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Abstract:  Particle Swarm Optimization (PSO) has many successful applications in solving 

continuous optimization problems. It has been adapted to solve discrete optimization problems 

using different variants, such as integer PSO (IPSO), discrete PSO (DPSO) and integer and 

categorical PSO (ICPSO). ICPSO, a recent PSO variant, uses probability distributions instead of the 

solution values. In this study, we applied ICPSO algorithm to solve dynamic integrated process 

planning, scheduling and due date assignment (DIPPSDDA) problem which is a higher integration 

level of well-known problems which are integrated process planning and scheduling (IPPS) and 

scheduling with due date assignment (SWDDA). Briefly, due date assignment function is integrated 

to IPPS problem as the third manufacturing function in DIPPSDDA. Furthermore, DIPPSDDA 

performs scheduling function in a dynamic environment where jobs arrive at the shop floor at any 

time. The objective of DIPPSDDA problem is to minimize the earliness, tardiness and given due 

dates length. Since the experimental results show that ICPSO converges, crossover and mutation 

operators used in genetic algorithms were implemented to ICPSO, namely modified ICPSO 

(MICPSO). Finally, experimental results indicate that the proposed MICPSO provides better 

performance as compared to genetic algorithms, ICPSO and modified discrete PSO. 
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1. Introduction 

Process planning, scheduling and due date assignment functions are three important 

functions for manufacturing environments. The first function, process planning prepares 

an engineering design into the final product by preparing detailed processing instructions 

and determines the necessary resources, machines and routes to produce a product [1]. 

The second function, scheduling is a decision-making process that takes the time-to-task 

assignment of scarce resources and aims to optimize one or more purposes [2]. The third 

function, due date assignment is a concept which increases its importance especially after 

the spread of the just-in-time concept and aims to deliver products to customers at the 

right time. In traditional manufacturing environments, these functions are usually 

handled separately that may cause inefficient schedules and due dates. Also, process 

plans which are prepared independently provide poor inputs to the scheduling as 

illustrated in Fig. 1. 

Studies on the integration of these three functions have been done rarely. In addition, 

common due date is determined in most of the studies and customers' weights are not 

considered. Weights of the customers are crucial for businesses because it is undesirable 

to process low-priority jobs earlier from others or to assign a very long due date time to 

very important customers. 

Integrated Process Planning and Scheduling (IPPS) is a well-known study area in the 

literature. IPPS has the benefits of choosing an alternative route, finding solutions for 

urgent jobs, and balancing the load of machines. IPPS increases the production efficiency 

of the companies, also helps to meet the demands on time and optimizes utilization of 

processes and resources. Especially when the studies in the last decade are examined, 
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Zhang and Wong [3] used the ant colony algorithm from heuristic approaches to solve the 

IPPS problem in a job shop environment. Sobeyko and Mönch [4] have implemented an 

IPPS application on a large scale flexible job shop type production environment where 

different product trees and routes can be found. They have addressed the weighted total 

delay as the objective function. They provided mixed integer programming for this 

problem. Chaudhry [5] proposed a genetic algorithm (GA) based on Microsoft Excel for 

the IPPS problem in the job shop environment. Luo et al. [6] addressed the multi-objective 

integrated process planning and scheduling (MOIPPS) problem, in that a production 

system required multiple objectives to be taken into account in the more realistic 

decision-making process. Zhang and Wong [7] studied three different models of IPPS 

problems, including setup times. They used a customized ant colony algorithm. Petrovic 

et al. [8] have tried a new heuristic antlion optimization for IPPS problem and showed its 

applicability. Manupati et al. [9] discussed a mobile-agent-based approach for IPPS. 

Besides, some of the studies on this subject can be given as Meenakshi Sundaram and Fu 

[10], Khoshnevis and Chen [11], Zhang and Mallur [12], Morad and Zalzala [13], Phanden 

et al. [14], Li and Gao [15], Phanden et al. [16], Li et al. [17] and Lin et al. [18]. 

There are also many studies in the literature on scheduling with due date assignment 

(SWDDA). Some of the studies are carried out in single machine environments, while 

others are performed in multi-machine environments. In most of the studies in the 

literature, it is seen that due dates are determined with respect to process times and the 

number of operations. Chen [19] and Gordon et al. [20] are further references on SWDDA. 

In recent years Zhao et al. [21], Xiong et al. [22], Yin et al. [23], Liu et al. [24], Wang et al. 

[25] Yin et al. [26] and Wang et al. [27] have studied on this area. Zhao et al. [21] examined 

a single machine scheduling and due date assignment, where the processing time of a job 

depends on both the start time and the position in the queue. Xiong et al. [22] discussed 

the problem of single machine scheduling and due date assignment in an environment 
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where machines are disrupted by a certain probability randomly. They have aimed to 

minimize the optimal job sequence and costs while setting the common due date. Wang 

et al. [25] investigated the multi-agent single-machine SWDDA problem, each aimed at 

optimizing its own performance. Shabtay [28] has investigated a scheduling problem in a 

single machine environment where due dates are controllable with batch delivery. Yin et 

al. [29] carried out a single machine SWDDA study including the costs of delivering jobs. 

Increasing the integration of these functions will help to improve the scheduling 

performance and global production efficiency of a manufacturing system. When these 

three functions are integrated, there will be strong communication between each other 

and provide better inputs to one another. Fig. 2 shows the benefits of the integrated 

manufacturing functions. When the studies that integrate three functions (process 

planning, scheduling and due date assignment - IPPSDDA) are examined, there are limited 

studies in the literature. Yuan [30] proved that only the IPPS problem to minimize early 

and tardy jobs and batch delivery costs is NP-hard. Thus, solving the problem of 

integration of the three functions will be even more complex. Demir and Taskin [31] have 

studied IPPSDDA as their Ph.D. thesis. Then, Ceven and Demir [32] studied on benefits of 

integrating the due date assignment with IPPS problem and Demir and Erden [33] studied 

on the integration of three functions by genetic algorithm and ant colony optimization to 

minimize the sum of weighted earliness, tardiness and due-dates of every job. Demir and 

Phanden [34] reviewed IPPSDDA literature in the book edited by Phanden et al. [16]. The 

IPPSDDA problem is a workable and remarkable research area. 

This study deals with the dynamic events on a shop floor. Some internal or external 

dynamic events may occur in real shop floors. For example, a machine break-down, an 

urgent job, or changes in due dates can lead to a breakdown of the previously prepared 

schedules or the occurrence of ineffective schedules. To overcome these problems, 

schedules should be made to react to dynamic events. Thus, the dynamic scheduling 
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approach, which is prepared using real-time information and adapted to unexpected 

events, will provide more successful results [35]. When the studies on dynamic scheduling 

are examined, it is revealed that dynamic scheduling is harder to solve than solving static 

scheduling [35], [36] and [37]. In this study, new job arrivals were considered as dynamic 

events and process planning, scheduling and due date assignment are integrated. 

There are numerous methods to solve combinational problems. One of them is PSO which 

is a heuristic algorithm that is often used as it is easy to implement in solving optimization 

problems. PSO has been widely used in literature, especially in IPPS problems. Ba et al. 

[38], have developed a multimodal program using the PSO algorithm for mass production 

to minimize production time. Petrovic et al. [39] focused on using a method based on PSO 

algorithm and chaos theory to investigate the field of search more extensively in IPPS 

problems and avoid the local optima. Yu et al. [40] developed a hybrid algorithm based 

on GA and PSO to solve the IPPS problem, which includes two different phases, static and 

dynamic. Petrovic et al. [41] offered a new algorithm for the optimization of flexible 

process plans based on the use of PSO and chaos theory. Wang et al. [42] also tried to 

solve the multipurpose IPPS problem by using PSO. In addition to these studies, many PSO 

studies are included in the literature. However, almost all PSO studies have variables that 

are of continuous value. This indicates that the classical PSO will be insufficient to solve 

discrete optimization models. As a result of the studies, many PSO variations such as 

integer PSO (IPSO), discrete PSO (DPSO), Binary PSO, Veeramachaneni PSO, Angle 

Modulated PSO, Discrete Estimation of Distribution Particle Swarm Optimization 

(DEDPSO) have been developed. One of the PSO variations that are used to eliminate this 

deficiency is the integer and categorical PSO (ICPSO), which is a type of PSO in which the 

values of the particles in the swarm are expressed by probability distributions. ICPSO has 

been used to solve DIPPSDDA problem in this study, since the due date assignment rules, 

the dispatching rules and the routes of the jobs have categorical data characteristics. In 
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most scheduling studies, the makespan is used as an objective function. However, in this 

study, it is aimed to minimize the total weighted earliness, total weighted tardiness and 

given weighted due dates length (E/T/D). 

With all our knowledge, the studies on DIPPSDDA are quite limited in the literature. Erden 

et al. [43] studied DIPPSDDA problem for the first time. In their study, genetic algorithms, 

simulated annealing, taboo search, and combination of these algorithms were used to 

solve the problem. Later Demir and Erden [33] studied DIPPSDDA problem by using ACO 

Algorithm.  In this study, ICPSO algorithm will be used for the first time for solving 

DIPPSDDA problem. The developed algorithm is modified, and it has been observed that 

the modified algorithm gives better results.  

The remainder of this paper is organized as follows. The DIPPSDDA problem is discussed 

in Section 2. PSO variants (ICPSO, MICPSO, MDPSO) are mentioned in Section 3. The 

developed algorithm steps are given in Section 4. Comparative results of the algorithm 

are given in Section 5. Finally, the results of the study and future works are mentioned in 

Section 6. 

2. Problem Definition  

DIPPSDDA problem can be considered as a contribution to the dynamic job shop 

scheduling problem (DJSSP). In general, in the job shop scheduling problem (JSSP),   n jobs 

are assigned to   m machine regarding an objective function. There are some assumptions 

in JSSP such as each machine can only perform one job at the same time, one operation 

can be processed on one machine at the same time, the machine does not fail when the 

operation starts on the machine, no urgent job arrives at the shop floor etc. On the 

contrary, machines may be broken down or urgent jobs may arrive at the shop floor in 

the dynamic JSSP model. Since the problem of DIPPSDDA is a variant of dynamic JSSP 
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problem, it is assumed that an urgent job can arrive at the shop floor. Besides, alternative 

process plans are used to create more effective schedules. 

In a DIPPSDDA model,   n number of jobs with o  number of operations and   r number of 

different routes are processed through   m number of machines. The processing time of an 

operation on a machine is generated using a normal distribution with a mean of 12 and a 

standard deviation of 6. Jobs are arriving at the system according to an exponential 

distribution with a mean of 10 and associated with a due date which is calculated using a 

due date assignment rule. Operation pending machine queue is selected by machine using 

dispatching rules as well. In this study, 8 different sizes of shop floors (SF) are produced 

for the problem and the data of the shop floors is shared in Table 1. 

As mentioned earlier, in an IPPS model, scheduling is carried out considering all process 

plans of the jobs. This enables more efficient and balanced scheduling for the shop floor. 

Another function integrated with scheduling is the due date assignment function. 

Significant gains in production efficiency can be achieved with the proper time of due 

dates. 

Scheduling problems may have a static or dynamic nature. In dynamic scheduling, 

unexpected events, such as machine break downs, new job arrivals or changes in due 

dates may affect the performance of the existing schedules. Unexpected events in a shop 

floor may result in loss of optimal schedules or they may generate infeasible schedules. 

To handle these problems, it is important to consider the unexpected events while 

scheduling. Dynamic scheduling models are much closer to actual shop floors and they 

are the most difficult problems to be solved among the scheduling problems. In this study, 

new job arrivals are studied as dynamic events. 
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The objective function developed for the problem is given as minimizing total weighted 

earliness, tardiness, and due dateǎΩ length of every job. Tardiness and earliness are 

calculated as in Eq. (1-2): 

( ),0j j jT max c d= -                                          (1) 

( ),0j j jE max d c= -                                          (2) 

Where jT , jE  denote the tardiness and earliness time of the j -th job, respectively. jc , 

 jd corresponds to the completion and given due date time of the j -th job, respectively. 

If the job is completed after its given due date time, tardiness will occur. In case of 

tardiness, the penalty for early completion is 0, as expected. If the job is completed before 

its given due date time, earliness will occur and in case of the early completion time, the 

tardiness penalty is given as 0. Weighted due dates are penalized along with weighted 

earliness and tardiness and the penalty values of E/T/D are calculated as in Eq. (3-6): 
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total D E TP P P P= + +                                         (6) 

Where 
DP , 

EP , 
TP , 

totalP  denote the penalties of a due date, earliness, tardiness, and total 

penalty, respectively. jw  is the weight of the j -th job. The objective function of the model 

is to minimize the total penalties. Then the final objective function ( )minf  which is a fitness 

value of the solution is represented as in Eq. (7): 
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1

n

min total

j

f P
=

=ä                                                       (7) 

Many due date assignment rules have been developed in studies [25], [44], [45], [46] and 

[47]. It can be experimentally revealed which of these rules will give better results. The 

due date assignment rules used in this study are given in Table 2 with explanation and 

equations. 

Where 
ia ,

ip ,   io  denote the arrival time, processing time and the operation number of 

the i -th job, respectively. 
avP  is the average processing time of all waiting jobs. ( )1 2, x xw w  

are determined proportionally inverse to the job weights and 1, 2, 3xk =  and 

1 2 3: , , 3
2 2

av av

x av

P P
q q q P q= = = . 

After determining the due dates of each job, dispatching rule for scheduling must be 

determined. There are also many dispatching rule studies in the literature. With these 

rules, it is determined which of the waiting job is to be processed next. Dispatching rules 

can be divided into 4 categories which are process time based, due date based, 

combination rules, and mixed-based rules [48]. For example, the SPT rule is a process-

based rule. In SPT, the job with the shortest processing time is prioritized. Process time-

based rules do not take due dates into account. EDD can be given as an example of rules 

that consider the due date [36]. The EDD rule prioritizes the job with the shortest due 

date. In the combination rules, the slack or critical rate is determined. Detailed studies on 

this subject can be given as follows: Adibi et al. [49], Amin and El-Bouri [50], Dominic et 

al. [51], Heger et al. [52], Pierreval and Mebarki [53], Qi et al. [54], Baker and Kanet [55], 

Raghu and Rajendran [56], Vepsalainen and Morton [57]. As in the rules for due date 

assignment, it is possible to find out which dispatching rule gives better solutions as a 

result of experimental studies. The formulas of the priority index of dispatching rules are 

given in Table 3. 
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Where 
iI  denotes the priority index of the i -th job and max 

iI  is selected among the jobs 

waiting. Slack is calculated as given Eq. (8): 

i i islack d p a= - -                                         (8) 

3. Application of ICPSO to DIPPSDDA  

Proposed ICPSO algorithm is based on the study of Strasser et al. [58]. When the algorithm 

ƛǎ ŀǇǇƭƛŜŘ ǿƛǘƘ {ǘǊŀǎǎŜǊΩǎ ŦƻǊƳΣ ǎƻƭǳǘƛƻƴ ǇŜǊŦƻǊƳŀƴŎŜ Ǝƻǘ ǎǘǳŎƪ ǘƻ ƭƻŎŀƭ ƳƛƴƛƳŀΦ ¢ƻ 

overcome this, ICPSO has been modified by the addition of crossover and mutation 

operators. Thus, the developed algorithm has been made more useful for integrated 

scheduling problems. The position vector of particles in the classical PSO structure is 

denoted as pX  which is a candidate solution of particle p . To keep categorical data in 

ICPSO, a particle representation is created using probability distributions. All dimensions 

in this representation create probability distributions for a solution to the problem. For 

this integrated problem, pX  is divided into 3 parts 
,   ,   , , ,p p ddrule p dsprule p routesX X X Xè ø=ê ú as each 

part is valid at different intervals. For p -th particle, its due date assignment rule position 

can be represented as 
, ,1, ,2, , 1,    ,  ,  ,p ddrule p ddrule p ddrule p N ddruleX D D Dè ø= »ê ú where each , ,p i ddruleD  

represents the probability distribution for variable , ,p i ddruleX  and 1N  denotes the due date 

ŀǎǎƛƎƴƳŜƴǘ ǊǳƭŜ ǎƛȊŜΦ ¢ƘŜƴΣ ŜǾŜǊȅ ŜƭŜƳŜƴǘ ƛƴ ǘƘŜ ǇŀǊǘƛŎƭŜΩǎ ŘǳŜ ŘŀǘŜ Ǉƻǎƛǘƛƻƴ ǾŜŎǘƻǊ ƛǎ ŀƭǎƻ 

consists of a set of distributions 1 2 1

, , , , , , , ,, ,..., N

p i ddrule p i ddrule p i ddrule p i ddruleD d d dè ø=ê ú where 
, ,

a

p i ddruled  

denotes the probability variable , ,p i ddruleX  assumes value a  for p -th particle. Similarly, for 

p -th particle, the dispatching rule position vector can be represented as 

, ,1, ,2, , 2,    ,  ,  ,p dsprule p dsprule p dsprule p N dspruleX D D Dè ø= »ê ú where 2N  denotes dispatching rule size. For 

routes dimension, we need probability distributions for all jobs in the shop floor which 

can be represented as 
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0 0 1 1

, ,1, , 3, ,1, , 3, ,1, , 3,  , , , , , , , ,...,j j j j j n j n

p routes p routes p N routes p routes p N routes p routes p N routesX D D D D D D= = = = = =è øè ø è ø è ø= » » »ê ú ê ú ê úê ú
 where 

,  ,

j k

p i routesD =  denotes the probability distribution of , ,p i routesX  for the routes ofk -th job andp -

th particle and 3N  is the number of routes. The probability vector routes of each job can 

be represented as 1, 2, 3,

, , , , , , , ,, ,...,j k j k j k N j k

p i routes p i routes p i routes p i routesD d d d= = = =è ø=ê ú where ,

, ,

a j k

p i routesd =  denotes the 

probability that variable 
, ,

j k

p i routesX =  assumes value a  of the p -th particle. 

In classical PSO, particles move using velocity vectors. Again, we have 3 dimensions for 

velocity vectors. ! ǇŀǊǘƛŎƭŜΩǎ ŘǳŜ ŘŀǘŜ ŀǎǎƛƎƴƳŜƴǘ ǊǳƭŜ ǾŜŎǘƻǊ ƻŦ n  vectors f which is one 

for each variable in the solution. The velocity vector of the due date assignment rules 

dimension can be represented as 
, ,1, ,2, , 1,, , ,p ddrule p ddrule p ddrule p N ddruleV f f fè ø= »ê ú and 

1 2 1

, , , , , , , ,, , , N

p i ddrule p i ddrule p i ddrule p i ddrulef y y yè ø= »ê ú where 
,

i

p ddruley  denotes p -th particle velocity for i

-th due date assignment rule. Similarly, dispatching rules can be represented as 

, ,1, ,2, , 2,, , ,p dsprule p dsprule p dsprule p N dspruleV f f fè ø= »ê ú and 1 2 2

, , , , , , , ,, , , N

p i dsprule p i dsprule p i dsprule p i dsprulef y y yè ø= »ê ú. 

Lastly, routes vector consists of n  jobs can be represented as 

1 2

, , , ,, , ,j j j n

p routes p routes p routes p routesV V V V= = =è ø= »ê ú and routes of k -th job can be represented as 

, ,1, ,2, , 3,, , ,j k j k j k j k

p routes p routes p routes p N routesV f f f= = = =è ø= »ê ú where  1, 2, 3,

, , , , , , , ,, , ,j k j k j k N j k

p i routes p i routes p i routes p i routesf y y y= = = =è ø= »ê ú. 

The velocity vector in the classical PSO has been modified to make it effective for this 

problem specifically. The particles update position vectors at each iteration. The velocity 

vector of due date assignment rule, dispatching rule and routes of each job are given in 

Eq. (9-11): 

( ) ( ), , 1 1 , , 2 2 ,     
bestp ddrule p ddrule best p ddrule p ddrule g ddrule pddruleV V c r p X c r p Xw= + + + +                                           (9) 

( ) ( ), , 1 1 , , 2 2 ,     
bestp dsprule p dsprule best p dsprule p dsprule g dsprule p dspruleV V c r p X c r p Xw= + + + +                                       (10) 

( ) ( ), , 1 1 , 2 2 ,     
routes routes

j k j k j k j k j k j k

p routes p routes best p routes gbest p routesV V c r p X c r p Xw= = = = = == + + + +                                                       (11) 

Where; 
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 w: inertia rate,  

1c : cognition constant,  

1r  : cognition random number within the range of [0,1] 

2c : social constant 

2r : social random number within the range of [0,1]  

bestgp : Global best particle 

bestp  : Personal best particle 

New position vectors that are created from velocity vectors are given in Eq. (12-14): 

, , ,p ddrule p ddrule p ddruleX X V= +                 (12) 

, , ,p dsprule p dsprule p dspruleX X V= +                 (13) 

, , ,

j k j k j k

p routes p routes p routesX X V= = == +                                          (14) 

Where 1 2

, , , ,, , ,j j j n

p routes p routes p routes p routesX X X X= = =è ø= »ê ú. The proposed method is presented as 

follows: firstly, an initial swarm with random probabilities is generated. Then, the 

ǇŀǊǘƛŎƭŜΩǎ ŘǳŜ ŘŀǘŜ ŀǎǎƛƎƴƳŜƴǘΣ ŘƛǎǇŀǘŎƘƛƴƎ ǊǳƭŜǎ ŀƴŘ ǊƻǳǘŜǎ ƻŦ ŜŀŎƘ Ƨƻō ǾŀƭǳŜǎ ŀǊŜ 

determined according to probabilities. All solution values in the initial swarm are also 

recorded as personal best value ( )bestp  of the particles. Thus, the initial swarm is obtained. 

The fitness value of the particle which has the best fitness value in the swarm is recorded 

as global best values ( )
bestgp . At the same time, the best particle is saved as a particle of 

bestgp . 

In the next iterations, the probabilities for the particles of the swarm are updated using 

PSO velocity and position equations. The value of the due date assignment and 

dispatching rules and routes obtained according to the assigned probability values and 

the fitness for the particle is calculated. If the fitness value ( )F  ƻŦ ǘƘŜ ŎǳǊǊŜƴǘ ǇŀǊǘƛŎƭŜΩǎ 

( )currentp  ƛǎ ōŜǘǘŜǊ ǘƘŀƴ ǘƘŜ ŎǳǊǊŜƴǘ ǇŀǊǘƛŎƭŜΩǎ ōŜǎǘ ŦƛǘƴŜǎǎ ( )bestp , the 
bestp  of the particle is 
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updated and the particle is recorded as
bestp . Then, the same process is done for all 

particles, it is examined whether there is a particle with a value of better fitness than 
bestgp

. If a better fitness value is achieved, the 
bestgp  is updated and the relevant particle is saved 

as 
bestgp  particle. The algorithm is iterated until the iteration size , )( iter sfk . Pseudo codes of 

the proposed ICPSO is given in Algorithm 1. 

4. Other solution approaches 

4.1. Genetic Algorithms (GA) 

Genetic algorithms were developed by Holland [59]. GA is focused on solving 

computational optimization problems, inspired by the evolutions of species. Iterations are 

performed based on the high probability of individuals with better compliance values in 

the GA to move to the next population. Iterations re-selection, mutation and crossover 

operators are used. GA has solved many scheduling and IPPS problems optimization. 

Similar studies with the problem discussed in this study can be given as follows: Li et al. 

[60], Lin et al. [61], Park and Choi [62], Pezzella et al. [63], Xia et al. [64], Zhang et al. [65].  

The proposed algorithm is working with several steps. In the initialize population step, we 

proposed a classical GA for solving DIPPSDDA problem as well. Each gene of the solution 

chromosome stores a due date assignment rule, a dispatching rule, and routes of jobs, 

respectively. For initialization of GA, a random search is applied for 20 iterations and the 

10 best chromosomes are selected for the initial population.  

Selection: GA selection operator selects 3 pairs of chromosomes and 4 chromosomes for 

crossover and mutation operations, respectively. A ranking probability method is applied 

for the selection operator which has better performance for this problem. Because the 

performance difference between the best and the worst chromosome is getting smaller 
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towards the end of the iterations. Chromosome probabilities for the selection operator 

are fixed at every iteration and are given in Table 4. In here, we give more probability to 

be selected to the chromosomes which have better fitness values. 

Crossover: Firstly, we determine the crossover point number which is based on the 

number of jobs as the number of jobs is related to the chromosome size. The number of 

crossover points is calculated using ( *0.1)sizeceil gene  equation. Secondly, we select 

crossover points with the selection probabilities of each gene. In here, we have two 

dominant genes which are due date assignment and dispatching rule genes. Probabilities 

of those genes are given 0.25, 0.25, respectively. Other genes which are the selected 

routes of the jobs are given 0.5 probabilities in total. Because due date assignment and 

dispatching rule genes have a significant impact on the fitness value. If we change these 

genes, the performance function will be dramatically affected. On the other hand, if we 

change a route of a job, performance function will not be affected that much. These genes 

should be selected more to see which pair working well together. Therefore, these two 

genes have been identified as dominant genes in the solution and a higher selection 

probability has been given those genes. Thirdly, we apply a multi-point crossover operator 

between two parent chromosomes to produce new two offspring chromosomes. 

Mutation: Like the crossover operator, we determine the mutation points number using 

the following equation ( *0.3)sizeceil gene  in the first step. At the second step, we apply the 

mutation operator to the selected genes. After crossover and mutation operators, we 

have a new population with 20 chromosomes. To fix the population size to 10, we 

determined the population by selecting the best 10 chromosomes. At the last step, we 

iterate the selection, crossover and mutation operators until the iteration number is 

reached. The parameters setting of GA is given in Table 4.   

4.2. Modified ICPSO (GA/ICPSO) 
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We applied different variants of PSO to find better solutions. In the algorithm of MICPSO, 

we add mutation and crossover operators to classical ICPSO. ICPSO tries to optimize the 

probabilities of the solution but in this study when pure ICPSO is used improvements 

become harder. That is why we integrate crossover and mutation operators to the ICPSO 

algorithm and change a certain number of genes at inertia, cognitive and social part of the 

algorithm. ICPSO calculates the probabilities and generates new solution values for the 

problem at each iteration using V  and X  vectors. Applying mutation operator and then 

crossover to each particle with 
bestp  and 

bestg  improve solution performance. At first, we 

applied mutation operator to each particle and with 0.25 probability each gene is replaced 

with possible other values and this part constitutes the moment of inertia part of the 

algorithm. Later, each particle is crossed over with 
bestp  and each gene is replaced with 

0.25 probability with the associated 
bestp  values and this part constitutes the cognitive 

part of the algorithm. Finally, with 0.25 probability each gene is crossed over with 

associated 
bestg  values and this constitutes the social part of the algorithm. These updates 

are all applied for all particles in the swarm and we obtained better results. These steps 

are stopped when the iteration size is reached. Pseudo codes of the proposed MICPSO is 

given in Algorithm 2. 

4.3. Modified Discrete PSO (MDPSO) 

Here, Modified Discrete Particle Swarm Optimization (MDPSO) [66] is adapted to solve 

the problem in which the possible structure of ICPSO has been tried to be improved. In 

the study of Pan et al. [66], a probability is given for every gene of particles to be mutated 

or crossed over. For example, according to Pan et al. [66], firstly every gene is mutated 

with approximately 25% probability and later every gene is changed into associated  bestp

value with 25% probability and finally ever gene is changed into associated  bestg value with 

%25 probability. 
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In our MDPSO algorithm, we select %25 of genes of the particle randomly. Those genes 

are mutated and changed into another possible value (Moment of Inertia applied). After 

that, we select again randomly %25 of genes of the particle and these genes are changed 

into associated  bestp values (Cognitive part is applied). Thus, each particle and associated 

 bestp values are crossed over. Finally, we select %25 of genes of the particle again and 

change the values of these genes with associated  bestg values (Social part is applied) and 

thus, the crossover is applied between every particle and 
bestg  particle. This makes MDPSO 

more practical to apply. Pseudo codes of the proposed MDPSO is given in Algorithm 3. 

5. Experimental Results 

In this study, the proposed algorithms are coded in Python programming language on 

LƴǘŜƭϯ /ƻǊŜϰ ƛр-6200U CPU @ 2.30GHz with 8 GB RAM a personal computer. Appropriate 

Python packages such as NumPy [67], Matplotlib [68], pandas [69], salabim [70] are 

utilized to analyze and solve the problem. Events such as new job arrivals, the end of an 

operation of the jobs or the assignment of a job to a machine are simulated with the help 

of salabim package. Besides, the job to be selected by the machine among the jobs waiting 

for machine queue is made by taking into consideration the dispatching rule. Thus, it is 

aimed to find the optimal dispatching rule, due date assignment rule and routes of each 

job combinations. Because there is no research data on DIPPSDDA in published papers, 

we generated 8 different sizes of shop floors and their data for this problem. The data 

used for this study is given as the supplementary file.  

One of the outcomes of this study is the most appropriate schedules for production. 

Schedules obtained from the last iteration can be shown using Gantt charts. Gantt charts 

created for this study also shows the arrival of jobs. The arrival time of the jobs and the 

first machine to be assigned at the time of arrival are shown with the help of arrows. A 

Gantt chart is created for all shop floors, but only a Gantt chart is shown for the first shop 
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floor. As it is too hard to follow charts in medium and big size shops. Each job in the 

diagram is shown in a different color. Boxed pieces show the operations of jobs. Since 

there are 10 operations in every job, the jobs are shown with 10 pieces. The Gantt chart 

of the optimal schedule obtained by MICPSO is shown in Fig. 3. 

The proposed MICPSO algorithm is applied to the data and the experimental results of 

MICPSO compared with the results of MDPSO, ICPSO and GA in 8 different sizes of shop 

floors which are illustrated in Fig. 4. 

As it can be seen from Fig. 4, MICPSO gave the best results in all shop floors except Shop 

Floor 1, 4 and 5. From figures, mostly MICPSO algorithm has better performance than the 

other algorithms. Meanwhile, the CPU time of ICPSO is better than other algorithms. Also, 

the best, average and worst results for all shop floors can be seen in detail in Fig. 5. 

According to Table 5, MICPSO and MDPSO outperformed GA and pure ICPSO. At the five 

out of eight shop floors, MICPSO gave better performance but in shop floor 1, 4 and 5 

MDPSO gave better performance. Since MDPSO is very practical to apply, it is also a 

promising solution technique but mostly MICPSO gave better performance and can be 

recommended for DIPPSDDA problems.  

According to Table 6, most of the jobs have earliness. This is because tardiness is 

undesired with greater fixed and variable cost terms. Fixed and variable cost parameters 

for earliness are 5 and 4, but on the other hand, fixed and variable cost parameters and 

coefficients for tardiness are 8 and 6. If a job is tardy instead of early than we penalize the 

job with an additional 3-unit fixed penalty in terms of fixed cost and variable cost 

coefficient becomes 6 instead of 4. The last column of the table shows the total penalty 
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for every job and if we sum up the last column then we get the total penalty of all jobs 

which gives fitness function for this shop floor. 

The best, average (Avg) and worst results of executing eight shop floors with all algorithms 

are presented in Table 7. In general, MICPSO had better performance for eight shop floors 

by having minimum best values mostly. Further analysis about the performance of the 

algorithms was done using one-way analysis of variance (ANOVA) test to check if there is 

a significant difference between the results of the algorithms. Average values of the 

fitness functions are selected as the response values and the algorithms are assumed as 

factors. To perform the ANOVA analysis, we run the program ten times with different seed 

values in the shop floor 8 where the highest variability is expected. The results are given 

in Table 8.  

Before performing ANOVA test, we need to check the normality assumption. As a result 

of the normality test, it was determined that normality is not satisfied as it can be seen in 

Fig. 6 ( 0.010p< ). For this reason, the non-parametric test, Kruskal-Wallis test, was 

performed instead of ANOVA. Kruskal-Wallis test results show a strong significant 

difference between the algorithm results because the p -value (0.007) is too close to zero 

as shown in Table 9 and 10. The means plot in the least significant difference intervals at 

99% confidence is illustrated in Fig. 7. Those results are indicating the superiority of the 

MICPSO algorithm compared with GA, MDPSO and ICPSO. 

6. Conclusion 

In this study, process planning, dynamic scheduling and due date assignment functions 

are integrated which is a novel subject in the literature. It is assumed that the jobs arrive 

at the shop floor with the exponential distribution randomly. The problem is modelled, 

and popular population-based PSO and GA algorithms are preferred from meta-heuristic 
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algorithms as solution methods. Since GA solution has been introduced in the previous 

studies [71,72], the structure of PSO which is developed and modified for the solution of 

the problem is mentioned more than GA in the application section of the paper. The 

results of the experimental studies show that MICPSO has better performance and quality 

and is one of the best methods in terms of both the best solution and CPU usage rates. 

Since classical PSO is usually worked with continuous data. ICPSO, a variation of PSO, was 

utilized in this study due to the discrete and categorical nature of the problem. It has been 

ensured that ICPSO is modified for the problem with some improvements. Since ICPSO is 

a newly developed PSO variation algorithm; the implementation of the algorithm among 

the NP-hard combinational problems is limited in the literature. Only scheduling problem 

with more than 3 machines is an NP-hard optimization problem [73]. Here a study has 

been carried out to fulfil this gap. The method developed has been called modified PSO 

and saved as a new method for further studies. To sum up, these conditions indicate the 

original aspects of the study.  

With DIPPSDDA more efficient, effective, and balanced schedules in the shop floors can 

be obtained. Because process plans, schedules and due dates are tried to be optimized 

using the alternative process plans in DIPPSDDA. IPPS problems have reached a certain 

number of studies and many issues have been studied so far. Therefore, there is a need 

for new study subjects and ideas. We presented a new study area for the researchers 

working on IPPS and SWDDA. This issue needs further work in the future. We can list the 

possible future research that can be focused on as follows:  

Comparison of the other discrete methods with proposed ICPSO. 

¶ Solving DIPPSDDA model with other successful algorithms (Artificial Bee Colony, 

Honeybee Colony etc.) 

¶ Including more objectives such as makespan to consider the DIPPSDDA problem 

in the form of target programming. 
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¶ Adding other dynamic events to the DIPPSDDA problem such as machine break 

downs, job cancellations. 

¶ Integrating other production functions such as delivery manufacturing function to 

the DIPPSDDA problem. 

Supplementary Materials: Representative data in the main text added here as 

ǎǳǇǇƭŜƳŜƴǘŀǊȅ άŘŀǘŀǎŜǘΦȊƛǇέ ȊƛǇ ŦƛƭŜΦ  
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Table 1.  

Numbers SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8 

Jobs 25 50 75 100 125 150 175 200 

Machines 5 10 15 20 25 30 35 40 

Operations 10 10 10 10 10 10 10 10 

Routes 5 5 5 5 3 3 3 3 

Iterations 150 150 100 100 75 75 50 50 
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Table 2.  

Rule No Name Explanation Equations 

0,1,2 SLK Slack i i i xd a p q= + +  

3,4,5 WSLK Weighted slack 1i i i x xd a p w q= + +  

6,7,8 TWK Total work content i i x id a k p= +  

9,10,11 WTWK Weighted total work content 1i i x x id a w k p= +  

12,13,14 NOPPT 
Number of operations plus 
processing time 

5i i i x id a p k o= + +  

15,16,17 WNOPPT 
The weighted number of operations 
plus processing time 15i i i x x id a p w k o= + +  

18 RDM Random-allowance due dates ( )~ 3 ,i i av avd a N P P= +  

19,20,21,22,23,
24,25,26,27 

PPW Processing-time-plus-wait i i x i xd a k p q= + +  

28,29,30,31,32,
33,34,35,36 

WPPW Weighted processing-time-plus-wait 2 1i i x x i x xd a w k p w q= + +  
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Table 3.  

Rule No Name Explanation Equations 

0-1-2 WATC 
Weighted Apparent Tardiness 
Cost 

( )max ,0slack

Kpi

i

i

w
I e

p

å õ
æ öæ ö
ç ÷=  

3-4-5 ATC Apparent Tardiness Cost 

( ),0

1
max slack

Kp

i

i

I e
p

å õ
æ öæ ö
ç ÷=  

6 WMS Weighted Minimum Slack ( )i iI slack w=-  

7 MS Minimum Slack ( )iI slack=-  

8 WSPT 
Weighted shortest process 
time 

i

i

i

w
I

p
=  

9 SPT Shortest process time 
1

i

i

I
p

=  

10 WLPT Weighted longest process time 
i

i

i

p
I

w
=  

11 LPT Longest process time i iI p=  

12 WSOT 
Weighted shortest operation 
time 

i

i

ij

w
I

p
=  

13 SOT Shortest operation time 
1

i

ij

I
p
=  

14 WLOT 
Weighted longest operation 
time 

ij

i

i

p
I

w
=  

15 LOT Longest operation time i ijI p=  

16 EDD Earliest due date 
1

i

i

I
d
=  

17 WEDD Weighted Earliest due date 
i

i

i

w
I

d
=  

18 ERD Earliest release date 
1

i

i

I
a
=  

19 WERD Weighted earliest release date 
i

i

i

w
I

a
=  

20 SIRO Service in random order random 

21 FIFO First in first out 
1

i

i

I
a
=  

22 LIFO Last in first out i iI a=  
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Table 4.  

Parameters SF1 

Population size 10 
Crossover probability 0.7 
Mutation probability 0.3 
Number of crossover points  ( )( )2 *0.1ceil n+  

Number of mutation points ( )( )2 *0.3ceil n+  

Chromosome probabilities for 
selection 

[0.3, 0.2, 0.15, 0.12, 0.10, 0.07, 0.03, 0.02, 0.006, 
0.004] 
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Table 5.  

Shop Floor Best Algorithm Fitness Value 

SF1 MDPSO 155.93 
SF2 MICPSO 285.09 
SF3 MICPSO 348.69 
SF4 MDPSO 470.66 
SF5 MDPSO 629.16 
SF6 MICPSO 682.71 
SF7 MICPSO 810.50 
SF8 MICPSO 964.31 
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Table 6.  

Job Weight 
Arrival  
time(s) 

Departure  
time(s) 

Given  
due date(s) 

Earliness Tardiness 
Penalty  
earliness 

Penalty  
tardiness 

Penalty 
due dates 

Penalty 
total 

0 1.00 71 218 274.41 56.41 0 5.47 0 3.39 8.86 
1 0.66 76 260 269.28 9.28 0 3.35 0 2.13 5.48 
2 0.33 83 227 268.41 41.41 0 1.76 0 1.02 2.78 
3 0.33 88 303 284.66 0 18.34 0 2.06 1.08 3.14 
4 0.66 98 290 291.28 1.28 0 3.31 0 2.13 5.43 
5 1.00 124 259 299.28 40.28 0 5.34 0 2.92 8.26 
6 0.33 133 312 321.78 9.78 0 1.68 0 1.04 2.72 
7 0.66 188 334 362.16 28.16 0 3.45 0 1.92 5.37 
8 0.66 196 339 362.28 23.28 0 3.43 0 1.83 5.26 
9 0.66 218 364 442.78 78.78 0 3.73 0 2.47 6.21 
10 0.33 288 432 493.66 61.66 0 1.82 0 1.13 2.95 
11 0.66 353 484 520.41 36.41 0 3.5 0 1.84 5.34 
12 0.66 367 646 554.66 0 91.34 0 4.71 2.06 6.78 
13 1.00 371 553 557.53 4.53 0 5.04 0 3.11 8.15 
14 0.66 377 619 550.03 0 68.97 0 4.53 1.9 6.43 
15 1.00 393 573 595.28 22.28 0 5.19 0 3.37 8.56 
16 0.66 408 556 590.03 34.03 0 3.49 0 2 5.49 
17 0.66 416 753 616.03 0 136.97 0 5.09 2.2 7.29 
18 1.00 429 578 602.03 24.03 0 5.20 0 2.88 8.08 
19 0.66 458 601 628.78 27.78 0 3.45 0 1.88 5.33 
20 1.00 467 601 620.91 19.91 0 5.17 0 2.57 7.73 
21 0.33 468 647 705.16 58.16 0 1.81 0 1.3 3.11 
22 1.00 492 716 716.78 0.78 0 5.01 0 3.75 8.75 
23 0.66 496 657 664.53 7.53 0 3.34 0 1.85 5.2 
24 1.00 537 727 744.91 17.91 0 5.15 0 3.47 8.61 
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Table 7.  

 

GA ICPSO MICPSO MDPSO 

Best Avg Worst Best Avg Worst Best Avg Worst Best Avg Worst 

SF1 175.8 176.4 188.4 176.5 182.1 204.6 163.2 166.4 204.6 155.9 161.6 192.3 

SF2 304.6 308.8 349.1 306.5 307.2 366.5 285.1 296.3 366.5 292.6 309.3 350.2 

SF3 377.5 378.5 386.4 359.2 365.7 414.0 348.7 357.5 414.0 349.1 366.9 414.1 

SF4 486.4 503.8 533.0 488.5 494.1 582.0 473.1 509.7 582.0 470.7 477.4 499.4 

SF5 636.0 693.3 838.1 642.4 650.9 658.8 630.5 635.9 658.8 629.2 650.5 797.3 

SF6 690.7 692.7 701.9 705.2 708.6 809.8 682.7 739.0 809.8 685.4 689.0 699.7 

SF7 897.1 898.5 910.8 832.3 834.9 844.3 810.5 818.6 844.3 813.6 822.1 859.1 

SF8 1098.3 1099.8 1108.6 994.9 996.6 1000.1 994.9 996.6 1000.1 967.9 1047.3 1087.0 
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Table 8.  

 GA ICPSO MICPSO MDPSO 

Seeds Best Avg Worst Best Avg Worst Best Avg Worst Best Avg Worst 

1 974.3 991.8 1180.1 988.3 998.9 1104.7 966.0 982.1 1104.7 993.8 1086.3 1292.2 

2 976.1 985.8 1010.2 982.8 1018.3 1220.9 978.4 993.4 1220.9 973.5 981.9 992.9 

3 977.0 987.5 1172.3 984.6 993.3 1017.9 965.1 977.8 1017.9 971.0 977.2 1008.7 

4 992.8 1032.2 1068.1 983.0 994.3 1076.1 967.7 984.6 1076.1 1042.6 1051.8 1082.0 

5 1088.7 1104.5 1158.4 989.0 1013.0 1151.0 974.2 1029.7 1151.0 970.1 977.3 1005.4 

6 988.0 1046.5 1079.4 986.0 987.7 989.3 962.1 969.6 989.3 970.2 979.9 1101.2 

7 1050.9 1058.4 1068.2 988.1 992.1 999.4 967.2 974.2 999.4 970.1 1020.9 1110.9 

8 1088.6 1091.4 1106.4 989.0 993.0 997.9 963.5 968.0 997.9 967.9 1017.0 1233.6 

9 1078.4 1088.9 1141.4 990.0 1005.8 1221.8 967.8 1002.8 1221.8 968.9 976.7 1003.3 

10 1098.3 1099.8 1108.6 994.9 996.6 1000.1 964.3 971.5 1000.1 967.9 1047.3 1087.0 
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Table 9.  

Algorithm N Median Mean Rank Z-Value 

GA 10 1052.48 29.5 2.81 

ICPSO 10 995.44 21.4 0.28 

MDPSO 10 999.44 19.6 -0.28 

MICPSO 10 979.97 11.5 -2.81 

Overall 40  20.5  
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Table 10.  

Null hypothesis IєΥ !ƭƭ ƳŜŘƛŀƴǎ ŀǊŜ Ŝǉǳŀƭ 

Alternative hypothesis IѕΥ !ǘ ƭŜŀǎǘ ƻƴŜ ƳŜŘƛŀƴ ƛǎ ŘƛŦŦŜǊŜƴǘ 

DF H-Value P-Value 

3 11.97 0.007 
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Selected Shop Floor Number = sf  

Determine PSO parameters N , w, 
1c , 

1r , 
2c , 

2r , ,iter sfk  

Generate N  particles for initial swarm 

   gbestF inf=  

For 
currentp  in initial swarm: 

 Assign  pX  vector probabilities to 
currentp  randomly 

 Assign pV  as zero-vector 

 Make sample values from pX  vector 

 Calculate
currentpF  

 
currentpbest pF F=  

 if 
 currentp gbestF F¢ : 

  
currentbest pg F=  

  
bestg currentp p=  

 Else: 

     gbest gbestF F=  

 end if 

While ,    iter sfgeneration k< : 

 0totalF =  

 For 
currentp  in new swarm: 

    1generation+= 

  
1 2,r r  = random number 

  Determine new velocity vectors pV   

  Determine new position vectors   pX . 

  Weight all probabilities to make sum to 1 

  Generate sample values of pX  with probabilities of position vector.  

  Run simulation and calculate new fitness for 
currentp  

  If 
current bestp pF F¢ : 

   
best currentp pF F=  

   
best currentp p=  

  else: 

   
best bestp p=  

  End if 

  if 
current bestp gF F¢ : 

   
best currentg pF F=  

   
best currentg p=  

  End if 

  
currenttotal pF F+=  

 end for 

 

Algorithm 1.   




