant. To �ll this gap, this study
establishes a general framework using Basis Functions
Regression (BFR) model to estimate the values of
�nite population parameters. A novel approach to the
estimation of �nite population parameter � , a linear
combination of the population values, is suggested
here in the superpopulation setting with known BFR
models. The problems of subsets selection with a
single predictor under an automatic matrix approach
and ill-conditioned regression models are discussed.
Prediction error variance of the proposed estimator is
estimated based on the widely used feature selection
criteria in Machine Learning (ML). Section 2 delineates
a model-based estimation developed in the literature
with its usual notations. Section 3 describes the
proposed basis function approach along with some
special cases. Section 4 estimates � under regularized
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BFR. Section 5 covers variance estimation and com-
parison of competing variance estimators. Sections 6
and 7 cover model selection and simulation studies,
respectively. Section 8 concludes the study with future
recommendations.

2. Model based estimation

Consider a �nite population of size N indexed as
U = f1; 2; 3; � � � ; Ng with responses y corresponding
to a random variable Y . In the matrix notation,
y = (yi; i 2 U) is the realized stochastic vector of Y =
(Y i; i 2 U). Suppose that a sample s = f1; 2; 3; � � � ; ng
of size n is drawn from the �nite population U using
some sampling design SD and �s = (1; 2; 3; � � � ; N � n)
is the set of indices attached to the values of units
that are not indexed in s. For a given sample s, we
can rearrange the population vector as y = (yTs ;yT�s )T ,
where ys and y�s are the vectors of n sampled and N�n
non-sampled values of the study variable, respectively.
The underlying superpopulation model is expressed as
follows:
Y = X� + �; (1)

where X is the known and non-stochastic data matrix
containing p regressors including intercept, � is the
corresponding vector of coe�cients and � is the vector
of random error terms assumed to be distributed
normally with conditional mean vector 0 and variance-
covariance matrix �. Further, the data matrix X and
covariance matrix � can be partitioned as follows:

X =
�
Xs
X�s

�
and ��ss =

�
�ss �s�s
��ss ��s�s

�
:

The quantity of interest to be estimated is a linear com-
bination of the population values �(y) = 
Ty, which
can be a realization of the random variable 
TY , where

 = (
i; i 2 U) is the vector of weights that can be
partitioned for sampled and non-sampled values as 
 =
(
Ts ;
T�s )T de�ned a linear estimator (known as Best
Linear Unbiased Predictor (BLUP)) for �(y) as �̂(y) =
gsY s, where gs = (gi; i 2 s) is a vector of constants to
be optimized. Under model Eq. (1), ([39]) proposed a
general prediction estimator for �(y) as follows:

�̂(y)=
Ts Y s+
T�s
h
X�s�̂+��ss��1

ss

�
Y s�Xs�̂

�i
; (2)

where �̂= (X�1
s ��1

ss Xs)�1XT
s ��1

ss Y s is the Weighted
Least Square (WLS) estimator of the vector �. The
variance of �̂(y) is given by:

VM
�
�̂(y)� �(y)

�
= 
T�s

�
�s�s ���ss��1

ss �s�s
�

�s

+ 
T�s
�
X�s ���ss��1

ss Xs
�

�
XT
s ��1

ss Xs

��1�
X�s���ss��1

ss Xs
�T 
�s: (3)

When the sampled and non-sampled units are uncor-
related, i.e., ��ss = 0, the BLUP for �(y) is reduced to:

�̂(y) = 
Ts Y s + 
T�sX�s�̂; (4)

with prediction error variance:

VM (�̂(y)� �(y))

= 
T�s

�
�s�s +X�s

�
XT
s ��1

ss Xs

��1
XT

�s

�

�s: (5)

The assumption of zero correlation does not hold in
multistage surveys where the intra-cluster correlation
among units within clusters exists. Assuming
independent and identically distributed (iid) error
term, i.e., �ss = �2In and �s�s = �2IN�n, we can
write the prediction error variance as follows:

VM (�̂(y)� �(y))

= �2
�

T�s 
�s + 
T�sX�s

�
XT
sXs

��1
XT

�s 
�s

�
: (6)

The general prediction estimator was constructed using
a general LRM of Y in a matrix of covariates X. It
is noteworthy that for generalizing the result from the
sample to population, the sampler should make at least
one model explicit from the underlying population.
That would be possible when the sampler knows the
functional form of the underlying population model.
Thus, if one is concerned with �nite population pa-
rameter estimation, it is inevitable to account for the
chance of deviation from the model, which is di�cult
to detect from the data obtained from the sample. In
such situations, it is necessary to robustify the sampling
mechanism and/or estimator with respect to model
failure. One way to robustify is to measure such e�ects
as bias and variance and that how these measures
change when the working model deviates from the
true model. Royall and Herson [40] emphasized the
balancing of a sample to protect the inference against
model misspeci�cation. Valliant et al. [8] conducted
an extensive study on balance sampling for reducing
the e�ect of bias introduced due to model failure.
Apart from balancing, BFR may provide a general
framework for estimation of �nite population param-
eters after predicting non-sampled data through BFR
models [41].

3. Model-based estimation using basis
functions

Starting with a single input variable X, the corre-
sponding vector basis function is de�ned as �(xi) =
(�0(xi);�1(xi); � � ��M (xi)) which are attached to the
ith population unit, where M is the number of basis
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functions in the model. The matrix consisting of the
basis function is known as a feature matrix in ML
terminology and is presented as follows:

�=

26664
�0(x1) �1(x1) �2(x1) � � � �M�1(x1)
�0(x2) �1(x2) �2(x2) � � � �M�1(x2)

...
...

...
...

�0(xN ) �1(xN ) �2(xN ) � � � �M�1(xN )

37775 :
The population BFR model is de�ned as follows:

Y = �� + �; (7)

where � is the vector of random errors assumed to be
distributed normally with mean vector 0 and variance-
covariance matrix �. Further, f(x;�) = �� is the
population regression function. The basis function
�j(X) is usually found in nonlinear functions in the
input variable x, allowing the function EM (Y j�; �) =
�� to be nonlinear in x. However, the conditional
mean is still linear in parameters �. For prediction
of the non-sampled values of the population parameter
�(y), the feature matrix � can be partitioned as
follows:

� =
�
�s
��s

�
;

where �s and ��s are the sub-matrices of features with
order n�M and (N � n)�M , respectively.

Theorem 1. The quantity of interest �(y) can be
estimated using the general linear estimator proposed
by Valliant et al. [8] with feature matrix � as:

�̂(y)=
Ts Y s+
T�s
h
��s�̂ + ��ss��1

ss
�
ys��s ^eta

�i
; (8)

where �̂ = (�T
s ��1

ss �s)�1�T
s ��1

ss ys is the WLS esti-
mator of �. The variance of e(�̂) is given by:

V (e (�̂)) = 
T�s
�
�s�s ���ss��1

ss �s�s
�

�s

+ 
T�s
�
��s ���ss��1

ss �s
� �

�T
s ��1

ss �s

��1

�
��s ���ss��1

ss �s
�T 
�s; (9)

where e(�̂) = �̂(y)� �(y) is the prediction error.

Proof. Derivation of Eqs. (8) and (9) can be found
after replacing the feature matrix � by the data matrix
X in general prediction theorem given in [8, Chapter
2]. For simplicity, we assume that noninformative
sampling (i.e., the sampled and non-sampled outcomes
have the same distribution) conditional on values of the
auxiliary variables results in ��ss = 0 and the BLUP
for �(y) is reduced to:

�̂(y) = 
Ts Y s + 
T�s ��s�̂; (10)

with prediction variance:

V (e (�̂))=
T�s

�
�s�s + ��s

�
�T
s ��1

ss �s

��1
�T

�s

�

�s:(11)

Assuming iid noise in the data, i.e., �ss = �2In and
��s�s = �2IN�n, the resulting expression for variance of
prediction error can be written as follows:

V (e (�̂))=�2
�

T�s 
�s+
T�s ��s

�
�T
s �s

��1
�T

�s
�s

�
: (12)

For population total and mean, we set 
i = 1 and

i = 1

N for all i 2 U . We discuss some special cases
of the proposed basis function model in the following
subsections.

3.1. Special cases
This subsection discusses some members of the BFR
model and obtains estimators of total output using the
speci�ed models. Model Mean Squared Error (MSE)
and bias are studied for the selected cases.

3.1.1. Expansion estimator
Consider a single constant BFR for estimating the �nite
population total as follows:

yi = �0 + �i for i = 1; 2; � � � ; N: (13)

The model given in Eq. (13) is known as Homogeneous
Population Model (HPM) and obtained by taking � as
N dimensional vector of 1's. The expansion estimator
for ty =

P
i2U yi (population total) under HPM is

obtained as:

t̂Ey =
X
i2s

yi +
X
i2�s

�̂0; (14)

where �̂0 =
P
i2s yi
n is the BLUP for �0 obtained based

on the Ordinary Least Square (OLS) assumptions. The
expansion estimator is unbiased when the underlying
model is correct. The prediction error variance of the
expansion estimator is given by:

VM
�
t̂ys � ty� = N2

�
1
n
� 1
N

�
�2; (15)

which is equivalent to the designed-based variance of
the total estimator under Simple Random Sampling
Without Replacement (SRSWOR) [see, 1].

3.1.2. Regression estimator
A single variable linear BFR model with intercept is
given by:

yi=�0 +
M�1X
j=1

�j�j(xi) for i=1; 2; � � � ; N: (16)

The total estimator in the linear BFR model is obtained
as follows:

t̂y(reg) =
X
i2s

yi +
X
i2�s

8<:�̂0 +
M�1X
j=1

�̂j�j(xi)

9=; ;

where �̂0 = �y � PM�1
j=1 �̂j ��js, �y = 1

n
P
i2s yi, and
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��js = 1
n
P
i2s �j(xi). The total estimator using the

BFR model can be simpli�ed to:

t̂y(reg) = N

24�y +
M�1X
j=1

�̂j
���jU � ��js

	35 ; (17)

where ��jU = 1
N
P
i2U �j(xi) is the population mean

corresponding to the jth basis function for the whole
population. It is easy to prove that t̂y(reg) is unbiased
when the working model is a true representation of
the underlying population model. On the contrary, if
we use an incorrect model, the estimator may su�er
misspeci�cation bias. In the model without any basis
function, i.e., M = 1, the resulting estimator of
population total is ty = N �ys with prediction bias
BM (ty) = N

PM�1
j=1 �j(��jU � ��js), which is of order

O(n�1). When the sample size increases, it goes to
zero. If the chosen values of x's provide larger mean
values of the basis functions, then we get ��jU < ��js
and the bias BM (t̂y(reg)) becomes negative, and vice
versa. The bias is minimized by selecting a sample such
that the di�erence on the right side of bias expression is
minimum. In compliance with [8], we call such a sample
a balanced sample. Exact balancing is achieved by
selecting a sample for which ��jU = ��js. The prediction
error variance for the estimator given in Eq. (17) is
given as follows:

VM
�
t̂y(reg) � ty� =N2

24M�1X
j=1

���jU � ��js
�2 VM ��̂j�

+
�

1
n
� 1
N

�
�2

35 : (18)

Considering the case of a single basis function with
intercept, i.e., M = 2, we have the following variance
expression:

VM
�
t̂y(reg) � ty� =N2

264 ���1U � ��1s
�2P

i2s
�
�1(xi)� ��1s

�2
+
�

1
n
� 1
N

�375�2: (19)

This variance decreases when the mean of the basis
function for the sampled and non-sampled units is in
agreement and there is a high variation in the sampled
values of the basis functions.

3.1.3. Ratio estimator
When the variance of the study variable depends on
some function  (x) of input variable(s), the least
square estimator provides higher variance due to the

problem of heteroscedasticity. In such situations, WLS
method is preferred for estimating superpopulation
parameters when the variance structure is known. We
consider the following (M�1) degree polynomial model
with the basis function containing a single regressor
with no intercept as follows:

y = f(x;�) +  (x)�; (20)

where f(x;�) =
PM�1
j=1 �j�j(x). The Gamma Pop-

ulation Model (GPM) discussed by Chambers and
Clark [42] is obtained by setting  (x) = x


�
and the

well-known ratio estimator is obtained under GPM
with 
� = 1

2 . For 
� = 0, we get a linear re-
gression estimator with constant variance. To obtain
homoscedastic error term, the WLS method is adopted
to estimate the parameters involved in model Eq. (20):

y� =
M�1X
j=1

�j��j (x) + �; (21)

where y� = y
 (x) and ��j (x) = �j(x)

 (x) . For M = 2, we
have:
y� = �1��1(x) + �: (22)

The BLUE for �1 is obtained as �̂1 =
P
i2s ��1(xi)y�iP
i2s ��21 (xi)

with variance VM (�̂1) = �2
P
i2s �2

1(xi)

(Pi2s ��21 (xi))2 . The ratio

estimator under single basis function is given by:

t̂y(r) =
X
i2s

"
1 + �i

X
i2�s

��1(xi)

#
yi; (23)

where �i = ��1(xi)
 (xi)

P
i2s ��21 (xi)

. The prediction error of

t̂y(r):

t̂y(r) � ty =
X
i2s

��i yi �
X
i2�s

yi;

where ��i = �i
P
i2�s ��1(xi). The model bias and the

prediction error variance are given by:

BM
�
t̂y(r)

�
= �1

"X
i2s

��i�1(xi)�X
i2�s

�1(xi)

#
; (24)

and:

VM
�
t̂y(r)��(y)

�
=

"X
i2s

��2i  2(xi)+
X
i2s

 2(xi)

#
�2:
(25)

The model mean squared prediction error is given by:

MSEM
�
t̂y(r)

�
=

"X
i2s

��2i  2(xi) +
X
i2�s

 2(xi)

#
�2

+ �2
1

"X
i2s

��i�1(xi)�X
i2�s

�0(xi)

#2

:
(26)

The use of balance sampling with
P
i2s ��i�1(xi)
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�Pi2�s �1(xi) leads to unbiasedness, which is consis-
tent with the estimator given in [43].

3.2. Some special basis functions
Previously, we have discussed the prediction estimators
using a general BFR model for estimating the values
of �nite population parameters. The next problem
is to choose a reasonable function of the predictor or
set of predictors for predicting non-sampled population
values of the study variable for obtaining an estimate
of �(y). The real world is much complicated and we
cannot easily adopt a linear model to capture a wide
variety of so-called basis functions that we might need
in prediction. To capture the complex phenomenon
with nonlinear data, scientists have urged using a
variety of basis functions that make a more precise
prediction [44]. Some commonly used basis functions
are brie
y discussed in the following subsections.

3.2.1. Polynomial basis functions
Upon applying polynomial regression for predicting
non-sampled values, it is essential to determine the
degree of the polynomial before attending to the
prediction problem. The problem of determining the
degree of polynomial can be solve through visualization
of the display of sample data. It is much tougher in case
of three or more feature dimensions and it is a complete
waste of time if there are interaction feature terms that
a�ect the outcome. For a mutually interacting high-
dimensional dataset, one may reach a wrong conclusion
if we look at the output with one feature plot at a
time. There is no simple way to visualize two or more
variables at a time. In this way, we must adopt some
ML techniques to �t a high-dimensional dataset, which
is an open area for new developments. Consider a single
variable basis function f(x; �) =

PM�1
l=0 �lxl with the

corresponding feature matrix:

� =

26664
1 x1 x2

1 � � � xM�1
1

1 x2 x2
2 � � � xM�1

2
...

...
...

...
1 xN x2

N � � � xM�1
N

37775 :
The polynomial used in the feature matrix is of order
M � 1. Determination of the degree of polynomial
depends on the nature of relationship between the
study variable y and the auxiliary variable x. For
M = 1, we get the HPM and M = 2 LRM with
intercept; for M = 3, we get Quadratic Regression
Model (QRM). The polynomial BFRM provides global
basis functions that a�ect the prediction over the whole
range of inputs. The number of polynomials increases
exponentially with increase in the value of M . The
local basis functions are considered to be appropriate
in prediction problems.

3.2.2. Basis functions with two regressors
Further, polynomial curve �tting is applicable only for

single input variable x. It is not easy to generalize it
for several input variables. For three input variables
associated with the BFR model with M = 2, we use
separate indices for each variable as J = (j1; j2; j3)
such that (j1 + j2 + j3) � (M � 1) . The corresponding
BFRM is:
y =

X
j1;j2;j3

�j�j(x) + � = �0 + �100x1 + �010x2

+ �001x3 + �110x1x2 + �101x1x3 + �011x2x3

+ �200x2
1 + �020x2

2 + �002x2
3 + �; (27)

where � is random error term. For p covariates, the
number of quadratic terms is [1 + p + p(p � 1)]=(2 +
p) in the above example and p = 3; hence, the
number of terms is 10. For p input, a general case
is �(x) = fQp

k=1 x
mk
k :

Pp
k=1mk � pg. The BFRM is

appropriate for two or more variables when we know
that there is an interaction e�ect of the two or more
regressors on the output.

3.2.3. Radial Basis Functions (RBF)
RBF represent another type of real-valued basis func-
tions whose values depend only on the distance from
the origin, i.e., �(x) = �(jjxjj). Alternatively, it may
be based on the distance from another point called a
center so that �(x; c) = �(jjx � cjj). The concept of
radial basis was initially introduced by Broomhead and
Lowe [45], which had been inspired by the study in [46].
Lowe and Broomhead [47] discussed the relationship
between \learning" in adaptive-layered networks and
�tting of the data of high-dimensional surfaces. RBF is
used as a kernel in classi�cation of support vector [48].
Buhmann [49] provided theory and implementation of
RBF. Later, Biancolini [50] extended its application to
di�erent �elds of engineering and physics. RBFs are
typically preferred for estimating population parame-
ters when the auxiliary data consist of latitudes and
longitudes in spatial studies. In general, we choose a
family of basis functions in order to get a good �t to our
training data with a small basis set, which consequently
provides a moderate number of weights (coe�cients)
to be estimated. As is known, `linearity' in the
LRM indicates that the model is linear in coe�cients
rather than in features (or independent variables).
Features can be of any degree or have transcendental
functions like logarithmic, exponential and sinusoidal,
etc. As a result, a surprisingly large number of natural
phenomena can be modeled (through approximation)
using the linear model with these transformations.
Estimators for �(y) can be obtained using alternate
basis functions in Eq. (8).

4. Estimation under regularized regression

In regression analysis, over�tting shows that the de -
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pendent variable corresponds exactly (or very close)
to a particular dataset and is not able to �t additional
data points. Such a condition is termed ill-conditioning
in regression analysis. Initially, Tikhonov and Ars-
enin [51] worked on the mathematical aspect of the ill-
posed problems and discussed the matter in their book.
In addition to [51,52] suggested a ridge regression
method for solving the ill-conditioned linear regression
problem. Here, ill-conditioning refers to numerical
di�culty in obtaining the inverse of the matrix, which
is necessary for obtaining variance of estimators of the
superpopulation parameters. The method presented
in [52] is, in fact, a crude form of the ridge regression
known as zero order regularization [53]. When Neural
Network (NN) became popular in the 1980s, the weight
decay was invented to deal with prune network connec-
tions, which are considered unimportant. Weight decay
is soon recognized as an alternate of ridge regression
in NN, given that it involves adding penalties to
the cost function (sum-squared error). A variety of
regularization methods are available in the literature
and most of them were cited in [54]. In this section,
we con�ned our discussion to the simple regularization
method introduced by Press et al. [52], although
our prediction problem can be handled using more
advanced regularization methods, e.g., Least Absolute
Shrinkage and Selection Operator (LASSO) [55], elastic
net regression [56], and their extensions. Selection of a
certain regularizer depends on bias and variance trade-
o�. Regularization reduces variance and increases
bias simultaneously, leading to the MSE adjustment.
If EM (�̂ridge) = � for all �'s, then the �̂ridge(y)
estimator will be unbiased. However, an unbiased
estimator may still have larger MSE if the variance of
the estimators of superpopulation parameters is higher.
Such cases often occur when the regression function is
highly sensitive to the choice of sample selection and
noise of each training set. The sensitivity causes ill-
conditioned regression estimates, as indicated in [51].
To signi�cantly reduce high variation, [52] introduced
a small amount of bias so that the net e�ect results in
MSE reduction. Through regularization, one can reach
the following cost function (sum-squared error):

C = (ys ��s�)T (ys ��s�) + v�T�; (28)

where the positive constant v is called regularizer,
which creates bias in the estimate of � and reduces vari-
ance. By optimizing the cost function given in Eq. (28),
we reach the following ridge regression estimator for the
coe�cient vector � as follows:

�̂ridge = Q�1
s �T

s ys; (29)

where the matrix Qs = �T
s �T

s +vIn is symmetric, i.e.,
QT
s = Qs. An estimator of population parameter �(y)

using the ridge regression model is given by:

�̂ridge(y) = 
Ts ys + 
T�s ��s�̂ridge; (30)

which has model bias:

EM (e (�̂ridge)) = 
T�s ��s

h
EM

�
�̂ridge

�� �i ;
where e(�̂ridge) = �̂ridge(y) � �(y). After some simpli-
�cation (see, Eq. (54) in the Appendix), the bias is
reduced to:

BM (�̂ridge(y)) = �v
T�s ��sQ�1
s �: (31)

The bias given in Eq. (31) depends on the regularizer
v. It can be concluded that the bias tends to decline
as v ! 0 depending on entries in Q�1

s (also depending
on v). The variance expression is given by:

VM (e (�̂ridge))

= �2
h

T�s 
�s + 
T�s ��s

�
Q�1
s �Q�2

s
�
�T

�s 
�s

i
= VM (e (�̂))� �2
T�s ��sQ�2

s �T
�s 
�s: (32)

This shows that regularization reduces variance by an
amount of �2
T�s ��sQ�2

s �T
�s 
�s. This amount increases

by increasing the parameter v, which ultimately raises
the e�ciency with a signi�cant bias. The MSE of
�̂B(y)ridge is then obtained using bias and variance
relation and given by:

MSEM f�̂ridge(y)g=�2 �
T�s 
�s
�
+
T�s ��s

�
�2�Q�1

s �Q�2
s
�

+ v2Q�1
s ��

TQ�1
s

i
�T

�s 
�s: (33)

The amount 
T�s ��s[v2Q�1
s ��

TQ�1
s � �2Q�2

s ]�T
�s 
�s is

the net e�ect on MSE. The regularization parameter v
provides a trade-o� between over-�tting (which causes
higher variance) and avoiding penalty (which causes in-
crease in bias). Since the �rst derivative of the variance
expression is nonlinear in v, it is not straightforward
to obtain an explicit expression for v which minimizes
Eq. (33). Alternatively, one can adopt model selection
criteria to obtain the optimum choice of v. Since all
the criteria for model selection are nonlinear in v, we
need some nonlinear optimization problems here. We
can use any standard method for this purpose, such as
the Newton method. The derivation of the optimum
choice of v is left for future study.

5. Variance estimation and comparison

After obtaining the prediction error, including bias and
variance of the error, the next step is to search for
an estimate of the error variance for further statisti-
cal analysis, e.g., testing statistical hypothesis about
�(y) and constructing con�dence interval. Unlike the
variance estimation methods in design-based paradigm
such as Jackknife technique [57], in the model-based



Sh. Ahmed and J. Shabbir/Scientia Iranica, Transactions E: Industrial Engineering 30 (2023) 1224{1244 1231

approach, model selection criteria that indirectly pro-
vide an estimate of error variance �2 in the model-
based approach are utilized. It can be seen that the
variance of error term given in Eq. (12) depends on
error variance �2 and the auxiliary data from the whole
population. When the sub-matrix of the basis function
for the non-sampled part is known, we need an estimate
of �2 only for estimating the prediction error variance
of �(y). A sample estimate for the prediction error
variances given in Eqs. (12) and (31) can be expressed
as:

V̂ (e (�̂))= �̂2
�

T�s 
�s+
T�s ��s

�
�T
s �s

��1
�T

�s 
�s

�
; (34)

and:
V̂ (e (�̂ridge))= V̂ (e (�̂ML))��̂2
T�s ��sQ�2

s �T
�s 
�s: (35)

Estimate for �2 based on residuals is a routine practice
in survey sampling. The estimate taken from the
sampled observations or a part of observations (training
set) provides a good measure for average noise in
the study variable. We extend di�erent methods
for estimating the error variance in estimating �nite
population parameter �(y). The projection matrix, say
P , plays a key role in obtaining the estimate for �2

using the mentioned methods. The projection matrix
de�ned in Eq. (50) (see the Appendix) is symmetric
and idempotent (P 2 = P ) when no regularization is
applied. For obtaining estimates for �2, we use the
following model selection criteria:

1. Residual method,
2. Cross Validation (CV),
3. Generalized Cross Validation (GCV),
4. Final Prediction Error (FPE) or Akaike's Informa-

tion Criterion (AIC) 5-Bayesian Information Crite-
rion (BIC).

5.1. Residual method or unbiased estimate of
variance

Estimators for �̂(y) and �̂ridge(y) of prediction error
variance of the estimator �̂(y) are obtained using
residual method after inserting �̂2

res in Eqs. (34) and
(35), respectively, where:

�̂2
res =

1
n�M yTs P

2ys; (36)

where P = IM � �sQ�1
s �T

s . Another widely used
model selection criterion is the Unbiased Estimate of
Variance (UEV), which is similar to residual variance
and is obtained by replacing the total number of
parameters by the number of e�ective parameters in
the denominator. The UEV estimator of �2 is given
by:

�̂2
UEV =

1
n�M�yTs P

2ys; (37)

where M� = n � trace(P ) is the e�ective number

of parameters in the model. However, the residual
method is not considered as an appropriate measure
for predictive power of the model [58]. The predictive
power of the model here refers to how well the sampled
data will perform in predicting unknown values of
the output for the non-sampled part of the popula-
tion.

5.2. Estimation via CV
A new variant of CV involves randomly splitting the
data into a training set and a test set k at distinct
times. The bene�t of doing so is that one can indepen-
dently choose the size of each test set and number of
trials for averaging. Leave-One-Out CV (LOOCV) is a
special case of k-fold CV with its logical extreme, i.e.,
taking k = n as the total number of data points. This
means that the model is trained n times including all
the data except one point and predicting the outcome
for that single point. The average prediction error is
computed and applied to evaluate the model as an
estimated noise. The prediction error variance of the
estimator �̂(y) under LOO is obtained by replacing �̂2

by �̂2
LOO in Eqs. (34) and (35), where:

�̂2
LOO =

1
n
yTs P fdiag (P )g�2Pys: (38)

The estimated variance obtained through LOO CV
is a good estimate of model variance; however, at
�rst glance, it seems too expensive and tiresome to
compute. Luckily, locally weighted regression makes
it easy to make regular predictions. It is implied that
computing the LOO-XVE consumes no longer time
than the residual error, which is the reason why it is
preferred as the model selection criterion.

5.3. Estimation under GCV
The diagonal matrix diag (P ) makes LOO mathemati-
cally inappropriate. GCV, as its alternate, introduced
by Golub et al. [59], is more convenient and is obtained
by replacing the matrix diag(P ) by the average of the
diagonal elements multiplied by the identity matrix
of order n, i.e., trace (P =n)In. An estimator for the
prediction error variance of �̂(y) under GCV is obtained
by replacing �̂2 by �̂2

GCV in Eqs. (34) and (35), where
�̂2

GCV is de�ned by:

�̂2
GCV =

nyTs P
2ys

ftrace (P )g2 : (39)

GCV is among one of the model selection criteria that
includes an adjustment to the average of mean squared
prediction error over the training set. It is equiva-
lent to standard residual method given in Eq. (38),

nftrace (P )g2 = 1
n�M� , where M� = n� sum (diag (P )) is

the e�ective number of parameters in the model. GCV
can be expressed in terms of the e�ective number of
parameters M� instead of trace (P ) as follows:
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�̂2
GCV =

nyTs P
2ys

(n�M�)2 : (40)

5.4. Estimation under FPE
Mallow's Cp [60], named after Colin Lingwood Mal-
lows, is a statistic that assesses the �t of a regression
model which is estimated via OLS. This statistic is
used in the context of model selection when a number
of predictors are available for predicting the outcome,
aiming to �nd the best subset of available predictors.
In the case of the Gaussian LRM, Mallows's Cp is
equivalent to AIC, a most widely used model evaluation
criterion [61], and is used as an alternate of AIC. An
estimator for prediction error variance of �̂(y) using
FPE method is obtained by replacing �̂2 by �̂2

FPE
in Eq. (34), where �̂2

FPE is the alternative version of
Mallows's Cp [62] and is given by:

�̂2
FPE =

1
n
�
yTs P

2ys+2M��̂2
res
�

=
n+M�
n�M�

yTs P
2ys
n

; (41)

where M� is the e�ective number of parameters. �̂2
FPE

is subject to two limitations:

1. The approximation is valid only for a su�ciently
large sample size;

2. It cannot deal with a complex set of models as
in the variable selection (feature selection in ML)
problems [63].

5.5. Estimation under BIC
The BIC developed by Schwarz et al. [64] is a Bayesian
argument on the maximum data likelihood. It is
related to the AIC and later, Akaike developed his own
Bayesian formalism in inspiration from the motive of
Schwarz, now mostly referred to as \Akaike's Bayesian
Information Criterion" (ABIC) instead of \Bayesian
Information Criterion" (BIC) [65]. An estimator of
variance of prediction error for �̂(y) based on BIC is
found after inserting �̂2

BIC by �̂2 in Eqs. (34) and (35),
where �̂2

BIC is:

�̂2
BIC =

1
n
�
yTs P

2ys + ln(n)M��̂2
res
�

=
n+M�(ln(n)� 1)

n�M�
yTs P

2ys
n

; (42)

where ln(n) is the natural logarithm of n. Here, �̂2
BIC

measures the unexplained variation in the output vari-
able and the increased number of explanatory variables.

All the mentioned estimators of the prediction
error variance can be used for statistical analysis about
the �nite population parameter �(y). To compare the
above discussed rival estimators of prediction variance,
we write all the variance estimators in the form of
�2
abc = �abcyTs P

2ys=n and have the following natural
ordering as follows:

�UEV � �FPE � �GCV � �BIC: (43)

The factors �'s are approximated using Taylor's series
as:

�res =
n

n�M� = 1 +
M�
n

+
M�2
n

+
M�3
n

+ � � �

�FPE =
n+M�
n�M� =1+

2M�
n

+
2M�2
n2 +

2M�3
n3 +� � �

�GCV =
M�2

(n�M�)2 =1+
2M�
n

+
3M�2
n2 +

4M�3
n3 +� � �

�BIC =
n+ (ln(n)� 1)M�

n�M�

=1 + ln(n)
�
M�
n

+
M�2
n

+
M�3
n

+ � � �
�
;

where the subscript \res" denotes the error variance ob-
tained by the residual method. Hence, the estimators
of �̂2 obtained by di�erent model selection criteria can
be ranked according to the factor �. Hence, variance
estimators can be ranked as follows:

V̂ (e (�̂))UEV � V̂ (e (�̂))FPE � V̂ (e (�̂))GCV

� V̂ (e (�̂))BIC ; (44)

where the subscripts attached to the estimated vari-
ances show the model selection criteria used for esti-
mating �2.

6. Model selection

We previously discussed ridge regression (Section 4)
as a tool for controlling the trade-o� between the
bias and variance (Section 5) of the estimators of
superpopulation parameters such as �2. Alternatively,
one can compare models with di�erent subsets of basis
functions selected from a �xed set of candidate models,
known as \subset selection" [66]. It is di�cult to �nd
the best set among the 2M�1 alternative subsets (each
of size M) for the purpose of response prediction. To
search for an interesting small fraction of all subsets,
we need heuristics. Forward selection and backward
selection methods are two widely used heuristics for
model selection. Although backward selection is a
commonly method used for factor screening in multiple
regression analysis, it does not seem logical to start
with a set including higher order basis functions and,
then, come to an e�ective smaller subset in �nite
population parameter estimation. On the other end,
the forward selection method begins with a null subset
and goes by adding one basis function at a time. The
process of forward selection stops at the subset which
provides minimum sum of squared prediction error.
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Although forward selection is a nonlinear algorithm,
it still has the following plus points:

(i) The number of hidden units does not need to be
�xed in advance;

(ii) It has a tractable criterion for model selection;
(iii) It needs relatively low computational e�ort.

In forward selection, the model grows at each step
by one basis function. To investigate the e�ect of
increasing a new basis function, we introduce some
incremental operators (see, the Appendix). We see
the e�ect of adding a new basis function on the bias
and variance of the estimator �̂(y) in the following
subsections.

6.1. Model selection under OLS
Reduction in variance on using additional basis func-
tion can be computed as follows:

IE = VM (�̂)m � VM (�̂)m+1 = �2
T�s
h
��smA�1

sm�T
�sm

���s(m+1)A�1
s(m+1)�

T
�s(m+1)

i

�s:

The subscripts m and (m + 1) indicate that the
quantities are obtained with M and (M + 1) basis
functions, respectively. The subscripts s and �s are used
to denote the quantities corresponding to the sampled
and non-sampled parts, respectively. In the Appendix,
using Eq. (53), we get:

IE =VM (�̂)m � VM (�̂)m+1

=�2
T�s
h
��smA�1

sm�T
�sm

���s(m+1)A�1
s(m+1)�

T
�s(m+1)

i

�s; (45)

IE =
1
4�2
T�s

h
��s(m+1)�

T
s(m+1)�smA�1

sm�T
�sm

+ �T
�smA

�1
sm�T

sm�s(m+1)�
T
�s(m+1)

���smA�1
sm�T

sm�s(m+1)�
T
s(m+1)�smA�1

sm�T
�sm

���s(m+1)�
T
�s(m+1)

i

�s; (46)

where the vector ��s(m+1) shows the (M + 1)th column

of the basis function matrix �s(m+1). The positive
increase in e�ciency, i.e., IE > 0, indicates that
using an additional basis function reduces the variance
of prediction error. This can be converted into a
ratio by Eq. (47) as shown in Box I. The index IER
measures the relative increase in e�ciency of using an
additional predictor to our model. The IE can only
be seen when we know the variance of the response
in advance. In many real applications, we do not
have a known value of the variance of the study
variable in advance. Then, di�erent estimates obtained
in Section 5 are used. Since the estimates involve
the basis function matrix, the use of additional basis
function a�ects the estimated variances. One option is
to obtain an estimate of variance of e(�̂) through re-
estimation of the regression, which is a di�cult task
in model selection. Second, we can jointly compute
the estimated prediction variance of �̂(y) instead of
its population counterpart. The third option is to
use Eq. (47) and separately obtain the estimates of �2

through incremental operators given in [67]. Although
the third option provides a variance expression for the
model with (M + 1) predictors without recomputing
the regression, it does not make a comparison of the
two models, namely the model with M basis functions
and the one with (M + 1) basis functions.

6.2. Model selection under regularized
regression

When regularization is used for estimating superpop-
ulation parameter (�) and then, the �nite population
parameters are estimated with bias. We �rst see the
change in bias in using the additional basis function in
the model as follows:���BM (�̂ridge(y))m �BM (�̂ridge(y))m+1

��� = v
T�s�
1
4��smQ�1

sm�sm�s(m+1)�s(m+1)�smQ�1
sm�m

+ ��s(m+1)Q
�1
21 �m + ��smQ�1

12 �m+1

+��s(m+1)Q
�1
22 �m+1

i
; (48)

where �m+1 is the (M + 1)th component of the vector
�m+1, i.e., the e�ect of additional basis function on the
response. A smaller amount of increase in bias implies
that the additional variable does not a�ect the bias of

IER =

T�s
h
��s(m+1)�

T
s(m+1)�smA�1

sm�T
�sm + �T

�smA
�1
sm�T

sm�s(m+1)�
T
�s(m+1)

i

�s


T�s
h
��smA�1

sm�T
sm�s(m+1)�

T
s(m+1)�smA�1

sm�T
�sm + ��s(m+1)�

T
�s(m+1)

i

�s

: (47)

Box I
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the estimator for a particular value of the ridge param-
eter. When di�erent cases of regularizations are used
for each superpopulation parameter, the amount of
increase cannot be computed with this formula. Now,
the increase in the e�ciency of the ridge regression
estimator in using additional basis function is expressed
as follows:
IEridge =VM (e (�̂ridge))m � VM (e (�̂ridge))m+1

=IE � �2
T�s
h
��smQ�2

sm�T
�sm

���s(m+1)Q�2
s(m+1)�

T
�s(m+1)

i

�s; (49)

where:

�2
T�s
h
��smQ�2

sm�T
�sm ���s(m+1)Q�2

s(m+1)�
T
�s(m+1)

i

�s

= ��2��smQ�1
sm4� �T

�sm + ��sm4�4�T�T
�sm

+ ��s(m+1)Q
�2
21 �T

�sm + ��smQ�1
12 �

T
�s(m+1)

+��s(m+1)Q
�2
22 �

T
�s(m+1)

�
;

and:
4� = 4�1Q�1

sm�T
sm�s(m+1)�

T
s(m+1)�smQ�1

sm:

The sub-matricesQ�2
21 , Q�2

12 , andQ�2
22 are the elements

of the matrix Q�2
s(m+1) = Q�1

s(m+1)Q
�1
s(m+1) and are

de�ned in the Appendix. Computation of IEridge is
not straightforward, and some algebraic treatment on
matrices can still provide a compact form that can be
solved numerically. The positive value of the index
IEridge provides evidence of e�ciency improvement by
adding an additional basis function to the superpopu-
lation model.

7. Simulations

Two simulation studies, namely one simulated and one
bootstrapped, are conducted to evaluate the error vari-
ance of the proposed estimator of �(y) (
i = 1 for all
i 2 U) to �nd design expected values of the estimated
error variance of �̂(y). For this purpose, we provide a
simulation study using arti�cially generated population
and �tting basis functions (we limit our discussion to
polynomial basis function to avoid complexity). The
bootstrap study includes a real data set to perform
repeated sampling to obtain design-based properties of
the estimator and estimate the error variance of the
estimator (�̂(y)). Both Monte Carlo (MC) simulation
and bootstrapping are performed in the widely used
statistical software R (version 4.0.1). The simulation
steps are described below:

(i) To constitute a population exhibiting nonlinear
behavior, draw two independent vectors u� and

v� of length N = 1000, each with uniform (0,1).
The variables x and e are obtained as the quantile
points corresponding to the cumulative proba-
bilities u� and v� with normal N(10; 10) and
N(0; 10), respectively. We generate the vector
of the study variable y as y = sin(2�x) + e. Note
that for obtaining design-based properties, we
generate these variables only once and consider
them as a �xed �nite population (after observing
population characteristics such as mean and vari-
ance), while for model-based properties, we need
to generate the data repeatedly. We focus on
design-bias and design-expected prediction error
to see the behavior of the proposed estimator
�̂(y);

(ii) For �xed n, we split data df (y,x,x2,x3,� � � ,xM�1)
(where M is the number of basis functions and
df denotes data frame) into sampled and non-
sampled parts with sizes n and N � n randomly.
From sampled data, we estimate superpopulation
parameters (� and �2). The estimated values
of �2 are obtained using di�erent formulas dis-
cussed in Section 5;

(iii) Further, we evaluate the proposed estimator of
�(y) (with 
i = 1 for all i 2 U) and the estimated
variance of �̂(y) using di�erent formulas given in
Section 5;

(iv) Repeat Steps (ii) and (iii) 30,000 times to obtain
design-expected prediction error (i.e., bias) and
design-expected squared prediction error of the
proposed estimator of �(y) and expected values
of the estimated variance of �̂(y) for di�erent
choices of n, M , and v (for ridge regression).

For bootstrapping, we consider �rst N = 203 hospitals
from the hospital data given in [8, Appendix B, Page
424] as our population. The number of beds (x) at
each hospital is taken as the predictor for the number
of patients discharged (y). Repeated sampling, as early
mentioned for hypothetical population, is performed to
study the properties of total estimators and estimated
error variance. Expected Squared Prediction Error
(ESPE) is obtained as follows:

ESPE =
1

30; 000

X
sim

fe (�̂ridge)g2 ;
where the symbol

P
sim indicates that summation is

taken over all 30,000 simulated samples. The ESPE
is determined via regularization upon considering v =
0; 1; 5; 10 with v = 0, representing the case of no
regularization. Further, the design expectation of the
estimated variance of �̂ is obtained by the respective
formulae after averaging over all the selected sam-
ples. We use polynomial basis functions of di�erent
orders with intercept (the linear population model) and
without intercept (the proportional population model).
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Figure 1. Scatter plot for the sample selected from
hypothetical population plotting the observed values,
�tted values (for simple and penalized regression with
polynomial of 5th order, i.e., M = 6) and the residuals
(for both cases) versus the values of predictor (x).

Figure 2. Scatter plot for the sample selected from
hypothetical population plotting the observed values,
�tted values (for simple and penalized regression with
M = 2), and the residuals (for both cases) versus the
values of predictor (x).

To observe the behavior of �tted models (under both
simple and ridge regression), scatter plots with �tted
lines and residuals are constructed for both data sets
used in this study. The residual values are plotted to
evaluate the pattern in the study variable. For both
data sets, no signi�cant pattern of heteroscedasticity
is observed. Scatter plots between x with observed
values of y and �tted values y are shown in Figures 1{
4. The scatter plots provide a quick picture about
the relationships between the outcome and predictor,
which is necessary in choosing an appropriate model.

Tables 1 and 2 provide the design-based behavior
of the prediction error of �̂(y) for the hypothetically
generated population for the models of certain orders
with and without intercept, respectively. For simulated
data, the results are obtained for HPM (M = 1),
linear population model (M = 2), the quadratic model
(M = 3), and the higher order polynomial model
(M = 6). The values of ESPE and expected estimated

Figure 3. Scatter plot for the sample selected from the
hospital data plotting the observed values, �tted values
(for simple and penalized regression with M = 4), and the
residuals (for both cases) versus the values of
predictor (x).

Figure 4. Scatter plot for the sample selected from the
hospital data plotting the observed values, �tted values
(for simple and penalized regression with M = 2), and the
residuals (for both cases) versus the values of
predictor (x).

variances in Tables 1 and 2 are presented after dividing
by 103. While Tables 3 and 4 provide the design-based
behavior of the prediction error of �̂(y) for the real
population (hospitals data) for the models of certain
orders with and without intercept. The values of ESPE
and expected estimated variances in Tables 3 and 4 are
reported after dividing by 105 for simplicity. For real
data, results are obtained for HPM (M = 1), LPM
(M = 2), quadratic model (M = 3), and higher order
polynomial (cubic) model (M = 4). The estimated
error variances of �̂(y) are obtained using Eq. (35)
based on di�erent estimators of �2. Note that all the
results given in Tables 1{4 are provided for a ridge
regression estimator with certain choices of v as the
variance estimator given in n Eq. (34) is a special case
of variance estimator in Eq. (35) with v = 0. The ESPE
for di�erent combinations of M , v, and n is enlisted in
the third column of Tables 1 and 2. For simulated data
in Table 1, the smallest ESPE is observed at M = 6
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Table 1. Simulated ESPE and expected estimated variances of the proposed estimator under linear BFR model.

Expected estimated variances

n v ESPE Residual UEV FPE GCV BIC

M = 1

100

0 353.488 231.447 233.785 236.123 236.146 242.213

1 347.545 227.343 229.616 231.890 231.912 237.812

5 325.365 212.085 214.125 216.164 216.184 221.477

10 300.810 195.310 197.102 198.894 198.910 203.562

200

0 53.696 103.360 103.879 104.399 104.401 106.112

1 53.327 102.539 103.052 103.565 103.567 105.256

5 51.899 99.376 99.863 100.350 100.353 101.957

10 50.215 95.673 96.131 96.589 96.591 98.099

M = 2

100

0 491.880 231.843 236.574 241.306 241.402 253.632

1 493.513 227.703 232.301 236.898 236.991 248.876

5 499.478 213.512 217.656 221.800 221.880 232.595

10 505.863 199.860 203.575 207.290 207.359 216.968

200

0 59.773 103.477 104.522 105.568 105.578 109.015

1 59.830 102.653 103.684 104.715 104.726 108.117

5 60.045 99.600 100.580 101.561 101.571 104.795

10 60.291 96.267 97.193 98.119 98.128 101.172

M = 3

100

0 408.216 232.991 240.197 247.403 247.626 266.176

1 408.907 228.750 235.772 242.793 243.009 261.086

5 411.410 214.308 220.708 227.108 227.299 243.781

10 414.043 200.553 206.368 212.183 212.352 227.332

200

0 50.033 103.639 105.217 106.795 106.820 112.001

1 50.009 102.806 104.366 105.926 105.950 111.071

5 49.917 99.728 101.220 102.712 102.735 107.634

10 49.809 96.375 97.794 99.213 99.234 103.894

M = 6

100

0 324.940 290.500 309.043 327.586 328.769 375.892

1 327.414 287.212 305.406 323.600 324.753 370.999

5 335.748 277.340 294.468 311.596 312.653 356.217

10 343.560 269.538 285.789 302.039 303.019 344.375

200

0 90.969 107.627 110.955 114.284 114.387 125.263

1 103.270 101.953 105.017 108.080 108.172 118.184

5 97.617 104.423 107.603 110.783 110.880 121.271

10 103.270 101.953 105.017 108.080 108.172 118.184
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Table 2. Simulated ESPE and expected estimated variances of the proposed estimator under proportional BFR model.

Expected estimated variances

n v ESPE Residual UEV FPE GCV BIC

M = 2

100

0 269.879 125.303 126.568 127.834 127.847 131.131

1 269.855 125.292 126.558 127.823 127.836 131.120

5 269.757 125.250 126.515 127.780 127.793 131.075

10 269.635 125.198 126.462 127.726 127.738 131.019

200

0 9.988 61.071 61.378 61.685 61.687 62.697

1 9.987 61.069 61.376 61.683 61.684 62.695

5 9.985 61.061 61.368 61.675 61.676 62.687

10 9.982 61.051 61.358 61.664 61.666 62.676

M = 4

100

0 268.060 127.606 130.210 132.814 132.868 139.599

1 268.021 127.597 130.201 132.805 132.858 139.588

5 267.866 127.562 130.164 132.766 132.819 139.544

10 267.673 127.519 130.118 132.718 132.771 139.489

200

0 8.180 61.481 62.102 62.723 62.729 64.772

1 8.179 61.479 62.100 62.721 62.728 64.770

5 8.177 61.473 62.093 62.714 62.720 64.762

10 8.175 61.464 62.085 62.705 62.711 64.752

M = 6

100

0 403.569 161.764 166.767 171.770 171.925 184.804

1 403.568 161.757 166.759 171.762 171.916 184.793

5 403.565 161.729 166.728 171.727 171.882 184.751

10 403.561 161.693 166.689 171.684 171.839 184.699

200

0 29.688 74.447 75.581 76.714 76.732 80.454

1 29.687 74.446 75.579 76.713 76.730 80.452

5 29.685 74.440 75.574 76.707 76.724 80.445

10 29.681 74.434 75.567 76.700 76.717 80.437

when the sample size is taken 100. It is the smallest at
M = 3 when sample size is set to 200. ESPE for the
simulated data also tends to decrease with increase in
v. For example, in the case of n = 200 and M = 1, the
ESPE for v = 0 is 53.696 while it is 50.215 for v = 10.
Similarly, for the simulated data in Table 2 (i.e., for
the models without intercept), the smallest ESPE is
observed at M = 6 when the sample size is taken to
be 100. It is the smallest at M = 4 for both choices
of sample size (i.e., n = 100; 200). Further, ESPE for
the simulated data tends to decrease with increase in
v. At n = 200 and M = 2, the ESPE for v = 0 is 9.988,
while it is 9.982 for v = 10. In the real data, the ESPE

values are increasing with increase in v for some choices
of M while it is decreasing with increase in v for other
choices. This is because v on the one side decreases
variance and increases bias on the other side. When
increase in the bias is dominated, the ESPE tends to
increase with increase in v, and vice versa. From all
the tables, it can be observed that the ESPE declines
as n increases.

The estimated variance of prediction error of
�̂(y) is obtained in Columns 4-8 using residual, UEV,
FPE, GCV, and BIC in ascending order (according
to their values) from left to right of each table. For
numerical study with M = 4, n = 50, and v =
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Table 3. ESPE and expected estimated variances of the proposed estimator under linear BFR model for hospital
population.

Expected estimated variances

n v ESPE Residual UEV FPE GCV BIC

M = 1

50

0 6.6755 1115.0647 1137.8211 1160.5775 1161.0419 1204.0883

1 38.3376 1082.7802 1104.4359 1126.0915 1126.5246 1167.4975

5 372.9478 975.9444 994.0174 1012.0905 1012.4252 1046.6466

10 1105.6943 878.3235 893.2103 908.0971 908.3495 936.5611

100

0 265.7557 374.5753 378.3589 382.1425 382.1807 391.9994

1 304.8374 370.8607 374.5693 378.2779 378.3150 387.9395

5 478.2710 357.5779 361.0162 364.4544 364.4875 373.4117

10 725.2613 343.9352 347.0905 350.2459 350.2749 358.4662

M = 2

50

0 7.6058 829.4559 864.0166 898.5772 900.0173 964.6580

1 7.0821 804.7302 836.9398 869.1494 870.4387 930.7350

5 5.7066 746.2935 772.7304 799.1672 800.1040 849.7151

10 4.7894 713.4974 736.3547 759.2121 759.9447 802.9160

100

0 42.9819 279.5041 285.2083 290.9124 291.0289 305.7728

1 42.0453 276.6408 282.1757 287.7106 287.8213 302.1299

5 38.9960 267.9593 272.9638 277.9684 278.0618 291.0060

10 36.2653 261.0667 265.6210 270.1754 270.2548 282.0402

M = 3

50

0 9.1234 832.4586 885.5943 938.7299 942.1215 1040.3265

1 8.5644 802.2694 850.1327 897.9959 900.8518 989.5114

5 7.5052 767.7585 807.7119 847.6652 849.7452 924.0570

10 7.0038 759.5841 796.4001 833.2161 835.0011 903.6091

100

0 34.8717 279.6398 288.2884 296.9371 297.2046 319.4683

1 35.0648 276.3260 284.5826 292.8392 293.0859 314.3490

5 35.5802 269.7184 277.0528 284.3872 284.5867 303.4946

10 35.9369 266.7718 273.5537 280.3356 280.5081 298.0036

M = 4

50

0 13.3928 854.9230 929.2641 1003.6053 1010.0697 1145.7472

1 13.9070 827.1330 891.7295 956.3260 961.3725 1079.8360

5 14.4792 816.0691 872.8424 929.6156 933.5662 1038.1674

10 14.6302 814.8074 869.4893 924.1712 927.8413 1028.7242

100

0 43.6831 282.4436 294.2121 305.9805 306.4709 336.6394

1 44.0972 279.0332 289.9848 300.9363 301.3661 329.4668

5 44.7919 275.7103 285.4503 295.1903 295.5344 320.5647

10 45.0972 275.0052 284.2723 293.5394 293.8517 317.6817
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Table 4. ESPE and expected estimated variances of the proposed estimator under proportional BFR model for hospital
population.

Expected estimated variances
n v ESPE Residual UEV FPE GCV BIC

M = 2

50

0 38865.250 271.521 277.062 282.603 282.716 293.198
1 38865.250 271.609 277.042 282.474 282.582 292.860
5 38865.250 273.426 278.489 283.553 283.647 293.234
10 38865.250 277.924 282.635 287.346 287.425 296.352

100

0 17746.841 184.520 186.384 188.248 188.266 193.103
1 17746.841 184.535 186.380 188.226 188.244 193.033
5 17746.841 184.867 186.645 188.423 188.440 193.053
10 17746.841 185.786 187.491 189.195 189.211 193.636

M = 3

50

0 1989.648 915.590 953.740 991.889 993.479 1064.832
1 1845.946 887.065 923.259 959.452 960.929 1028.655
5 1405.980 803.258 833.744 864.230 865.387 922.520
10 1051.156 739.901 766.057 792.214 793.139 842.226

100

0 2260.617 298.282 304.369 310.456 310.581 326.315
1 2211.905 295.136 301.097 307.059 307.179 322.590
5 2039.615 284.476 290.007 295.538 295.646 309.948
10 1864.813 274.447 279.564 284.680 284.776 298.011

M = 4

50

0 1011.154 1934.051 2057.501 2180.951 2188.831 2416.991
1 905.878 1749.106 1857.814 1966.522 1973.278 2174.374
5 629.460 1305.618 1380.619 1455.619 1459.928 1599.022
10 448.607 1050.837 1107.537 1164.237 1167.297 1272.648

100

0 962.666 531.844 548.293 564.742 565.251 607.594
1 924.836 510.483 526.069 541.655 542.130 582.258
5 802.672 445.061 458.060 471.060 471.439 504.926
10 694.960 392.290 403.265 414.239 414.546 442.830

0, the estimated variances are 1934.051, 2057.501,
2188.831, and 2416.991, which satisfy the inequality
given in Eq. (44). Tables 1{4 provide the evidence
that estimated variances are reduced upon raising
regularization. A similar statement can be made for
the relation between estimated variances and sample
size. Among the alternative variance estimators, one
must choose the one that is closer to the true variance
in prediction error. Hence, the choice of variance
estimator depends on the statistical properties like
unbiasedness and consistency of the variance estimator.
A separate study can be conducted on the choice of
variance estimators after conducting a detailed simula-
tion study.

The unbiasedness and consistency of the variance
estimators are good measures in this regard. However,

these properties are not discussed in this study since
our goal was basically the construction of estimator for
� and discussion of the problems associated with its
estimation and inference about the �nite population in
a model-based setting.

8. Conclusion

A general framework of the model-based approach
for estimation of �nite population parameter � (a
linear combination of population values), assuming
superpopulation setting, was discussed. Some special
cases of the proposed general framework were deducted
to observe its applicability. Expressions for prediction
error variance and model-bias of the proposed estima-
tor were derived. For statistical inference about � ,
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estimation of prediction error variance under residual,
Generalized Cross Validation (GCV), Unbiased Esti-
mate of Variance (UEV), Final Prediction Error (FPE),
and Bayesian Information Criterion (BIC) methods
(the widely used feature selection criteria in ML)
were considered. The variance introduced under UEV
provided minimum variance estimates compared to all
other competing estimators with maximum value at
BIC. Model selection for �nite population parameter
in the proposed general framework was discussed using
incremental operators by the matrix approach. The
model selection was based on a measure, named as
increment in e�ciency IE which provides guideline on
selecting a model with an appropriate number of basis
functions. Positive value of IE exhibited an increase
in e�ciency while adding additional basis functions
to the feature matrix. Further ill-conditioning of the
regression estimation coped with typical regularization
method, which introduced a slight bias in estimates of
�'s, but provided a smaller estimate of the variance
of the error term and, consequently, smaller estimated
variance of prediction error of �̂ . The current study
can be used for estimation of any linear combination
of population values; hence, many �nite population
parameters can be estimated in this general framework.
The proposed model-based framework is extended to
other sampling designs, multi-level models, and small
area estimation. Working with a mixed model for
estimating the value of the �nite population parameter
with basis functions is also recommended.
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Appendix

The projection matrix P based on M covariates is
de�ned by:

P = IM ��sQ�1
sm�T

s ; (50)

where Q�1
sm = �T

s �s + vIM is the Hessian Matrix [68]
based on �s with M basis functions. Before applying
the incremental operator to Pm, we �ndA�1

s(m+1) using
A�1
sm. We use the two following useful lemmas from [69]

for the purpose of matrix inversion.

Lemma 1. For any partitioned square matrix B
de�ned by:

B =
�
B11 B12
B21 B22

�
;

B�1=
�
B�1

11 +B�1
11 B124�1B21B�1

11 �B�1
11 B124�1

�4�1 A21B�1
11 4�1

�
;

where 4 = B22 �B21B�1
11 B12.

Lemma 2. Let the inverse of matrix B�1
0 2 Rm�m,

X, Y T 2 Rm�r, and R 2 Rr�r be known. For
computing the inverse of a new matrix B1, we have:
B1 = B0 +XRY :

To compute the inverse of new matrix B1, we have the
following relation:

B�1
1 = B�1

0 �B�1
0 X(Y B�1

0 X +R�1)�1Y B�1
0 :

This relation between the inverse of the original matrix
and the appended matrix saves much computation
time.

Decrement in variance
The Hessian matrix after adding an additional basis
function:
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Q�1
s(m+1) =

�
Q�1
sm 0

0T 0

�
+4�1

"
Q�1
sm�T

sm�s(m+1)�
T
s(m+1)�smQ�1

sm �Q�1
sm�T

sm�s(m+1)��Ts(m+1)�smQ�1
sm 1

#
: (52)

Box II

�r(m+1)Q
�1
r(m+1)�

T
s(m+1) =

�
�rm �r(m+1)

�� �Q�1
11 Q�1

12
Q�1

21 Q�1
22

� �
�T
rm

�Tr(m+1)

�
=
�
�rmQ�1

11 +�r(m+1)Q
�1
21 �rmQ�1

12 +�r(m+1)Q
�1
22
� � �T

rm
�Tr(m+1)

�
=�rmQ�1

11 �T
rm + �r(m+1)Q

�1
21 �T

rm + �rmQ�1
12 �

T
r(m+1) + �r(m+1)Q

�1
22 �

T
r(m+1): (53)

Box III

Qm+1 = �T
s(m+1)�s(m+ 1) + vIm+1

=

"
Qsm �T

sm�s(m+1)
�Ts(m+1)�sm �Ts(m+1)�s(m+1)+vm+1

#
;(51)

where:

�T
s(m+1) =

�
�sm �s(m+1)

�
;

and:

Qsm = �T
sm�sm + vIm:

To obtain the inverse of the Hessian matrix given in
Eq. (51), we use Lemma 1; Eq. (52) is shown in Box II,
where 0 is an m � 1 null vector. Further, we have
Eq. (53) as shown in Box III, where:

Q�1
11 =Q�1

sm+4�1Q�1
sm�T

sm�s(m+1)�
T
s(m+1)�smQ�1

sm;

Q�1
12 = �4�1 Q�1

sm�T
sm�s(m+1);

Q�1
21 = �4�1 �Ts(m+1)�smQ�1

sm;

Q�1
22 = 4�1:

We �rst see the e�ect on the variance VM (�̂(y) �
�(y))=VM (�̂) (say) when there is no regularization on
parameters, i.e., v=1 andQ�1

sm=A�1
sm for m=1,2,� � � ,M .

For prediction models with no regularization, we have
the variance of VM (�̂) with M regressors:

VM (�̂)m = (N � n)�2 + �2
h

Tr �rmA�1

sm�T
rm
r

i
;

and the variance of VM (�̂) with M + 1 regressors:

VM (�̂)m+1 = (N � n)�2

+ �2
h

Tr �r(m+1)A�1

s(m+1)�
T
r(m+1)
r

i
:

The bias of ridge regression estimator with M basis
functions is given by:

BM (�̂ridge(y)) = �v
Tr �rmQ�1
sm�m; (54)

and for M + 1 basis function after some matrix
multiplication, the bias becomes:

BM+1 (�̂ridge(y)) = �v
Tr
"
�rmQ�1

sm�m

+
1
4�rmQ�1

sm�sm�s(m+1)�s(m+1)�smQ�1
sm�m

+ �r(m+1)Q
�1
21 �m + �rmQ�1

12 �m+1

+ �r(m+1)Q
�1
22 �m+1

#
: (55)
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