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Abstract. This study aims to provide an e�cient Multi-Objective Multidisciplinary
Robust Design Optimization (MOMRDO) framework. To this end, Bi-Level Integrated
System Synthesis (BLISS) framework was implemented as a fast Multi-disciplinary Design
Optimization (MDO) framework. Progressive Latin Hypercube Sampling (PLHS) was
developed as a Design Of Experiment (DOE) for the Uncertainty Analysis (UA). This
systematic approach leads to a fast, adaptive, and e�cient Robust Design Optimization
(RDO) framework of complex systems. The accuracy and performance of the proposed
algorithm have been evaluated through various tests. Finally, the RDO of a hydrazine
monopropellant thruster was selected as a case study. The results showed that this method
is a fast and e�ective method for the multi-objective optimization design of complex
systems, and it can also be used in other engineering applications.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, as the system matures, the use of Multi-
disciplinary Design Optimization (MDO) in the design
process has become commonplace [1]. Although the
concept of MDO was �rst introduced in aerospace
engineering [2,3], its application in the design of other
complex systems (such as electrical machines, automo-
biles [4], robots [5], and tunnel boring machines) has
rapidly expanded. On the other hand, exposure to
uncertainties in the life cycle of a product is inevitable.
These uncertainties a�ect product performance and
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functional constraints. In complex systems, the impact
of uncertainty is more important. This feature became
a source of inspiration for the concept of Uncertain
Multidisciplinary Robust Design Optimization (UM-
RDO) in the optimal design of complex systems.
Generally, two approaches are applied to solve such
problems including the Reliability-Based Design Op-
timization (RBDO) and Robust Design Optimization
(RDO). RBDO reduces the failure risks, while RDO
reduces the sensitivity of the responses [6,7].

Many e�orts have been made to provide Multi-
disciplinary Robust Design Optimization (MRDO) by
integrating Uncertainly Analysis (UA) into the MDO
frameworks [1,8{10]. In all cases, the MRDO has been
built by combining the common UA approaches and
the MDO framework. However, the computational
cost of MRDO is still the main challenge for such



M.N.P. Meibody et al./Scientia Iranica, Transactions B: Mechanical Engineering 28 (2021) 2150{2163 2151

problems. Thus, the MRDO study moves into a new
age of research.

Generally, the UA methods are divided into two
kinds of deterministic analysis and non-deterministic
analysis. In the case of problems with a large number
of uncertain parameters and/or nonlinear responses,
the utilization of non-deterministic methods is in-
evitable [11]. The probability theory is one of the
conventional non-deterministic UA approaches. The
principle of using UA probability theory is based on
random sampling.

Monte Carlo Simulation (MCS) is the �rst and
most common sampling method for UA. Thus, in some
cases, UA is also referred to as MCS. The bigger
simulation of the sample size leads to more accuracy
in the MCS outputs. Studies have shown that the
standard MCS despite its simplicity is ine�cient [12].
It is because of its inability to �ll the space and its
collapse properties.

In the past few decades, many e�orts have been
made to improve sampling e�ciency. Variance Re-
duction Technique (VRT) is considered to be the
most e�ective approach to improve sampling e�ciency
[13,14]. Although VRT increases sampling e�ciency,
it does not use the minimum sample size of UA [15].
Progressive Sampling Techniques (PST) solves the
problem of �nding the least possible value of samples.
Fundamentally, PST works by training a learning
algorithm, and then the sample size will continue to
grow until the desired accuracy is achieved. Simplicity
in application and e�ciency in sample generation is the
most important feature of PST. Through combining
the VRT and PST an optimal sample size could be
obtained.

Latin Hypercube Sampling (LHS), as a strati�ed
sampling method to ensure that the sample will not
collapse. Similarly, the improved LHS method can
�ll the space to the greatest extent. Some activi-
ties were performed to convert LHS to Progressive
Latin Hypercube Sampling (PLHS). The most cited
PLHS strategies are the Doubling Procedure (DP) and
Sliced Latin Hypercube Sampling (SLHS) [16]. The
�rst method, DP, doubles the sample size in each
step. Despite the simplicity of its performance, DP
diminishes the exibility of the sample size [17]. This
lowers the e�ciency of sampling. SHLS was originally
developed by Qian [18] and further enhanced by other
scientists [19]. SLHS generates a series of smaller
subsets. The SLHS result is quasi-LHS.

The main contribution of this paper is to propose
a novel MRDO framework based on fast and e�ective
MDO and UA methodology. To this end, Bi-Level
Integrated System Synthesis (BLISS) was implemented
as a fast MDO framework. Similarly, UA was per-
formed by the PLHS technique of variable sample
size.

2. Multi-Objective Robust Multidisciplinary
Design Optimization (MOMRDO)
framework

Implementing a novel multi-disciplinary RDO frame-
work, which is a combination of MDO and RDO, was
evaluated. Generally, the RDO problem was de�ned as
Eq. (1):

�nd: x

minimize: � [f (x; �x) ; � (x; �x)]

subjected to: gi (x) � 0; (1)

where x represents the design variables; and � is the
robust optimization objective that is a function of the
problem objective function f(x; �x) and the objective
function deviation �(x; �x).

As shown in Eq. (1), the design variables were
extracted so that the robust optimization objective
function was minimized in the face of uncertainties.
Such a process requires coordinated optimization and
simulation and analysis of uncertainties. As shown in
Figure 1, the proposed process is an iterative method
resulting from the combination of multi-disciplinary
optimization and uncertainty analysis.

Figure 1. Multi-Objective Robust Multidisciplinary
Design Optimization (MORMDO) owchart.
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2.1. BLISS optimization framework
The BLISS framework was proposed by Sobieski in
1998 as the MDO framework [20]. As the name
suggests, in this framework, optimization problems are
divided into two levels: system and subsystem. A
schematic owchart of the multi-disciplinary optimiza-
tion of this framework is presented in the optimizer
section of Figure 1. This framework uses Multi-
Disciplinary Analysis (MDA) to �nd the coupling vari-
ables and uses the General Sensitivity Equation (GSE)
to �nd the derivatives of the functions to calculate
the objective functions at the subsystem level and
the system level and updates design variables at each
iteration [21].

2.2. Uncertainty analyses algorithm
In the RDO issue, the main challenge is to de�ne and
calculate the uncertainty propagation. The UA method
based on statistical simulation provides an e�ective
solution for a wide range of applications [22{25]. In
this study, the PLHS-based UA was carried out.

2.2.1. UA algorithm
The UA algorithm based on PLHS includes �ve steps
while are repeated to satisfy convergence condition.
The proposed UA algorithm is described in Table 1.

In Eq. (2), E and ni are the output variation
and iteration sample size, respectively; K is the pre-
exponential factor; and � is the population correction
factor. In each iteration, these factors were computed
and updated based on the responses of the previous
three iterations.

E(mean;�)i�1
= Ke��ni : (2)

2.2.2. PLHS mathematical de�nitions
PLHS with normal and uniform distribution was used
for the design parameters to extract the population
needed for the UA and Sensitivity Analyses (SA),
respectively. To generate n samples of m parameters
with uniform distribution (or any desired distribution)
within the parameters de�nition interval, a hypercube
of unit m dimensions, Hm, was �rst de�ned by Eq. (3):

Hm = [0; 1]m: (3)

Each dimension of the unit hypercube was divided
equally (or proportional to the distributive distribu-
tions) into n part of Eq. (4):

Hj =
��

0;
1
n

�
;
�

1
n
;

2
n

�
; :::;

�
n� 1
n

; 1
��

=
n[
i=1

Hi
j :

(4)

According to the de�nition given in Eq. (5), the
samples are randomly designed under condition of
projection property:

xi = fxi;1; xi;2; ::::; xi;mg : (5)

To check the samples projection property a set of
auxiliary binary variables was de�ned as yi;j such that:

yi;j =

(
1 xi;j 2 Hi

j

0 xi;j =2 Hi
j

(6)

The n �m sample matrix, S(m;n), was de�ned with
the xij entries as Eq. (7):

S(m;n) =

24x11 ::: x1m
: xij :
xn1 ::: xnm

35 : (7)

Then S(m;n) was said to be Latin Hypercube if and
only if the following condition was satis�ed.

mP
j=1

nP
i=1

yi;j

n �m = 1: (8)

The left-hand side of Eq. (8) varied in the interval� 1
m ; 1

�
. To increase the sample number to n0 > n,

�rst, each dimension of the unit hypercube should be
divided into n0 sections. The samples inherited from
the previous step are then placed in the space of the
new divisions. The new samples were produced in such
a way that the maximum value could be obtained using
the left-hand side of Eq. (8). The new sample matrix
was formed by the combination of the new sample and
the inherited sample. In each step, the new sample
matrix was LHS. An example of the PLHS process is
shown in Figure 2.

Table 1. Process of PLHS-based Uncertainty Analysis (UA).

� DOE generation of PLHS-based design variables for UA;
� Objective functions responses extraction based on generated DOE;
� Calculating the mean and standard deviation of the responses;
� Calculating the normalized variations of the mean and standard deviation from the previous iteration values;
� Convergence test: For the case where the deviation is greater than 2%, a new set of DOE was generated

by increasing the sample size in proportion to the variable, as shown in Eq. (2)
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Figure 2. An example of Progressive Latin Hyper Cube Sampling (PLHS) process.

3. Results and discussions

The validations of Design Of Experiment (DOE) and
MDRDO algorithms are presented in this section. Also,
the result of the design of optimization results of the
case study is discussed.

3.1. Veri�cation
To evaluate the performance of the proposed MRDO
algorithm, some experiments were carried out. The
computational cost advantage of the proposed method
over Monte Carlo and other sampling-based simula-
tions has also been evaluated.

3.1.1. Validation of BLISS algorithm
To validate the performance of the developed opti-
mizer, an analytic multidisciplinary problem needs to
be optimized. Therefore, Eq. (9) was implemented
on the BLISS framework. Yi et al. have solved this
problem [26]. It included two disciplines. Each
discipline had a state variable. Each of these state
variables was also a dependent variable. In the �rst
discipline, there were two global design variables and
one additional local design variable. The relationship
between disciplines was nonlinear. Each discipline had
a local constraint.

minimize x2
1 + x2 + y1 + e�y2 ; (9)

where:

y1 = z2
1 + x1 + x2 + 0:2y2;

y2 = z1 + x2 +
p
y1;

g1 = 1� y1

3:16
� 0;

g2 =
y2

24
� 1 � 0;

�10 � z1 � 10;

0 � x1 � 10;

0 � x2 � 10:

These results were in agreement with the �ndings
reported by Perez et al. [27].

Figure 3. Sample number e�ects on the sampling
distribution.

3.1.2. Sampling distribution justi�cation
LHS is a sampling method whose output results have
a uniform distribution feature. To achieve samples
with non-uniform distribution, it is necessary to use
an appropriate mapping through the division of the
unit hypercube. Therefore, it is necessary to verify the
performance of the required mapping. To study the
distribution of PLHS results, the Probability Density
Function (PDF) of three DOEs were evaluated. Each
DOE was designed to produce samples with a normal
distribution with a mean of 0 and a standard deviation
of 1. The DOE sample size increased in two steps,
from 10 to 100 and from 100 to 300. The PDFs of
these DOEs are shown in Figure 3.

The results shown in Figure 3 demonstrate the
normal distribution of the sample. In addition, the
sample distribution was similar to the normal dis-
tribution and the simulation accuracy increased by
increasing the sample size. As shown in Figure 3, by
increasing the sample size, the PDE diagram became
more similar to the normal distribution.

3.1.3. Sampling convergence characteristics
In the case of di�erent sample sizes, by comparing the
MCS and PLHS, a mean value of 1 and a standard
deviation of 0.5 were obtained. Figures 4 and 5 show
the changes in the sample size of the mean and standard
deviation, respectively. The results showed that the
convergence rate of PLHS was faster than that of MCS.

3.1.4. Algorithm veri�cation
The proposed RDO performance was veri�ed by the
implementation of the Sinc function as the benchmark.
The de�nition of the Sinc function is given in Eq. (10).
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Figure 4. The relationship between the mean value and
sample size for Monte Carlo Simulation (MCS) and
Progressive Latin Hyper Cube Sampling (PLHS) methods.

Figure 5. The relationship between the standard
deviation and sample size for Monte Carlo Simulation
(MCS) and Progressive Latin Hyper Cube Sampling
(PLHS) methods.

Figure 6. Sinc function.

The Sinc(0:5�x) function is plotted in Figure 6.

Sinc (x) =
sin (x)
x

: (10)

Sinc function included multiple local optimums. Fur-
thermore, the robustness values of these points were
di�erent. Veri�cation of the RDO algorithm was
carried out by varying the standard deviation of the
design parameter from zero to a half. The objective
function of the RDO was calculated as the sum of mean
and standard deviation values of the Sinc function. The
Sinc function robust optimal points versus the standard

Figure 7. The Sinc function robust optimal points versus
the standard design parameter deviation.

design parameter deviation are shown in Figure 7. Due
to the nature of the Sinc function, the robustness of
the RDO objective function varies by choosing di�erent
local optimum points.

3.1.5. Computational cost
The computational time of various UA approaches
to implement RDO was compared. These used UA
approaches are MCS, Sobol, LHS, SLHS, and PLHS.
The standard deviation of the design parameter was
considered to be 0.5 units. To ensure the accuracy of
RDO, each method was run 100 times, and then the
average run time was used to extract the solving time.
Table 2 lists the computational cost of all simulation-
based RDOs. The computational time of the PLHS-
based RDO was close to one-third of MCS one. The
detailed information of the simulations is provided in
the Supplementary Data.

To evaluate the accuracy of the proposed RDO
with small sample size, the MCS and PLHS-based
RDO was compared. The results of this comparison
are presented in Table 3. As shown in the table, the
error rate of MCS was 27%. The results of the study
of computational cost indicated that although the use
of advanced sampling methods reduces the problem-
solving time by reducing the number of samples, in
RDO with the same number of samples for di�erent
sampling methods, simpler sampling approaches lead
to a lesser solution time. It is worth noting that in the
simpler sampling method, the smaller the number of
samples, the lower the accuracy of RDO.

Table 2. Robust Design Optimization (RDO)
computational cost based on sampling.

Method Optimal point Samples Time (s)

MCS 3.5 1e+4 14.18
Sobol 3.5 5e+3 7.32
LHS 3.5 1e+3 6.2

SLHS 3.5 (250{430) 4.17
PLHS 3.5 (190{375) 3.78
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Table 3. Comparison of robust optimization results of
Monte Carlo Simulation (MCS) and Progressive Latin
Hyper Cube Sampling (PLHS) based on 500 samples.

Method Optimal
point

Time
(s)

Correctness
(%)

MCS 3.5 4.06 73
Sobol 3.5 4.08 86
LHS 3.5 4.10 94

SLHS 3.5 4.18 98
PLHS 3.5 4.23 100

3.2. Case study: Monopropellant thruster
design optimization

In this study, RDO of the 22 N monopropellant thruster
was used as a case study of the proposed algorithm.
The Design Structure Matrix (DSM) of a monopropel-
lant thruster is pictured in Figure 8. Two deterministic
and non-deterministic optimization methods have been
implemented in the design of this thruster system. In
both methods, the BLISS framework was implemented
as an optimizer. In the following, the elements of
deterministic and non-deterministic optimization are
de�ned.

3.2.1. Structure
The task of the thruster structure is to integrate and
bear the loads applied to it. On the other hand, one
of the most important results of the conceptual design
of each system is the estimation of its mass. In this
system, the total mass was obtained by adding the
masses of the Injector Head (IH), reaction chamber,

and nozzle according to Eq. (11):

MTotal = Minj +MCB +MN : (11)

The mass of subsystems was calculated based on
volumetric relationships. The thickness of the structure
of each segment, tsubi , was calculated from Eq. (12).
Then their volume, V(subi), was extracted and placed
in Eq. (13):

tsubi =
nSF
�

 
�PsubiRsubi + TCC

�R2
subi

!
; (12)

Msubi = �subiVsubi = �subiAsubitsubi : (13)

3.2.2. Injector Head (IH)
In the monopropellant thrusters, the IH was responsi-
ble for the uniform distribution of the propellant on the
Catalyst Bed (CB). To make the propellant uniformly
distributed on the catalytic surface, the swirl-axial
injector with full cone injection was selected as the
injector [28]. A computer program was developed to
design the IH. The mass ow rate of the propellant and
the diameter of the CB were introduced as the system
input of the ejector head design. In addition, the spray
angle, the number of the tangential grooves, and the
inclinational angle of the grooves were introduced as
local parameters of the ejector design. The pressure
drop, the injector discharge coe�cient, the injector ori-
�ce diameter, and the injector mass were implemented
as the IH design responses.

Figure 8. The monopropellant thruster design structure matrix.
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3.2.3. Catalyst Bed (CB)
In monopropellant thrusters, the CB controls the
decomposition of the propellant [29,30]. Since 1963 the
most successful hydrazine decomposition catalyst had
been Shell 405. In this section, the modelling and SA
of the CB design will be introduced. With reference
to [31{33], an analysis of the CB behavior has been
derived. The Runge-Kutta Fehlberg method with a
variable time step was used to calculate the CB model.

3.2.4. Nozzle
The nozzle design was performed in the closed-loop
calculation to achieve a speci�c thrust level. The nozzle
design owchart is shown in Figure 9. This closed-
loop includes the geometric estimation and numerical
simulation of nozzle performance. The process was
arranged according to the following steps:

� The nozzle thrust coe�cient was estimated through
gas dynamic calculations [34,35];

� According to the obtained nozzle coe�cient, the
nozzle throat, and outlet area were calculated [36];

� The nozzle shape was determined by a geometric
method;

� The nozzle performance was evaluated through nu-
merical simulation;

� The simulated thrust coe�cient was compared with
its previous calculation.

The convergence criteria should be less than 2%
of the di�erence between the previous value and the
present value of the thrust coe�cient in the loop.

Figure 9. The nozzle design owchart.

Gas Dynamic Analysis (GDA) ignores friction
and turbulence losses and thrust vector misalignment.
Hence, numerical simulation is a powerful strategy
for evaluating nozzle performance. In this research,
the nozzle design accuracy improved by developing
the nozzle internal ow simulation during the design
process. The nozzle pro�le was designed based on
a geometrical strategy and the GDA results. This
method is shown in Figure 10.

Four boundary conditions, including inlet, axial
symmetry, wall, and output, were considered for the
nozzle simulation. The boundary conditions are shown
in Figure 11. The outlet pressure and temperature
of the reaction chamber were de�ned under the inlet
boundary condition. On the axially symmetric bound-
ary, the vertical gradient of ow was assumed to be
zero. The non-slip condition was also considered in
the wall. The static pressure was presented as the
output boundary condition, and the other parameters
were extrapolated from inside the solution.

A fully structured mesh has been used in the
nozzle numerical simulation. In the vicinity of the
walls, the cells are partially scattered to capture the
viscous sub-layer (y+ �= O (1)). An example of a
convergent-divergent nozzle meshing is illustrated in
Figure 12.

To perform compressible ow simulations,
density-based implicit solver software (Ansys Fluent
software) was used. The k � ! SST model was
used as a turbulence model. In addition, continuity
conservation equation, energy conservation equation,
and turbulence were couple with the second-order
method.

3.2.5. Optimization problem
The deterministic and non-deterministic optimization
problems of the monopropellant thruster were formu-
lated in the form of Eqs. (14) and (15), respectively:

Find x = [����; PCC ; �; n; T0; DP ; DCC ; �cc; �3; �4] :

Minimize �P;MTotal

Maximize Isp

Subject to Constraints, (14)

Find x = [����; PCC ; �; n; T0; DP ; DCC ; �cc; �3; �4]

Minimize FNDet (�P;MTotal; Isp)

Subject to Constraints: (15)

In the non-deterministic optimization problem, the ob-
jective functions and related constraints were generated
by the sum of mean and standard deviations obtained
from the UA.
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Figure 10. Schematic of nozzle pro�le.

Figure 11. Schematic of nozzle boundary conditions.

Figure 12. An example of a meshed convergent-divergent
nozzle.

3.2.6. Objective functions
In this research, the minimization of thruster weight
and pressure drop and maximization of the thruster
speci�c impulse was considered as objective functions.
The objective functions of the deterministic optimiza-
tion problem were de�ned in the multi-objective func-
tion in the form of Eq. (16):

FDet (�P;MTotal; Isp) = � w1

200
Isp +

w2

300
MTotal

+
w3

200
�P;

Subjected to w1 + w2 + w3 = 1; (16)

where wi are variable coe�cients that were de�ned by
the total sum constraint equal to 1 in the optimization.

In non-deterministic optimization, the optimiza-
tion objective function was de�ned as a multi-objective
function in the form of Eq. (17):

FDet = � w1

200
�
Isp + �Isp

�
+
w2

300
(MTotal + �MTotal)

+
w3

200
(�P + ��P )

Subjected to w1 + w2 + w3 = 1: (17)

3.2.7. Design parameters
The correct selection of these variables is one of the
challenges of the designers, and it is also a decisive
factor for achieving the optimal realistic design with
the smallest computational cost. When selecting

the design variables of the optimization problem, the
constraints and objective function should be a�ected as
much as possible while describing the design problem
completely. On the other hand, the design variables
should be as independent as possible. For this reason,
SA have been carried out on each subsystem. Figure 13
shows the Pairwise Scatter Plot Matrix (PSPM) and
histogram of the design variables and the responses of
the CB. The pairwise spread of CB design parameters
means that the inputs are distributed independently
of each other. In this graph, the dependence of the
response from the design parameters is also speci�ed.
Among the design inputs, the reaction chamber pres-
sure had the least e�ect on the bed design responses.
Moreover, the SA of the CB clearly illustrated the
design objectives of the CB.

Also, in the non-deterministic optimization prob-
lems, besides the selection of the design variables se-
lecting design variables, the identi�cation and assigning
the amount of uncertainty of each variable will a�ect
the calculation cost and the correct optimal design
achievement. As shown in Table 4, the design param-
eters and their uncertainties were de�ned according to
the subsystems of the thruster.

3.2.8. Constraints
The maximum propellant inlet pressure, CB loading
factor, CB aspect ratio, and the decomposition prod-
ucts Mach number at the nozzle inlet were introduced
as design constraints in the form of Eqs. (18) to (21):

Pin � 22 bar; (18)

GCat � 400
kg
m2 ; (19)

LCC
DCC

� 2; (20)

MNin � 0:3: (21)

In non-deterministic optimization, the sum of the mean
and standard deviation of the optimization constraints
was de�ned as Eqs. (22) to (25):

Pin + �Pin � 22 bar; (22)

GCat + �GCat � 400
kg
m2 ; (23)
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Figure 13. Pairwise Scatter Plot Matrix (PSPM) and histogram of Sensitivity Analysis (SA) for Catalyst Bed (CB).

Table 4. Design parameters, range of variations and their uncertainty de�nition.

Variable Range Unit Variable type � Uncertainty type

min max

Global
Reaction chamber pressure PCC 5 20 bar Continues %10 Normal

Catalyst bed diameter DCC 10 40 mm Continues %0.2 Normal

Local

Spray angle � 60 90 � Continues 3� Normal

Grooves inclinational angle � 10 35 � Continues 1� Normal

Number of grooves n 3 5 # Discrete { {

Inlet propellant temperature T0 250 350 K Continues 10 K Normal

Catalyst particle diameter DP 0.5 2 mm Continues %10 Normal

Thermo-chemical e�ciency �CC 0.85 0.97 - Continues %2 Normal

Nozzle expansion ratio "N 2 100 { Continues { {

Nozzle's converges angle �3 20 35 � Continues { {

Nozzle's outlet angle �4 0.5 10 � Continues { {

Safety factor �safety 1.5 { Continues %10 Normal

Catalyst bed porosity "CB 0.34 { Continues %5 Normal

LCC
DCC

+ � LCC
DCC

� 2; (24)

MNin + �MNin
� 0:3: (25)

3.2.9. Optimization results
The monopropellant thruster Multi-Objective Mul-
tidisciplinary Design Optimization (MOMDO) and

Multi-Objective Robust Multi-disciplinary Design Op-
timization (MORMDO) results are presented in this
section. In this study, the best design was selected
based on the minimum distance from the Utopia point.
In the minimum distance or knee point method, the
point with the minimum distance from the Utopia
point [37] was considered the appropriate answer.

The multi-objective MDO was performed in
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Table 5. Objective functions at the best point of Multi-Objective Multidisciplinary Design Optimization (MOMDO) and
Multi-Objective Multidisciplinary Robust Design Optimization (MOMRDO) of the monopropellant thruster.

Methods w1 w2 w3 Isp �Isp MTotal �M �P ��P Calculation time (s)

MDO 1 0 0 237.80 | 206.91 | 2.47 | 2598

RMDO 0.6 0.4 0 228.86 1.48 234.922 6.68 3.19 0.38 97653

Figure 14. The Pareto front of the Multi-Objective
Multidisciplinary Design Optimization (MOMDO) of the
monopropellant thruster.

twenty-one iterations with an average calculation time
of approximately 2708 seconds. The Pareto front
of the MOMDO of the monopropellant thruster was
presented in Figure 14. In this graph, each point
represents one of the multi-objective optimization re-
sults and the diameter of these points represents the
distance from the ideal point, so as the distance from
the knee point increases; the diameter of these points
also increases. According to the knee point criterion,
the best design was obtained at the 21st point.

The results of the MORMDO of the monopropel-
lant thruster are depicted as the Pareto front and the
variation of the standard deviation of speci�c impulse,
the standard deviation of the mass, the standard
deviation of the total pressure drop of the system
at di�erent points of the design objective function
and their histogram are shown in Figures 14 to 18.
The average convergence time at any point of the
Pareto front was about 11,1039 seconds. The best

Figure 15. The Pareto front of Multi-Objective
Multidisciplinary Robust Design Optimization
(MOMRDO) of the monopropellant thruster and standard
deviation of speci�c impulse.

answer was at point 18. By comparing the speci�c
impulse of the non-deterministic optimal design with
the speci�c impulse of the deterministic optimal design,
an average decrease of 75.3% was obtained, while the
mass decreased and pressure drop increased by 13.53%
and 29.14%, respectively.

The values of the objective functions, design vari-
ables, and optimization constraints at the best point
of MOMDO and MORMDO of the monopropellant
thruster are shown in Table 5 to Table 7, respectively.

In both deterministic and non-deterministic opti-

Table 6. Design variables at the best point of
Multi-Objective Multidisciplinary Design Optimization
(MOMDO) and Multi-Objective Multidisciplinary Robust
Design Optimization (MOMRDO) of the monopropellant
thruster.

Variable Rang Unit MDO RMDO

min max

PCC 5 20 bar 15.60 12.65

DCC 10 40 mm 25 27.6

� 60 90 � 87 80

� 10 35 � 30 30.5

n 3 5 # 3 3

T0 250 350 K 310 298.5

DP 0.5 2 mm 1.25 0.91

�CC 0.85 0.97 { 0.87 0.92

"N 2 100 { 65 58

�3 20 35 � 29 25

�4 0.5 10 � 4.5 4

Table 7. Values of the constraints at the best point of
Multi-disciplinary Design Optimization (MDO) and
RMDO of the monopropellant thruster.

Constraint Unit MDO RMDO

Pin bar 17.47 15.9

GCat kg/m2 4.80 4.09

LCC
DCC

| 1.65 1.43

MNin | 0.01 0.01
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Figure 16. Multi-Objective Multidisciplinary Robust Design Optimization (MOMRDO) histogram of monopropellant
thruster speci�c impulse at di�erent points.

Figure 17. The Pareto front of Multi-Objective
Multidisciplinary Robust Design Optimization
(MOMRDO) of the monopropellant thruster and standard
deviation of the mass.

Figure 18. The Pareto front of Multi-Objective
Multidisciplinary Robust Design Optimization
(MOMRDO), standard deviation of the total pressure
drop.

mization methods , all constraints were satis�ed. More-
over, the results shown in Table 7 show that in addition
to increasing the robustness of the design objectives,

the application of the proposed algorithm also led to
an increase in the robustness of the constraints.

4. Conclusions

In this study, a new Multi-Objective Robust Multi-
disciplinary Design Optimization (MORMDO) method
based on a fast and e�cient Uncertainty Analysis
(UA) strategy was developed. The Bi-Level Integrated
System Synthesis (BLISS) framework has been imple-
mented as an Multidisciplinary Design Optimization
(MDO). The calculation of the UA was done using
Progressive Latin Hypercube Sampling (PLHS). In this
strategy, the convergence of the UA determines the
sample size.

The performance of the UA and Robust Design
Optimization (RDO) algorithms was veri�ed by char-
acteristics consideration of optimization performance,
sampling algorithm convergence, robust optimization
and computational cost and also was validated by
benchmark functions. The validation results showed
that the application of the proposed method to Mul-
tidisciplinary Robust Design Optimization (MRDO)
problems leads to a systematic reduction of the sample
size which is required to obtain a good UA with suitable
accuracy. The results of the evaluations performed
in the sections of \Sampling convergence character-
istics" and \Computational cost" indicated that the
performance of progressive sampling was correct. On
the other hand, in Monte Carlo Simulation (MCS)
and LHS-based uncertainty analyses with �xed sample
size, at least 100,000 and 1,000 samples were needed
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to ensure the convergence of the analysis. However,
PLHS based UA converged with an average of 300
samples. This fact indicated a signi�cant reduction in
the computational cost of the PLHS based RDO.

In addition, the RDO of a hydrazine monopro-
pellant thruster was de�ned as a case study of the
proposed framework. Based on this, all subsystems
(structure, injector plate, catalyst bed, and nozzle)
were introduced and their governing equations were
extracted. In the monopropellant optimization process,
the maximum speci�c impulse (Isp) and minimum
weight and pressure drop were de�ned as the objec-
tives function of the RDO. Besides, the maximum
feed pressure, maximum catalyst bed loading factor,
catalyst bed aspect ratio, and nozzle input Mach
number were proposed as design constraints. Two
optimization problems including the deterministic and
non-deterministic optimization, have been solved for
this thruster. For multi-objective optimization, the
Pareto front was extracted as optimal response, and
the best optimum point was selected based on the
minimum distance strategy. The results of the deter-
ministic and non-deterministic optimization problems
were compared to each other. By comparing the
speci�c impulse of the non-deterministic optimal design
with the speci�c impulse of the deterministic optimal
design the average drop of 75.3% was obtained, while
the mass and pressure drop has increased by 13.53%
and 29.14%, respectively.

The results of this study showed that the proposed
method was a fast and e�cient method for optimizing
the design of the complex systems and that this
approach can be used for other engineering applications
as well.

Supplementary data

Supplementary data are available at:
http://scientiairanica.sharif.edu/ju�le?ar s�le=146238

Nomenclature

DP Pellet diameter
DCC Reaction chamber diameter
Hm Unit m dimensional hypercube
Isp Thruster speci�c impulse
K pre-exponential factor
LCC Reaction chamber Length
M Mass
m Number of design variables
n Sample size, injector groves number
PCC Reaction chamber pressure
S(n;m) Sample matrix

T0 Propellant inlet temperature
t Thickness of the structure
x Design variables
yi;j Auxiliary binary variables
�inj Propellant injection angle
�i Nozzle divergent angle
�P Thruster pressure drop
� Robust optimization objective
� Injector groves angle
� Population correction factor
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