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Abstract. Particle Swarm Optimization (PSO) has many successful applications in solv-
ing continuous optimization problems. It has been adopted to solve discrete optimization
problems using di�erent variants, such as Integer PSO (IPSO), Discrete PSO (DPSO),
and Integer and Categorical PSO (ICPSO). ICPSO, a recent PSO variant, uses probability
distributions instead of solution values. In this study, ICPSO algorithm is applied to
solve the Dynamic Integrated Process Planning, Scheduling, and Due Date Assignment
(DIPPSDDA) problem, which is a higher integration level of well-known problems including
Integrated Process Planning and Scheduling (IPPS) and Scheduling With Due Date
Assignment (SWDDA). Briey, the due date assignment function is integrated into IPPS
problem as the third manufacturing function in DIPPSDDA. Furthermore, DIPPSDDA
implements the scheduling function in a dynamic environment where jobs arrive at the
shop oor at any time. The objective of the DIPPSDDA problem is to minimize the
earliness, tardiness, and length of given due dates. Since experimental results show that
ICPSO converges, crossover and mutation operators used in genetic algorithms are applied
to ICPSO, namely Modi�ed ICPSO (MICPSO). Finally, experimental results indicate that
the proposed MICPSO outperforms genetic algorithms, ICPSO, and modi�ed DPSO.
© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Process planning, scheduling, and due date assignment
functions are three important functions for manufac-
turing environments. The �rst function is process
planning, which prepares an engineering design for a
�nal product by providing detailed processing instruc-
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tions and then, determines the necessary resources,
machines, and routes to produce a product [1]. The sec-
ond function is scheduling, which is a decision-making
process that considers the time-to-task assignment of
scarce resources and aims to optimize one or more pur-
poses [2]. The third function is due date assignment,
which has an increasing importance with the arise of
just-in-time concept in manufacturing environments,
and aims to deliver products to customers at the right
time. In traditional manufacturing environments, these
functions are usually handled separately, which may
cause ine�cient schedules and due dates. Also, process
plans, which are prepared independently, provide poor
inputs to the scheduling, as illustrated in Figure 1.
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Figure 1. Unintegrated process planning, scheduling, and
due date assignment.

Research on the integration of these three func-
tions is too limited in scope. In addition, most of
the related studies have determined common due dates
while they overlooked the issue of customer weight.
The issue of customer weight is crucial for businesses
because it is undesirable to process low-priority jobs
earlier than others or to assign a very long due date to
very important customers.

Integrated Process Planning and Scheduling
(IPPS) is a well-known study area in the literature.
IPPS has the bene�ts of choosing an alternative route,
�nding solutions for urgent jobs, and balancing the load
of machines. IPPS increases companies' production
e�ciency, helps meet demands on time, and optimizes
utilization of processes and resources. In a particular
case, having reviewed the studies done in the last
decade, Zhang and Wong [3] used the ant colony
algorithm from heuristic approaches to solve the IPPS
problem in a job shop environment. Sobeyko and
M�onch [4] implemented an IPPS application in a large-
scale exible job shop type production environment
where di�erent product trees and routes can be found.
They addressed the total weighted delay as the objec-
tive function and provided mixed integer programming
for this problem. Chaudhry [5] proposed a Genetic
Algorithm (GA) based on Microsoft Excel for the IPPS
problem in the job shop environment. Luo et al. [6] ad-
dressed the Multi-Objective Integrated Process Plan-
ning and Scheduling (MOIPPS) problem, in which a
production system required multiple objectives to be
taken into account in a more realistic decision-making
process. Zhang and Wong [7] analyzed three di�erent
models of IPPS problems, including setup times. They
used a customized ant colony algorithm. Petrovi�c et
al. [8] tried a new heuristic antlion optimization for
IPPS problem and showed its applicability. Manupati
et al. [9] discussed a mobile-agent-based approach for
IPPS. Besides, some of the studies on this subject
include Meenakshi Sundaram and Fu [10], Khoshnevis
and Chen [11], Zhang and Mallur [12], Morad and
Zalzala [13], Phanden et al. [14], Li and Gao [15],
Phanden et al. [16], Li et al. [17], and Lin et al. [18].

There are also many studies in the literature on
Scheduling With Due Date Assignment (SWDDA).
Some of them have been carried out in single machine
environments, while others have been performed in
multi-machine environments. In most of the studies in
the literature, it is seen that due dates are determined
with respect to process times and the number of
operations. Chen [19] and Gordon et al. [20] are
further references on SWDDA. In recent years, Zhao
et al. [21], Xiong et al. [22], Yin et al. [23], Liu et
al. [24], Wang et al. [25], Yin et al. [26], and Wang
et al. [27] studied this area. Zhao et al. [21] examined
a single-machine scheduling and due date assignment,
where the processing time of a job depends on both
the start time and the position in the queue. Xiong
et al. [22] discussed the problem of single-machine
scheduling and due date assignment in an environment
where machines are disrupted by a certain probability
randomly. They aimed to minimize the optimal job
sequence and costs while setting the common due date.
Wang et al. [25] investigated the multi-agent single-
machine SWDDA problem, each aimed at optimizing
its own performance. Shabtay [28] investigated a
scheduling problem in a single-machine environment
where due dates are controllable with batch delivery.
Yin et al. [29] carried out a single-machine SWDDA
study including the costs of delivering jobs.

Increasing the integration level of these functions
will help improve the scheduling performance and
global production e�ciency of a manufacturing system.
When these three functions are integrated, there will be
a strong communication between each other and better
inputs will be provided for one another. Figure 2 shows
the bene�ts of the integrated manufacturing functions.
Following a review of the studies that have Integrated
three functions namely Process Planning, Scheduling,
and Due Date Assignment (IPPSDDA), we realized
the limited scope of relevant �ndings in the literature.
Yuan [30] proved that only the IPPS problem to
minimize early and tardy jobs and batch delivery costs

Figure 2. Integrated process planning, scheduling, and
due date assignment.
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was NP-hard. Thus, solving the problem of integration
of the three functions will be even more complex.
Demir and Taskin [31] studied IPPSDDA in their PhD
thesis. Then, Ceven and Demir [32] evaluated the
bene�ts of integrating the due date assignment with
IPPS problem, and Demir and Erden [33] studied the
integration of three functions by GA and ant colony
optimization to minimize the sum of weighted earliness,
tardiness, and due-dates of every job. Demir and
Phanden [34] reviewed IPPSDDA literature in the book
edited by Phanden et al. [16]. The IPPSDDA problem
is a workable and remarkable research area.

This study deals with dynamic events on a Shop
Floor (SF). Some internal or external dynamic events
may occur on real SF. For example, a machine break-
down, an urgent job, or changes in due dates can lead
to the breakdown of the previously prepared schedules
or the occurrence of ine�ective schedules. To overcome
these problems, schedules should be made to react to
dynamic events. Thus, the dynamic scheduling ap-
proach, which is prepared using real-time information
and adapted to unexpected events, will provide more
successful results [35]. When the studies on dynamic
scheduling are examined, it is revealed that dynamic
scheduling is harder to solve than static scheduling [35{
37]. In this study, new job arrivals are considered as
dynamic events and process planning, scheduling, and
due date assignment are integrated.

There are numerous methods to solve combi-
national problems. One of them is Particle Swarm
Optimization (PSO) which is a heuristic algorithm that
is often used as it is easy to implement in solving
optimization problems. PSO has been widely used
in the literature, especially in IPPS problems. Ba
et al. [38] developed a multimodal program using
the PSO algorithm for mass production to minimize
production time. Petrovi�c et al. [39] focused on using
a method based on PSO algorithm and chaos theory
to investigate the �eld of research more extensively in
IPPS problems and avoid local optima. Yu et al. [40]
developed a hybrid algorithm based on GA and PSO to
solve the IPPS problem, which includes two di�erent
phases, static and dynamic. Petrovi�c et al. [41] o�ered
a new algorithm for the optimization of exible process
plans based on the use of PSO and chaos theory. Wang
et al. [42] tried to solve the multipurpose IPPS problem
by using PSO. In addition to these studies, many PSO
studies are included in the literature. However, almost
all PSO studies have variables that are of continuous
value. This indicates that the classical PSO will
be insu�cient to solve discrete optimization models.
As a result of the studies, many PSO variations
such as Integer PSO (IPSO), Discrete PSO (DPSO),
Binary PSO, Veeramachaneni PSO, Angle Modulated
PSO, and Discrete Estimation of Distribution Particle
Swarm Optimization (DEDPSO) have been developed.

One of the PSO variations that is used to eliminate this
de�ciency is the Integer and Categorical PSO (ICPSO),
which is a type of PSO in which the values of the
particles in the swarm are expressed by probability
distributions. ICPSO has been used to solve Dynamic
Integrated Process Planning, Scheduling, and Due
Date Assignment (DIPPSDDA) problem in this study,
since the due date assignment rules, the dispatching
rules, and the routes of the jobs have categorical
data characteristics. In most scheduling studies, the
makespan is used as an objective function. However, in
this study, it is aimed at minimizing the total weighted
earliness, total weighted tardiness, and given weighted
due dates length (E/T/D).

To the best of our knowledge, studies on DIPPS-
DDA are quite limited in the literature. Erden et
al. [43] studied DIPPSDDA problem for the �rst time.
In their study, GA, simulated annealing, taboo search,
and combination of these algorithms were used to solve
the problem. Later, Demir and Erden [33] studied
DIPPSDDA problem by using ACO algorithm. In this
study, ICPSO algorithm was used for the �rst time for
solving DIPPSDDA problem. The developed algorithm
was modi�ed, and it was observed that the modi�ed
algorithm achieved better results.

The remainder of this paper is organized as
follows. The DIPPSDDA problem is discussed in
Section 2. PSO variants (ICPSO, MICPSO, and
MDPSO) are mentioned in Section 3. The developed
algorithm steps are given in Section 4. Comparative
results of the algorithm are given in Section 5. Finally,
the results of the study and future works are mentioned
in Section 6.

2. Problem de�nition

DIPPSDDA problem can be considered as a contribu-
tion to the Dynamic Job Shop Scheduling Problem
(DJSSP). In general, in the Job Shop Scheduling
Problem (JSSP), n jobs are assigned to m machines
regarding an objective function. There are some
assumptions with respect to JSSP, some of which are
as follows:

(a) Each machine can only perform one job at the
same time;

(b) One operation can be processed on one machine;
(c) The machine does not fail when the operation

starts on the machine;
(d) All jobs are ready at the beginning and there is no

stochastic job arrivals or urgent jobs.

On the contrary, machines may experience breakdown
or urgent jobs may arrive on the SF in the dynamic
JSSP model. Since the problem of DIPPSDDA is a
variant of dynamic JSSP problem, it is assumed that
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jobs arrive stochastically and urgent jobs may also
arrive at the SF. Besides, the alternative process plans
are used to create more e�ective schedules.

In a DIPPSDDA model, n number of jobs with
o number of operations and r number of di�erent
routes are processed through m number of machines.
The processing time of an operation on a machine is
generated using a normal distribution with a mean of
12 and a standard deviation of 6. Jobs are arriving
at the system according to an exponential distribution
with a mean of 10 and in association with a due
date, which is calculated using a due date assignment
rule. Operation pending machine queue is selected by
machine using dispatching rules, as well. In this study,
8 di�erent sizes of SF are produced for the problem and
the data of the SF is shared in Table 1.

As mentioned earlier, in an IPPS model, schedul-
ing is carried out considering all process plans of
the jobs. This enables more e�cient and balanced
scheduling for the SF. Another function integrated with
scheduling is the due date assignment function. Signi�-
cant gains in production e�ciency can be achieved with
proper time of due dates.

Scheduling problems may have static or dynamic
nature. In dynamic scheduling, unexpected events,
such as machine break downs, new job arrivals, or
changes in due dates may a�ect the performance of
existing schedules. Unexpected events in a SF may
result in the loss of optimal schedules or they may
generate infeasible schedules. To handle these prob-
lems, it is important to consider the unexpected events
while scheduling. Dynamic scheduling models are much
closer to actual SF and they are the most di�cult
problems to solve among the scheduling problems. In
this study, new job arrivals are studied as dynamic
events.

The objective function developed for the problem
involves minimizing total weighted earliness, tardiness,
and due date length of every job. Tardiness and
earliness are calculated as in Eqs. (1) and (2):

Tj = max(cj � dj ; 0); (1)

Ej = max(dj � cj ; 0); (2)

where Tj and Ej denote the tardiness and earliness
times of the jth job, respectively. cj , dj correspond to

the completion and given due date time of the jth job,
respectively. If the job is completed after its given due
date time, tardiness occurs. In case of tardiness, the
penalty for early completion is 0, as expected. If the job
is completed before its given due date time, earliness
will occur and in case of the early completion time, the
tardiness penalty is given as 0. Weighted due dates are
penalized along with weighted earliness and tardiness
and the penalty values of E/T/D are calculated as in
Eqs. (3){(6):

PD = wj �
�

8�
�
dj

480

��
; (3)

PE = wj �
�

5 + 4�
�
Ej
480

��
; (4)

PT = wj �
�

8 + 6�
�
Tj
480

��
; (5)

Ptotal = PD + PE + PT ; (6)

where PD, PE , PT and Ptotal denote the penalties
of a due date, earliness, tardiness, and total penalty,
respectively. wj is the weight of the jth job. The
objective function of the model is to minimize the total
penalties. Then, the �nal objective function (fmin),
which is a �tness value of the solution, is represented
as in Eq. (7):

fmin =
nX
j=1

Ptotal: (7)

Many due date assignment rules have been developed
in studies [25,44{47]. It experimentally reveals which
of these rules will give better results. The due date
assignment rules used in this study are given in Table 2
with explanation and equations, in which ai, pi, oi
denote the arrival time, processing time, and the
operation number of the ith job, respectively. Pav
is the average processing time of all waiting jobs.
(w1x; w2x) are determined proportionally inverse to the
job weights and kx = 1; 2; 3 and qx : q1 = Pav

2 ,
q2 = Pav, q3 = 3Pav2 .

After determining the due dates of each job, the
dispatching rule for scheduling must be determined.

Table 1. Shop oor con�guration.

Numbers SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8

Jobs 25 50 75 100 125 150 175 200
Machines 5 10 15 20 25 30 35 40
Operations 10 10 10 10 10 10 10 10
Routes 5 5 5 5 3 3 3 3
Iterations 150 150 100 100 75 75 50 50
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There are many dispatching rule studies in the liter-
ature. With these rules, it is to be determined which
of the waiting job is to be processed next. Dispatching
rules can be divided into 4 categories: process time
based, due date based, combination rules, and mixed-
based rules [48]. For example, the SPT rule is a
process-based rule. In SPT, the job with the shortest
processing time is prioritized. Process time-based rules
do not take due dates into account. EDD can be
given as an example of rules that consider the due
date [36]. The EDD rule prioritizes the job with the

shortest due date. In the combination rules, the slack
or critical rate is determined. Detailed studies on this
subject can be given as follows: Adibi et al. [49],
Amin and El-Bouri [50], Dominic et al. [51], Heger
et al. [52], Pierreval and Mebarki [53], Qi et al. [54],
Baker and Kanet [55], Raghu and Rajendran [56], and
Vepsalainen and Morton [57]. As in the rules for due
date assignment, it is possible to determine which of
the dispatching rules gives a better solution as a result
of experimental studies. The formulas of the priority
index of dispatching rules are given in Table 3, in which

Table 2. Due date assignment rules.

Rule no. Name Explanation Equations

0,1,2 SLK Slack di=ai+pi+qx
3,4,5 WSLK Weighted slack di=ai+pi+w1xqx
6,7,8 TWK Total work content di=ai+kxpi
9,10,11 WTWK Weighted total work content di=ai+w1xkxpi
12,13,14 NOPPT Number of operations plus processing time di=ai+pi+5kxoi
15,16,17 WNOPPT The weighted number of operations plus processing time di=ai+pi+5w1xkxoi
18 RDM Random-allowance due dates di=ai+N�(3Pav; Pav)

19,20,21,22,23,24,25,26,27 PPW Processing-time-plus-wait di=ai+kxpi+qx
28,29,30,31,32,33,34,35,36 WPPW Weighted processing-time-plus-wait di=ai+w2xkxpi+w1xqx

Table 3. Dispatching rules.

Rule no. Name Explanation Equations

0-1-2 WATC Weighted Apparent Tardiness Cost Ii = wi
pi
e
�

max(slack;0)
K�p

�
3-4-5 ATC Apparent Tardiness Cost Ii = 1

pi
e
�

max(slack;0)
K�p

�
6 WMS Weighted Minimum Slack Ii = �(slack)wi
7 MS Minimum Slack Ii = �(slack)

8 WSPT Weighted Shortest Process time Ii = wi
pi

9 SPT Shortest Process Time Ii = 1
pi

10 WLPT Weighted Longest Process Time Ii = pi
wi

11 LPT Longest process time Ii = pi
12 WSOT Weighted Shortest Operation Time Ii = wi

pij

13 SOT Shortest Operation Time Ii = 1
pij

14 WLOT Weighted Longest Operation Time Ii = pij
wi

15 LOT Longest Operation Time Ii = pij
16 EDD Earliest Due Date Ii = 1

di

17 WEDD Weighted Earliest Due Date Ii = wi
di

18 ERD Earliest Release Date Ii = 1
ai

19 WERD Weighted Earliest Release Date Ii = wi
ai

20 SIRO Service In Random Order random

21 FIFO First In First Out Ii = 1
ai

22 LIFO Last In First Out Ii = ai
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Ii denotes the priority index of the ith job and max Ii
is selected among the waiting jobs. Slack is calculated
in Eq. (8):

slack = di � pi � ai: (8)

3. Application of ICPSO to DIPPSDDA

The proposed ICPSO algorithm is based on the study
of Strasser et al. [58]. When the algorithm is applied
with Strasser's form, solution performance is stuck in
local minima. To overcome this, ICPSO has been
modi�ed by the addition of crossover and mutation
operators. Thus, the developed algorithm has been
made more useful for integrated scheduling problems.
The position vector of particles in the classical PSO
structure is denoted by Xp, which is a candidate solu-
tion of particle p. To store categorical data in ICPSO, a
particle representation is created using probability dis-
tributions. All dimensions in this representation create
probability distributions for a solution to the problem.
For this integrated problem, Xp is divided into 3 parts:
Xp = [Xp;ddrule; Xp;dsprule; Xp;routes] and each part is
valid at di�erent intervals. For the pth particle, its due
date assignment rule position can be represented as
Xp;ddrule = [Dp;1;ddrule; Dp;2;ddrule; � � � ; Dp;N1;ddrule],
where Dp;i;ddrule represents the probability distri-
bution for variable Xp;i;ddrule and N1 denotes the
due date assignment rule size. Then, every el-
ement in the particle due date position vector
also consists of a set of distributions Dp;i;ddrule =
[d1
p;i;ddrule; d2

p;i;ddrule; � � � ; dN1
p;i;ddrule], where dap;i;ddrule

denotes the probability variable Xp;i;ddrule that as-
sumes value a for the pth particle. Similarly, for the
pth particle, the dispatching rule position vector can
be represented as:

Xp;dsprule = [Dp;1;dsprule; Dp;2;dsprule; � � � ;
Dp;N2;dsprule] ;

where N2 denotes dispatching rule size. For routes
dimension, we need probability distributions for all jobs
in the SF, which can be represented as:

Xp;routes =
hh
Dj=1
p;1;routes; � � � ; Dj=1

p;N3;routes

i
;h

Dj=2
p;1;routes; � � � ; Dj=2

p;N3;routes

i
; � � � ;h

Dj=n
p;1;routes; � � � ; Dj=n

p;N3;routes

ii
;

where Dj=k
p;i;routes denotes the probability distribution

of Xp;i;routes for the routes of the kth job and the
pth particle and N3 is the number of routes. The
probability vector routes of each job can be represented
as:

Dj=k
p;i;routes =

h
d1;j=k
p;i;routes; d

2;j=k
p;i;routes; � � � ; dN3;j=k

p;i;routes

i
;

where da;j=kp;i;routes denotes the probability that variable
Xj=k
p;i;routes assumes value a of the pth particle.

In classical PSO, particles move using velocity
vectors. Again, we have 3 dimensions for velocity
vectors. A particle's due date assignment rule vector
of n vectors is �, which is one for each variable in
the solution. The velocity vector of the due date
assignment rules dimension can be represented as:

Vp;ddrule = [�p;1;ddrule; �p;2;ddrule; � � � ; �p;N1;ddrule] ;

and:

�p;i;ddrule =
�
 1
p;i;ddrule;  

2
p;i;ddrule; � � � ;  N1

p;i;ddrule
�
;

where  ip;ddrule denotes the pth particle velocity for the
ith due date assignment rule. Similarly, dispatching
rules can be represented as:

Vp;dsprule=[�p;1;dsprule; �p;2;dsprule; � � � ; �p;N2;dsprule] ;

and:

�p;i;dsprule=
�
 1
p;i;dsprule;  

2
p;i;dsprule; � � � ;  N2

p;i;dsprule
�
:

Lastly, the route vector consists of n jobs represented
as:

Vp;routes =
h
V j=1
p;routes; V

j=2
p;routes; � � � ; V j=np;routes

i
;

and routes of the kth job represented as:

V j=kp;routes =
h
�j=kp;1;routes; �

j=k
p;2;routes; � � � ; �j=kp;N3;routes

i
;

where:

�j=kp;i;routes =
h
 1;j=k
p;i;routes;  

2;j=k
p;i;routes; � � � ;  N3;j=k

p;i;routes

i
:

The velocity vector in the classical PSO has
been modi�ed to make it speci�cally e�ective for this
problem. The particles update position vectors at each
iteration. The velocity vector of due date assignment
rule, dispatching rule, and routes of each job are given
in Eqs. (9){(11):

Vp;ddrule = !Vp;ddrule + c1r1 (pbestp;ddrule +Xp;ddrule)

+ c2r2 (pgbestddrule +Xp;ddrule) ; (9)

Vp;dsprule= !Vp;dsprule+c1r1(pbestp;dsprule+Xp;dsprule)

+ c2r2 (pgbestdsprule +Xp;dsprule) ; (10)

V j=kp;routes = !V j=kp;routes + c1r1

�
pj=kbestroutes

+Xj=k
p;routes

�
+ c2r2

�
pj=kgbestroutes

+Xj=k
p;routes

�
; (11)

where ! is the inertia rate; c1 the cognition constant; r1
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the cognition random number within the range of [0,1];
c2 the social constant; r2 the social random number
within the range of [0,1]; pgbest the global best particle;
and pbest the personal best particle.

New position vectors created from velocity vectors
are given in Eqs. (12){(14):

Xp;ddrule = Xp;ddrule + Vp;ddrule; (12)

Xp;dsprule = Xp;dsprule + Vp;dsprule; (13)

Xj=k
p;routes = Xj=k

p;routes + V j=kp;routes; (14)

where:

Xp;routes =
h
Xj=1
p;routes; X

j=2
p;routes; � � � ; Xj=n

p;routes

i
:

The proposed method is presented as follows: First, an
initial swarm with random probabilities is generated.
Then, the particle's due date assignment, dispatching
rules, and routes of each job value are determined
according to probabilities. All solution values in the
initial swarm are also recorded as personal best values
(pbest) of the particles. Thus, the initial swarm is
obtained. The �tness value of the particle, which has
the best �tness value in the swarm, is recorded as global
best values (pgbest). At the same time, the best particle
is saved as a particle of pgbest .

At the next iterations, the probabilities for the
particles of the swarm are updated using PSO velocity
and position equations. The values of the due date
assignment and dispatching rules and routes obtained
are calculated according to the assigned probability
values and the �tness for the particle. If the �tness
value (F) of the current particle (pcurrent) is better than
the current particle's best �tness (pbest), pbest of the
particle is updated and the particle is recorded as pbest.
Then, the same process is done for all particles and it is
examined whether there is a particle with better �tness
than pgbest . If a better �tness value is achieved, pgbest

is updated and the relevant particle is saved as pgbest

particle. The algorithm is iterated until the iteration
size (kiter;sf ). Pseudo codes of the proposed ICPSO
are given in Algorithm 1.

4. Other solution approaches

4.1. Genetic Algorithms (GA)
GA were developed by Holland [59]. GA is focused on
solving computational optimization problems, inspired
by the evolution of species. Iterations are performed
based on the high probability of individuals with better
compliance values in the GA to move to the next pop-
ulation. Iteration re-selection, mutation, and crossover
operators are used. GA has solved many scheduling
and IPPS problems via optimization. Similar studies
on the problem discussed in this study are as follows:
Li et al. [60], Lin et al. [61], Park and Choi [62], Pezzella
et al. [63], Xia et al. [64], and Zhang et al. [65]. The
proposed algorithm is working through several steps.
In the initialized population step, a classical GA for
solving the DIPPSDDA problem is proposed, as well.
Each gene of the solution chromosome stores a due date
assignment rule, a dispatching rule, and routes of jobs,
respectively. For initialization of GA, a random search
is applied for 20 iterations and the 10 best chromosomes
are selected for the initial population.

Selection: GA selection operator selects 3 pairs of
chromosomes and 4 chromosomes for crossover and mu-
tation operations, respectively. A ranking probability
method is applied to the selection operator that gives
better performance in solving this problem, because
the performance di�erence between the best and worst
chromosomes is getting smaller towards the end of the
iterations. Chromosome probabilities for the selection
operator are �xed at every iteration and are given in
Table 4. In here, we assign a higher probability of
selecting those chromosomes with better �tness values;

Crossover: First, we determine the crossover point
number which is based on the number of jobs, given
that the number of jobs is related to the chromosome
size. The number of crossover points is calculated
using ceil(genesize � 0:1) equation. Second, we select
crossover points with the selection probability of each
gene. In here, we have two dominant genes includ-
ing due date assignment and dispatching rule genes.
Probabilities of those genes are calculated as 0.25 and

Table 4. The parameter setting of GA.

Parameters SF1

Population size 10

Crossover probability 0.7

Mutation probability 0.3

Number of crossover points ceil ((n+ 2) � 0:1)

Number of mutation points ceil ((n+ 2) � 0:3)

Chromosome probabilities for selection [0:3; 0:2; 0:15; 0:12; 0:10; 0:07; 0:03; 0:02; 0:006; 0:004]
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Algorithm 1. Pseudo code of the proposed ICPSO.

0.25, respectively. Other genes, which are the selected
routes of the jobs, are given a probability of 0.5, in
total, because due date assignment and dispatching
rule genes have a signi�cant impact on the �tness value.
If we change these genes, the performance function will
be dramatically a�ected. On the other hand, in case
the route of a job is changed, the performance function
will not be a�ected that much. These genes should
be selected in larger numbers to see which pair works
well together. Therefore, these two genes have been
identi�ed as the dominant ones in the solution and a
higher probability of selection has been given to those

genes. Third, a multi-point crossover operator between
two parent chromosomes is employed to produce two
new o�spring chromosomes;

Mutation: Like the crossover operator, we determine
the number of mutation points using the following
equation ceil(genesize � 0:3) in the �rst step. In the
second step, we apply the mutation operator to the
selected genes. After crossover and mutation operators,
we have a new population with 20 chromosomes. To �x
the population size to 10, we determined the population
by selecting the best 10 chromosomes. In the last
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step, we iterate the selection, crossover, and mutation
operators until the iteration number is reached. The
parameter setting of GA is given in Table 4.

4.2. Modi�ed ICPSO (GA/ICPSO)
We applied di�erent variants of PSO to �nd better
solutions. In the algorithm of MICPSO, the muta-
tion and crossover operators are added to classical
ICPSO. ICPSO attempts to optimize the probability
of obtaining a solution. However, in this study, when
pure ICPSO is used, improvements become harder to
achieve. That is the reason why we integrate crossover
and mutation operators into the ICPSO algorithm
and change a certain number of genes in the inertia,
cognitive, and social parts of the algorithm. ICPSO
calculates the probabilities and generates new solution
values for the problem at each iteration using V and
X vectors. The application of mutation operator and
crossover to each particle with pbest and gbest improves
the solution performance. At �rst, mutation operator
is applied to each particle and with a probability of
0.25, each gene is replaced with other possible values.
This part constitutes the moment of inertia part of the
algorithm. Later, each particle is crossed over with pbest
and each gene is replaced with a probability of 0.25
with the associated pbest values. This part constitutes
the cognitive part of the algorithm. Finally, with a
probability of 0.25, each gene is crossed over with
associated gbest values and this constitutes the social
part of the algorithm. These updates are all applied
for all particles in the swarm and better results are
obtained. These steps are stopped when the iteration
size is reached. Pseudo codes of the proposed MICPSO
are given in Algorithm 2.

4.3. Modi�ed Discrete Particle Swarm
Optimization (MDPSO)

Here, MDPSO [66] is adopted to solve the problem. In
this case, the attempt was made to enhance the possible
structure of ICPSO. In the study of Pan et al. [66],
a probability was given for every gene of particles to
be mutated or crossed over. For example, according
to Pan et al. [66], �rst, every gene is mutated with a
probability of approximately 25%. Then, each value
of gene is changed into associated pbest value with a
probability of 25%. Finally, the value of each gene is
changed into associated gbest value with a probability
of 25%.

In our MDPSO algorithm, 25% of the genes of
the particle are selected randomly. Then, these genes
are mutated and their values are changed into other
possible values (moment of Inertia applied). After that,
we select 25% of genes of the particle again randomly
and their values are changed into associated pbest values
(Cognitive part is applied). Thus, each particle and
associated pbest values are crossed over. Finally, we

select 25% of genes of the particle again and the values
of these genes are changed into the associated gbest
values (Social part is applied). Thus, the crossover is
applied between every particle and gbest particle. This
makes MDPSO more practical. Pseudo codes of the
proposed MDPSO are given in Algorithm 3.

5. Experimental results

In this study, the proposed algorithms are coded in
Python programming language on a personal computer
featuring Intel®CoreTMi5-6200UCPU@2.30 GHz with
8 GB RAM. Appropriate Python packages such as
NumPy [67], Matplotlib [68], Pandas [69], and Sal-
abim [70] are utilized to analyze and solve the problem.
Events such as new job arrivals, the end of an operation
of the jobs, or the assignment of a job to a machine are
simulated with the help of Salabim package. Besides,
the job to be selected by the machine among the jobs
waiting for machine queue is made by taking into
consideration the dispatching rule. Thus, the objective
is to �nd the optimal dispatching rule, due date assign-
ment rule, and routes of each job combination. Because
there is no published research data on DIPPSDDA, we
generated 8 di�erent sizes of SF and their data for this
problem. The data used for this study are given as a
supplementary �le.

One of the outcomes of this study is the most
appropriate schedules for production. The schedules
obtained from the last iteration can be shown using
Gantt charts. Gantt charts created for this study show
the arrival of jobs. The arrival time of the jobs and the
�rst machine to be assigned at the time of arrival are
shown with the help of arrows. A Gantt chart is created
for all SF, but only a Gantt chart is shown for the �rst
SF, since it is too hard to follow charts in medium- and
big-sized shops. Each job in the diagram is shown in
a di�erent color. Boxed pieces show the operations of
jobs. Since there are 10 operations in every job, the
jobs are shown with 10 pieces. The Gantt chart of
the optimal schedule obtained by MICPSO is shown in
Figure 3.

The proposed MICPSO algorithm is applied to
the data and the experimental results of MICPSO are
compared with the results of MDPSO, ICPSO, and
GA in 8 di�erent sizes of SF, which are illustrated in
Figure 4.

According to Figure 4, MICPSO achieved the best
results in all SF except SF 1, 4, and 5. From the
�gures, the MICPSO algorithm exhibits mostly better
performance than the other algorithms. Meanwhile,
the CPU time of ICPSO is better than that of other
algorithms. Moreover, the best, average, and worst
results for all SF can be seen in detail in Figure 5.

According to Table 5, MICPSO and MDPSO
outperformed GA and pure ICPSO. On �ve out of the
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Algorithm 2. MICPSO pseudocode.

eight SF, MICPSO gave better performance; however,
in the case of SF 1, 4, and 5, MDPSO achieved
better performance. Given that MDPSO is quite
practical, it is a promising solution technique; however,
MICPSO has better performance mostly and can be
recommended for resolving DIPPSDDA problems.

According to Table 6, most of the jobs experience

earliness. This is because tardiness is undesired with
greater �xed and variable cost terms. Fixed and
variable cost parameters for earliness are 5 and 4, while
�xed and variable cost parameters and coe�cients for
tardiness are 8 and 6. If a job is tardy rather than
early, then we penalize it with an additional 3-unit
�xed penalty in terms of �xed cost and variable cost
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Algorithm 3. MDPSO pseudocode.

Table 5. Best algorithms and �tness values for all shop
oors.

Shop oor Best algorithm Fitness value
SF1 MDPSO 155.93
SF2 MICPSO 285.09
SF3 MICPSO 348.69
SF4 MDPSO 470.66
SF5 MDPSO 629.16
SF6 MICPSO 682.71
SF7 MICPSO 810.50
SF8 MICPSO 964.31

coe�cient becomes 6 instead of 4. The last column of
the table shows the total penalty for every job and if
we sum up the numbers in the last column, then we get
the total penalty of all jobs which gives �tness function
for this shop oor.

The best, average (Avg), and worst results of
executing eight SF with all algorithms are presented
in Table 7. In general, MICPSO gives better perfor-
mance for eight SF with minimum best values, mostly.
Further analysis of the performance of the algorithms
was done using one-way Analysis of Variance (ANOVA)
test to check if there is a signi�cant di�erence between
the results of the algorithms. Average values of the
�tness functions are selected as the response values and
the algorithms are assumed as factors. To perform the
ANOVA analysis, we run the program ten times with
di�erent seed values on the SF 8, where the highest
variability is expected. The results are given in Table 8.

Before performing ANOVA test, we need to check
the normality assumption. As a result of the normality
test, normality was found not satis�ed as can be
seen in Figure 6 (p < 0:010). For this reason,
the non-parametric test, i.e., Kruskal-Wallis test, was
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Figure 3. First shop oor Gantt chart of the optimal schedule.

Table 6. Experimental results for SF 1.

Job Weight
Arrival

time
(s)

Departure
time
(s)

Given
due
date
(s)

Earliness Tardiness Penalty
earliness

Penalty
tardiness

Penalty
due

dates

Penalty
total

0 1.00 71 218 274.41 56.41 0 5.47 0 3.39 8.86
1 0.66 76 260 269.28 9.28 0 3.35 0 2.13 5.48
2 0.33 83 227 268.41 41.41 0 1.76 0 1.02 2.78
3 0.33 88 303 284.66 0 18.34 0 2.06 1.08 3.14
4 0.66 98 290 291.28 1.28 0 3.31 0 2.13 5.43
5 1.00 124 259 299.28 40.28 0 5.34 0 2.92 8.26
6 0.33 133 312 321.78 9.78 0 1.68 0 1.04 2.72
7 0.66 188 334 362.16 28.16 0 3.45 0 1.92 5.37
8 0.66 196 339 362.28 23.28 0 3.43 0 1.83 5.26
9 0.66 218 364 442.78 78.78 0 3.73 0 2.47 6.21
10 0.33 288 432 493.66 61.66 0 1.82 0 1.13 2.95
11 0.66 353 484 520.41 36.41 0 3.5 0 1.84 5.34
12 0.66 367 646 554.66 0 91.34 0 4.71 2.06 6.78
13 1.00 371 553 557.53 4.53 0 5.04 0 3.11 8.15
14 0.66 377 619 550.03 0 68.97 0 4.53 1.9 6.43
15 1.00 393 573 595.28 22.28 0 5.19 0 3.37 8.56
16 0.66 408 556 590.03 34.03 0 3.49 0 2 5.49
17 0.66 416 753 616.03 0 136.97 0 5.09 2.2 7.29
18 1.00 429 578 602.03 24.03 0 5.20 0 2.88 8.08
19 0.66 458 601 628.78 27.78 0 3.45 0 1.88 5.33
20 1.00 467 601 620.91 19.91 0 5.17 0 2.57 7.73
21 0.33 468 647 705.16 58.16 0 1.81 0 1.3 3.11
22 1.00 492 716 716.78 0.78 0 5.01 0 3.75 8.75
23 0.66 496 657 664.53 7.53 0 3.34 0 1.85 5.2
24 1.00 537 727 744.91 17.91 0 5.15 0 3.47 8.61
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Figure 4. Comparative results of the proposed algorithms for shop oors: (a) Shop Floor 1, (b) Shop Floor 2, (c) Shop
Floor 3, (d) Shop Floor 4, (e) Shop Floor 5, (f) Shop Floor 6, (g) Shop Floor 7, and (h) Shop Floor 8.

performed instead of ANOVA. Kruskal-Wallis test
results show a strongly signi�cant di�erence between
the algorithm results because the p-value (0.007) is
too close to zero, as shown in Tables 9 and 10. The
mean plot in the least signi�cant di�erence intervals
at a con�dence level of 99% is illustrated in Figure 7.
These results indicate the superiority of the MICPSO
algorithm over GA, MDPSO, and ICPSO.

6. Conclusion

In this study, process planning, dynamic scheduling,
and due date assignment functions were integrated
as a novel subject in the literature. It was assumed
that the jobs would arrive at the shop oor with
an exponential distribution randomly. The problem
was modeled, and popular population-based Particle
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Figure 5. Comparative best, average, and worst results of the proposed algorithms for shop oors.

Swarm Optimization (PSO) and Genetic Algorithms
(GA) were preferred from meta-heuristic algorithms as
solution methods. Since GA solution was already been
introduced in the previous studies [71,72], the structure
of PSO, which was developed and modi�ed for the
solution of the problem, was mentioned more than GA
in the application section of the paper. The results of
the experimental studies demonstrated that MICPSO
had better performance and quality and was one of the

best methods in terms of both the best solution and
CPU usage rates, since classical PSO usually works
with continuous data. Integer and Categorical PSO
(ICPSO), a variation of PSO, was utilized in this
study due to the discrete and categorical nature of the
problem. It has been ensured that ICPSO is modi�ed
for the problem with some improvements. Since ICPSO
is a newly developed PSO variation algorithm, the
implementation of the algorithm among the NP-hard
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Table 7. Comparative results for shop oors.

GA ICPSO MICPSO MDPSO
Best Avg Worst Best Avg Worst Best Avg Worst Best Avg Worst

SF1 175.8 176.4 188.4 176.5 182.1 204.6 163.2 166.4 204.6 155.9 161.6 192.3
SF2 304.6 308.8 349.1 306.5 307.2 366.5 285.1 296.3 366.5 292.6 309.3 350.2
SF3 377.5 378.5 386.4 359.2 365.7 414.0 348.7 357.5 414.0 349.1 366.9 414.1
SF4 486.4 503.8 533.0 488.5 494.1 582.0 473.1 509.7 582.0 470.7 477.4 499.4
SF5 636.0 693.3 838.1 642.4 650.9 658.8 630.5 635.9 658.8 629.2 650.5 797.3
SF6 690.7 692.7 701.9 705.2 708.6 809.8 682.7 739.0 809.8 685.4 689.0 699.7
SF7 897.1 898.5 910.8 832.3 834.9 844.3 810.5 818.6 844.3 813.6 822.1 859.1
SF8 1098.3 1099.8 1108.6 994.9 996.6 1000.1 994.9 996.6 1000.1 967.9 1047.3 1087.0

Table 8. Algorithm results with di�erent seeds.

Seeds GA ICPSO MICPSO MDPSO
Best Avg Worst Best Avg Worst Best Avg Worst Best Avg Worst

1 974.3 991.8 1180.1 988.3 998.9 1104.7 966.0 982.1 1104.7 993.8 1086.3 1292.2
2 976.1 985.8 1010.2 982.8 1018.3 1220.9 978.4 993.4 1220.9 973.5 981.9 992.9
3 977.0 987.5 1172.3 984.6 993.3 1017.9 965.1 977.8 1017.9 971.0 977.2 1008.7
4 992.8 1032.2 1068.1 983.0 994.3 1076.1 967.7 984.6 1076.1 1042.6 1051.8 1082.0
5 1088.7 1104.5 1158.4 989.0 1013.0 1151.0 974.2 1029.7 1151.0 970.1 977.3 1005.4
6 988.0 1046.5 1079.4 986.0 987.7 989.3 962.1 969.6 989.3 970.2 979.9 1101.2
7 1050.9 1058.4 1068.2 988.1 992.1 999.4 967.2 974.2 999.4 970.1 1020.9 1110.9
8 1088.6 1091.4 1106.4 989.0 993.0 997.9 963.5 968.0 997.9 967.9 1017.0 1233.6
9 1078.4 1088.9 1141.4 990.0 1005.8 1221.8 967.8 1002.8 1221.8 968.9 976.7 1003.3
10 1098.3 1099.8 1108.6 994.9 996.6 1000.1 964.3 971.5 1000.1 967.9 1047.3 1087.0

Figure 6. The normality test plot.

combinational problems is limited in the literature.
Only the scheduling problem with more than 3 ma-
chines was an NP-hard optimization problem [73]. This
study attempted to ful�ll this gap. The developed
method is called the modi�ed PSO and serves as a
new method for further studies. To sum up, these
conditions indicate the original aspects of the study.

Figure 7. Interval plot of average results for the
algorithms.

With Dynamic Integrated Process Planning,
Scheduling, and Due Date Assignment (DIPPSDDA)
being more e�cient, e�ective and balanced schedules
on the shop oors can be obtained, because pro-
cess plans, schedules, and due dates were tried to
be optimized using the alternative process plans in
DIPPSDDA. A certain number of studies have touched
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Table 9. Kruskal-Wallis descriptive statistics.

Algorithm N Median Mean rank Z-value

GA 10 1052.48 29.5 2.81
ICPSO 10 995.44 21.4 0.28
MDPSO 10 999.44 19.6 {0.28
MICPSO 10 979.97 11.5 {2.81
Overall 40 20.5

Table 10. Kruskal-Wallis test results.

Null hypothesis H0: All medians are equal
Alternative hypothesis H1: At least one median is di�erent

DF H-value P -value

3 11.97 0.007

on Integrated Process Planning and Scheduling (IPPS)
problems and consequently, many issues have arisen so
far. Therefore, there is a need for new study subjects
and ideas. We presented a new study area for the
researchers working on IPPS and Scheduling With Due
Date Assignment (SWDDA). This issue needs further
work in the future. The following future research
directions are recommended:

Comparison between the other discrete methods and
the proposed ICPSO is made.

� Solving the DIPPSDDA model with other successful
algorithms (Arti�cial Bee Colony, Honeybee Colony,
etc.);

� Including more objectives such as makespan to
consider the DIPPSDDA problem in the form of
target programming;

� Adding other dynamic events to the DIPPSDDA
problem such as machine breakdowns and job can-
cellations;

� Integrating other production functions such as de-
livery manufacturing function into the DIPPSDDA
problem.

References

1. Chang, T.C. and Wysk, R.A. \An introduction to
automated process planning systems", Prentice Hall
Professional Technical Reference (1984).

2. Kahlbacher, H.G. and Cheng, T.C.E. \Parallel ma-
chine scheduling to minimize costs for earliness and
number of tardy jobs", Discrete Appl. Math., 47(2),
pp. 139{164 (1993).

3. Zhang, S. and Wong, T.N. \Integrated process plan-
ning and scheduling: an enhanced ant colony opti-
mization heuristic with parameter tuning", J. Intell.
Manuf., 29(3), pp. 585{601 (2018).

4. Sobeyko, O. and M�onch, L. \Integrated process plan-
ning and scheduling for large-scale exible job shops
using metaheuristics", Int. J. Prod. Res., 55(2), pp.
392{409 (2017).

5. Chaudhry, I.A. \A genetic algorithm approach for pro-
cess planning and scheduling in job shop environment",
Proceedings of the World Congress on Engineering
2012, pp. 1{6 (2012).

6. Luo, G., Wen, X., Li, H., et al. \An e�ective multi-
objective genetic algorithm based on immune principle
and external archive for multi-objective integrated
process planning and scheduling", Int. J. Adv. Manuf.
Technol., 91(9), pp. 3145{3158 (2017).

7. Zhang, S. and Wong, T.N. \Studying the impact of
sequence-dependent set-up times in integrated process
planning and scheduling with E-ACO heuristic", Int.
J. Prod. Res., 54(16), pp. 4815{4838 (2016).

8. Petrovi�c, M., Petronijevi�c, J., Miti�c, M., et al. \The
ant lion optimization algorithm for integrated pro-
cess planning and scheduling", Applied Mechanics
and Materials, 834(5), pp. 187{192 (2016). DOI:
10.4028/www.scienti�c.net/AMM.834.187

9. Manupati, V.K., Putnik, G.D., Tiwari, M.K., et
al. \Integration of process planning and scheduling
using mobile-agent based approach in a networked
manufacturing environment", Comput. Ind. Eng., 94,
pp. 63{73 (2016).

10. Meenakshi Sundaram, R. and Fu, S. \Process planning
and scheduling { A method of integration for produc-
tivity improvement", Comput. Ind. Eng., 15(1{4), pp.
296{301 (1988).

11. Khoshnevis, B. and Chen, Q.M. \Integration of process
planning and scheduling functions", J. Intell. Manuf.,
2(3), pp. 165{175 (1991).

12. Zhang, H.C. and Mallur, S. \An integrated model of
process planning and production scheduling", Int. J.
Comput. Integr. Manuf., 7(6), pp. 356{364 (1994).

13. Morad, N. and Zalzala, A. \Genetic algorithms in
integrated process planning and scheduling", J. Intell.
Manuf., 10(2), pp. 169{179 (1999).



754 C. Erden et al./Scientia Iranica, Transactions E: Industrial Engineering 30 (2023) 738{756

14. Phanden, R.K., Jain, A., and Verma, R. \Integration
of process planning and scheduling: a state-of-the-art
review", Int. J. Comput. Integr. Manuf., 24(6), pp.
517{534 (2011).

15. Li, X. and Gao, L. \E�ective methods for integrated
process planning and scheduling", Engineering Ap-
plications of Computational Methods, Springer-Verlag,
Berlin Heidelberg (2020).

16. Phanden, R.K., Jain, A., and Davim, J.P., Eds.
Integration of Process Planning and Scheduling: Ap-
proaches and Algorithms, 1st Edn., CRC Press, Boca
Raton (2019).

17. Li, X., Gao, L., Pan, Q., et al. \An e�ective hybrid
genetic algorithm and variable neighborhood search
for integrated process planning and scheduling in a
packaging machine workshop", IEEE Trans. Syst. Man
Cybern. Syst., 49(10), pp. 1933{1945 (2019).

18. Lin, C.S., Li, P.Y., Wei, J.M., et al. \Integration of
process planning and scheduling for distributed exible
job shops", Comput. Oper. Res., 124, p. 105053
(2020).

19. Chen, Z.L. \Scheduling and common due date as-
signment with earliness-tardiness penalties and batch
delivery costs", Eur. J. Oper. Res., 93(1), pp. 49{60
(1996).

20. Gordon, V., Proth, J.M., and Chu, C. \A survey of
the state-of-the-art of common due date assignment
and scheduling research", Eur. J. Oper. Res., 139(1),
pp. 1{25 (2002).

21. Zhao, C., Hsu, C.J., Lin, W.C., et al. \Due date
assignment and scheduling with time and positional
dependent e�ects", J. Inf. Optim. Sci., 39, pp. 1613{
1626 (2018). DOI: 10.1080/02522667.2017.1367515

22. Xiong, X., Wang, D., Cheng, T.C.E., et al. \Single-
machine scheduling and common due date assignment
with potential machine disruption", Int. J. Prod. Res.,
56(3), pp. 1345{1360 (2018).

23. Yin, Y., Wang, W., Wang, D., et al. \Multi-agent
single-machine scheduling and unrestricted due date
assignment with a �xed machine unavailability inter-
val", Comput. Ind. Eng., 111, pp. 202{215 (2017).

24. Liu, W., Hu, X., and Wang, X. \Single machine
scheduling with slack due dates assignment", Eng.
Optim., 49(4), pp. 709{717 (2017).

25. Wang, D.J., Yin, Y., Cheng, S.R., et al. \Due date
assignment and scheduling on a single machine with
two competing agents", Int. J. Prod. Res., 54(4), pp.
1152{1169 (2016).

26. Yin, Y., Wang, D., and Cheng, T.C.E. \Due date-
related scheduling with two agents: Models and
algorithms", Uncertainty and Operations Research,
Springer Singapore (2020).

27. Wang, Y., Wang, J.Q., and Yin, Y. \Multitasking
scheduling and due date assignment with deterioration
e�ect and e�ciency promotion", Comput. Ind. Eng.,
146, p. 106569 (2020).

28. Shabtay, D. \Scheduling and due date assignment
to minimize earliness, tardiness, holding, due date
assignment and batch delivery costs", Int. J. Prod.
Econ., 123(1), pp. 235{242 (2010).

29. Yin, Y., Cheng, T.C.E., Wu, C.C., et al. \Single-
machine batch delivery scheduling and common due-
date assignment with a rate-modifying activity", Int.
J. Prod. Res., 52(19), pp. 5583{5596 (2014).

30. Yuan, J. \A note on the complexity of single-
machine scheduling with a common due date, earliness-
tardiness, and batch delivery costs", Eur. J. Oper.
Res., 94(1), pp. 203{205 (1996).

31. Demir, H._I. and Taskin, H. \Integrated process plan-
ning, scheduling and due-date assignment", PhD The-
sis, Sakarya University (2005).

32. Ceven, E. and Demir, H._I. \Bene�ts of integrating due-
date assignment with process planning and schedul-
ing", Master of Science Thesis, Sakarya University
(2007).

33. Demir, H._I. and Erden, C. \Dynamic integrated pro-
cess planning, scheduling and due-date assignment
using ant colony optimization", Comput. Ind. Eng.,
149, p. 106799 (2020).

34. Demir, H._I. and Phanden, R.K., Due-Date Agreement
in Integrated Process Planning and Scheduling Envi-
ronment Using Common Meta-Heuristics, CRC Press
(2019).

35. Ouelhadj, D. and Petrovic, S. \A survey of dynamic
scheduling in manufacturing systems", J. Sched.,
12(4), pp. 417{431 (2009).

36. Ramasesh, R. \Dynamic job shop scheduling: A survey
of simulation research", Omega, 18(1), pp. 43{57
(1990).

37. Yin, L., Gao, L., Li, X., et al. \An improved genetic
algorithm with rolling window technology for dynamic
integrated process planning and scheduling problem",
2017 IEEE 21st Int. Conf. Comput. Support. Coop.
Work Des. CSCWD, pp. 414{419 (2017).

38. Ba, L., Li, Y., Yang, M., et al. \A mathematical model
for multiworkshop IPPS problem in batch production",
Math. Probl. Eng., 2018, p. 7948693 (2018).

39. Petrovi�c, M., Vukovi�c, N., Miti�c, M., et al. \Integra-
tion of process planning and scheduling using chaotic
particle swarm optimization algorithm", Expert Syst.
Appl., 64, pp. 569{588 (2016).

40. Yu, M., Zhang, Y., Chen, K., et al. \Integration
of process planning and scheduling using a hybrid
GA/PSO algorithm", Int. J. Adv. Manuf. Technol.,
78(1), pp. 583{592 (2015).

41. Petrovi�c, M., Miti�c, M., Vukovi�c, N., et al. \Chaotic
particle swarm optimization algorithm for exible pro-
cess planning", Int. J. Adv. Manuf. Technol., 85(9),
pp. 2535{2555 (2016).

42. Wang, Y.F., Zhang, Y.F., and Fuh, J.Y.H. \A PSO-
based multi-objective optimization approach to the
integration of process planning and scheduling", IEEE
ICCA 2010, pp. 614{619 (2010).



C. Erden et al./Scientia Iranica, Transactions E: Industrial Engineering 30 (2023) 738{756 755

43. Erden, C., Demir, H._I., and K�okc
"
am, A.H. \Solving

integrated process planning, dynamic scheduling, and
due date assignment using metaheuristic algorithms",
Math. Probl. Eng., 2019, p. 1572614 (2019).

44. Janiak, A., Janiak, W.A., Krysiak, T., et al. \A survey
on scheduling problems with due windows", Eur. J.
Oper. Res., 242(2), pp. 347{357 (2015).

45. Yin, Y., Wang, D.J., Wu, C.C., et al. \CON/SLK due
date assignment and scheduling on a single machine
with two agents", Nav. Res. Logist. NRL, 63(5), pp.
416{429 (2016).

46. Browning, T.R. and Yassine, A.A. \Resource-
constrained multi-project scheduling: Priority rule
performance revisited", Int. J. Prod. Econ., 126(2),
pp. 212{228 (2010).

47. Sha, D.Y. and Liu, C.H. \Using data mining for due
date assignment in a dynamic job shop environment",
Int. J. Adv. Manuf. Technol., 25(11), pp. 1164{1174
(2005).

48. Haupt, R. \A survey of priority rule-based scheduling",
Oper. Res. Spektrum, 11(1), pp. 3{16 (1989).

49. Adibi, M.A., Zandieh, M., and Amiri, M. \Multi-
objective scheduling of dynamic job shop using variable
neighborhood search", Expert Syst. Appl., 37(1), pp.
282{287 (2010).

50. Amin, G.R. and El-Bouri, A. \A minimax linear
programming model for dispatching rule selection",
Comput. Ind. Eng., 121, pp. 27{35 (2018).

51. Dominic, P.D.D., Kaliyamoorthy, S., and Kumar,
M.S. \E�cient dispatching rules for dynamic job shop
scheduling", Int. J. Adv. Manuf. Technol., 24(1), pp.
70{75 (2004).

52. Heger, J., Branke, J., Hildebrandt, T., et al. \Dynamic
adjustment of dispatching rule parameters in ow
shops with sequence-dependent set-up times", Int. J.
Prod. Res., 54(22), pp. 6812{6824 (2016).

53. Pierreval, H. and Mebarki, N. \Dynamic scheduling se-
lection of dispatching rules for manufacturing system",
Int. J. Prod. Res., 35(6), pp. 1575{1591 (1997).

54. Qi, J.G., Burns, G.R., and Harrison, D.K. \The appli-
cation of parallel multipopulation genetic algorithms
to dynamic job-shop scheduling", Int. J. Adv. Manuf.
Technol., 16(8), pp. 609{615 (2000).

55. Baker, K.R. and Kanet, J.J. \Job shop scheduling with
modi�ed due dates", J. Oper. Manag., 4(1), pp. 11{22
(1983).

56. Raghu, T.S. and Rajendran, C. \An e�cient dynamic
dispatching rule for scheduling in a job shop", Int. J.
Prod. Econ., 32(3), pp. 301{313 (1993).

57. Vepsalainen, A.P.J. and Morton, T.E. \Priority rules
for job shops with weighted tardiness costs", Manag.
Sci., 33(8), pp. 1035{1047 (1987).

58. Strasser, S., Goodman, R., Sheppard, J., et al. \A new
discrete particle swarm optimization algorithm", Proc.
2016 Genet. Evol. Comput. Conf.-GECCO 16, ACM
Press, Denver, Colorado, USA, pp. 53{60 (2016).

59. Holland, J.H. \Genetic algorithms", Sci. Am., 267(1),
pp. 66{73 (1992).

60. Li, X., Gao, L., and Shao, X. \An active learning
genetic algorithm for integrated process planning and
scheduling", Expert Syst. Appl., 39(8), pp. 6683{6691
(2012).

61. Lin, S., Goodman, E.D., and Punch, W.F. \A genetic
algorithm approach to dynamic job shop scheduling",
Probl. Proc. Seventh Int. Conf. Genet. Algorithms, pp.
481{489 (1997).

62. Park, B.J. and Choi, H.R. \A genetic algorithm for
integration of process planning and scheduling in a
job shop", AI 2006 Adv. Artif. Intell., A. Sattar and
B. Kang, Eds., Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, pp. 647{657 (2006).

63. Pezzella, F., Morganti, G., and Ciaschetti, G. \A
genetic algorithm for the exible job-shop scheduling
problem", Comput. Oper. Res., 35(10), pp. 3202{3212
(2008).

64. Xia, H., Li, X., and Gao, L. \A hybrid genetic algo-
rithm with variable neighborhood search for dynamic
integrated process planning and scheduling", Comput.
Ind. Eng., 102, pp. 99{112 (2016).

65. Zhang, L., Gao, L., and Li, X. \A hybrid genetic
algorithm and tabu search for a multi-objective dy-
namic job shop scheduling problem", Int. J. Prod.
Res., 51(12), pp. 3516{3531 (2013).

66. Pan, Q.K., Tasgetiren, M.F., and Liang, Y.C. \A
discrete particle swarm optimization algorithm for the
no-wait owshop scheduling problem", Comput. Oper.
Res., 35(9), pp. 2807{2839 (2008).

67. Oliphant, T.E., A Guide to NumPy, Trelgol Publishing
USA (2006).

68. Hunter, J.D. \Matplotlib: A 2D graphics environ-
ment", Comput. Sci. Eng., 9(3), p. 90 (2007).

69. McKinney, W., Python for Data Analysis: Data Wran-
gling with Pandas, NumPy, and IPython, 2 Edn.,
O'Reilly Media (2017).

70. Van der Ham, R. \Salabim: discrete event simulation
and animation in Python", J. Open Source Softw.,
3(27), p. 767 (2018).

71. Demir, H._I., Canpolat, O., Erden, C., et al. \Process
planning and scheduling with WNOPPT weighted due-
date assignment where earliness, tardiness and due-
dates are penalized", J. Intell. Syst., p. 10 (2018).

72. Demir, H._I. and Erden, C. \Solving process planning
and weighted scheduling with WNOPPT weighted
due-date assignment problem using some pure and
hybrid meta-heuristics", Sak. Univ. J. Sci., 21(2), pp.
210{222 (2017).



756 C. Erden et al./Scientia Iranica, Transactions E: Industrial Engineering 30 (2023) 738{756

73. Garey, M.R., Johnson, D.S., and Sethi, R. \The
complexity of owshop and jobshop scheduling", Math.
Oper. Res., 1(2), pp. 117{129 (1976).

Biographies

Caner Erden is currently working as an Assistant
Professor at the Faculty of Applied Sciences, Sakarya
University of Applied Sciences, Sakarya, Turkey. He
worked as a Research Assistant of Industrial Engi-
neering at Sakarya University and a researcher at
Sakarya University working on Arti�cial Intelligence
Systems Application and Research between 2012 and
2020. He holds a PhD degree in Industrial Engi-
neering from Natural Science at the Industrial Engi-
neering Department, Sakarya University, Turkey with
the thesis titled \Dynamic Integrated Process Plan-
ning, Scheduling and Due Date Assignment". His
research interests include scheduling, discrete event
simulation, meta-heuristic algorithms, modelling and
optimization, decision-making under uncertainty, ma-
chine learning, and resource allocation and rough
sets.

Halil _Ibrahim Demir was born in Sivas, Turkey
in 1971. In 1988, he received a full scholarship and
entered Bilkent University, Ankara, Turkey to study at

the Industrial Engineering Department. He obtained
his BSc of Science degree in Industrial Engineering
in 1993. In 1994, he received a full scholarship for
his graduate study in the USA from the Ministry of
Education of Turkey. In 1997, he received a MSc of
Science degree in Industrial Engineering from Lehigh
University, Bethlehem, Pennsylvania, USA. He was
then admitted to Northeastern University, Boston,
Massachusetts for PhD study. He �nished his PhD
courses at Northeastern and completed a PhD thesis
at Sakarya University, Turkey in 2005 in Industrial
Engineering. He secured an academic position at
Sakarya University as an Assistant Professor. His
research areas of interest are production planning,
scheduling, application of OR, simulation, arti�cial
intelligence techniques, genetic algorithms, arti�cial
neural networks, fuzzy logic, and decision-making.

Onur Canpolat is currently a Research Assistant at
the Department of Industrial Engineering at Sakarya
University, Turkey. He received BSc and MSc degrees
in Industrial Engineering from Sakarya University,
Sakarya, Turkey in 2012 and 2016, respectively. He
is currently a PhD student at the same university. His
areas of interest include multi-criteria decision-making,
operations research, fuzzy logic, process planning,
scheduling, and optimization.




