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Abstract Particle Swarm Optimization (PSO) has many successful applicatisolving
continuous optimization problems. It has been adapted to solve discrete optimization problems
using different variants, such as integer PSO (IPSO), discrete PSO (DPSO) and integer and
categorical PSO (ICPSO). ICPSO, a recent PSO variant, lnsletitgrdistributions instead of the
solution values. In this study, we applied ICPSO algorithm to solve dynamic integrated process
planning, scheduling and due date assignment (DIPPSDDA) problem which is a higher integration
level of wellknown problemswhich are integrated process planning and scheduling (IPPS) and
scheduling with due date assignment (SWDDA). Briefly, due date assignment function is integrated
to IPPS problem as the third manufacturing function in DIPPSDDA. Furthermore, DIPPSDDA
performsscheduling function in a dynamic environment where jobs armivéne shop floorat any

time. The objective of DIPPSDDA problem is to minimize the earliness, tardiness and given due
dates length. Since the experimental results show that IGRB@erges aossover and mutation
operators used in genetic algoritterwere implemented to ICPSO, namely modified ICPSO
(MICPSO). Finally, experimental results indicate that the proposed MICPSO provides better

performance as compared to genetic algorithifCPSO and adified discrete PSO.
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1. Introduction

Process planning, schedulingdadue date assignment functions are three important
functions for manufacturing environmenthe frst function, process planning prepares
an engineering design into the final product by preparing detailed processing instructions
and determines the neceasy resources, machines and routes to produce a profljct
The gcond function, scheduling is a decisimaking process that takes the tinte-task
assignment of scarce resources and aims to optimize one or more purj@séke tird
function, due date assignmentasoncept which increases its imgance especially after
the spread of the jusin-time concept and aims to deliver products to customers at the
right time. In traditional manufacturing environments, these functions are usually
handled separately that may cause inefficient schedules aral dhtes. Also, process
plans which are prepared independently provide poor inputsthe scheduling as

illustrated in Fig. 1.

Studies on the integration of these three functions have been done rarely. In addition,
common due date is determined in most diet studies and customers' weights are not
considered. Weights of the customers are crucial for businesses because it is undesirable
to process lowpriority jobs earlier from others or to assign a very long due date time to

very important customers.

Integrated Process Planning and Scheduling (IPPS) is-knawth study area in the
literature. IPPS has the benefits of choosing an alternative route, finding solutions for
urgent jobs, and balancing the load of machines. IPPS increases the productiemeyf
of the companies, also helps to meet the demands on time and optimizes utilization of

processes and resources. Especially when the studies in the last decade are examined,
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Zhang and Won[$] used the ant colony algorithm from heuristic approaches to solve the
IPPS problem in a job shop environment. Sobeyko and Mfijdtave implemented an
IPPS application onlarge scale flexible job shop type production environment where
different product trees and routes can be found. They have addressed the weighted total
delay asthe objective function. They provided mixed integer programming for this
problem. Chaudhry5] proposed a genetic algorithm (GA) based oitrivkoft Excel for

the IPPS problem in the job shop environment. Luo ¢6phddressed the mulobjective
integrated process planning and scheduling (M@PProblem, in that a production
system required multiple objectives to be taken into account in the more realistic
decisionmaking process. Zhang and Wofrd studied three different models of IPPS
problems, intuding setup times. They used a customized ant colony algorithm. Petrovic
et al.[8] have tried a ew heuristic antlion optimization for IPPS problem and showed its
applicability. Manupati et al[9] discussed a mobilagentbased approach for IPPS.
Besidessome of the studies on this subject can be given as Meenakshi Sundaram and Fu
[10], Khoshnevis and Chéhl], Zhang and Mallyi2], Morad and Zalzald 3], Phanden

et al.[14], Li and Ga¢15], Phanden et a[16], Li et al[17] and Lin et al[18].

There are also many studies in the literature on scheduling with due date assignment
(SWDDA). Some of the studies are carried out in single machine environments, while
others are performed in mukinachine environments. In most of the studies in the
literature, it is seen that due dates are determined with respect to process timethand
number of operations. Chdi9] andGordon et al[20] are further references on SWDDA.

In recent years Zhao et §21], Xiong et b[22], Yin et al[23], Liu et al[24], Wang etal.
[25]Yin et al[26] and Wang et a[27] have studied on this area. Zhao et[2ll] examined

a single machine scheduling and due date assignment, where the processing time of a job
depends on both the start time and the position in the queue. Xiong ¢22] discused

the problem of single machine scheduling and due date assignment in an environment
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where machines are disrupted by a certain probability randomly. They have aimed to
minimize the optimal job sequence and costs while setting the common due date. Wang
et al. [25] investigated the multagent singlenachine SWDDA problem, each aimed at
optimizing is own performance. Shabt4#8] has investigated a scheduling problem in a
single machine environment where due dates are controllable with batch delivery. Yin et

al.[29] carried out a single machine SWDDA study including the costs of delivering jobs.

Increasing the integration of these functionsillwhelp to improve the scheduling
performance and global production efficiency of a manufacturing system. When these
three functions are integrated, there will be strong communication between each other
and provide better inputs to one another. Fig. 2 sisothe benefits of the integrated
manufacturing functions. When the studies that integrate three functions (process
planning, scheduling and due date assignmdRPSDDA) are examined, there are limited
studies in the literature. Yua30] proved that only the IPPS problem to minimize early
and tardy jobs and batch delivery costs is-tNlPd. Thus, solving the problem of
integration of the three functions will be even more complBemir and Taskif81] have
studied IPPSDDA as their Ph.D. thesis. Then, Ceven and[B&msiudied on benefits of
integrating the due date assignment with IPPS prokdertt Demir and Erdel33] studied
onthe integration of three functions by genetic algorithm and ant colony optimizatimn
minimizethe sum of weightecearliness, tardiness and dutates ofeveryjob. Demir and
Phander{34] reviewed IPPSDDA literature in the book edited by Phandeh [@6& The

IPPSDDA problem is a workable and remarkable research area.

This study deals with the dynamic evems a shop floor. Some internal or external
dynamic events ry occur in real shop floors. For example, a machine bdeakn, an
urgent job, or changes in due dates can lead to a breakdown of the previously prepared
schedules or the occurrence of ineffective schedules. To overcome these problems,

schedules should benade to react to dynamic events. Thus, the dynamic scheduling
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approach, which is prepared using réiahe information and adapted to unexpected
events, will provide more successful res(8S]. When the studies on dynamic scheduling

are examined, it is revealed that dynamic scheduling is harder to solve than solving static
schedulind35], [36] and[37]. In this study, new job arrivals were considered as dynamic

eventsand process planning, scheduling and due date assigharerintegrated

There are numerous methods to solve combinational problems. One of them is PSO which
is a heuristic algorithm that is often used as it is easy to implement in solving optimization
problems. PSO has been widely used in literature, espedmlPPS problems. Ba et al.

[38], have developed a multimodal program using the PSO algorithm for mass production
to minimize production tire. Petrovic et al.39] focused on using a method based on PSO
algorithm and chaosheory to investigate the field of search more extensively in IPPS
problems and avoid the local optima. Yu et[dD] developed a hybrid gbrithm based

on GA and PSO to solve the IPPS problem, which includes two different phases, static and
dynamic. Petrovic et a[41] offered a new algorithm for the optimization of flexible
process plans based on the use of PSO and chaos theory. Wangé@] also tried to

solve the multipurpose IPPS problem by using PSO. In addition to these studies, many PSO
studies are inluded in the literature. However, almost all PSO studies have variables that
are of continuous value. This indicates that the classical PSO will be insufficient to solve
discrete optimization models. As a result of the studies, many PSO variations such as
integer PSO (IPSO), discrete PSO (DPSO), Binary PSO, Veeramachaneni PSO, Angle
Modulated PSO, Discrete Estimation of Distribution Particle Swarm Optimization
(DEDPSO) have been developed. One of the PSO variations that are used to eliminate this
deficieng is the integer and categorical PSO (ICPSO), which is a type of PSO in which the
values of the particles in the swarm are expressed by probability distributions. ICPSO has
been used to solve DIPPSDDA problem in this study, since the due date assigiasent ru

the dispatching rules and the routes of the jobs have categorical data characteristics. In
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most scheduling studies, the makespan is used as an objective function. However, in this
study, it is aimed to minimize the totaleightedearliness, totalveighted tardiness and

givenweighteddue dateslength (E/T/D).

With all our knowledge, the studies on DIPPSDDA are quite limited in the literature. Erden
et al.[43] studied DIPPSDDA problem for the first time. In their study, genetic algorithms,
simulated annealing, tabosearch,and combination of thee algorithms were used to
solve the problemLaterDemir and Erdefi33] studied DIPPSDDA problem by usk@O
Algorithm. In this study, ICPSO algorithm will be used for the first time for solving
DIPPSDDgroblem. The developed algorithm is modified, and it has been observed that

the modified algorithm givebetter results.

The remainder of this paper isganized as follows. The DIPPSDDA problem is discussed

in Section 2. PSO variants (ICPSO, MICPSO, MDPSO) are mentioned in Section 3. The
developed algorithm steps are given in Section 4. Comparative results of the algorithm
are given in Section 5. Finallge results of the study and future works are mentioned in

Section 6.

2. Problem Definition

DIPPSDDA problem can be considered as a contribution to the dynamic job shop
scheduling problem (DJSSP). In general, in the job shop scheduling problemm(@®SP),

are assigned ten machine regarding an objective function. There are some assumptions

in JSSP such as each machine can only perform one job at the same time, one operation
can be processed on one machine at the same time, the machine does not fail when the
operation startson the machine, no urgent job arrived the shop floor etc. On the
contrary, machines may be broken down or urgent jobs may aatvhe shop floor in

the dynamic JSSP model. Since the problem of DIPPSDDA is a variant of dynamic JSSP



problem, it is assuld that an urgent job can arriwa the shop floorBesidesalternative

process plans are used to create more effective schedules.

In a DIPPSDDA modalnumber of jobs witho humber of operations and number of
different routes are processed throughnumber of machines. The processing time of an
operation on a machine is generated using a normal distribution with a mean of 12 and
standard deviation of 6. Jobmre arrivingat the system according tan exponential
distribution with a mean of 10 and associated watdue date which is calculated using a
due date assignment rule. Operation pending machine queue is selected by machine using
dispatching rules as leln this study, 8 different sizes of shop floors (SF) are produced

for the problem and the data of the shop flodsshared in Table 1.

As mentioned earlier, ian IPPS model, scheduling is carried out considering all process
plans of the jobs. This ables more efficient and balanced scheduling for the shop floor.

Another function integrated with scheduling is the due date assignment function.
Significant gains in production efficiency can be achieved with the proper time of due

dates.

Scheduling proleims may have a static or dynamic nature. In dynamic scheduling,
unexpected events, such as machine break downs, new job arrivals or changes in due
dates may affect the performance of the existing schedules. Unexpected events in a shop
floor may result indss of optimal schedules or they may generate infeasible schedules.
To handle these problems, it is important to consider the unexpected events while
scheduling. Dynamic scheduling models are much closer to actual shop floors and they
are the most difficult problems to be solved among the scheduling problems. In this study,

new job arrivals are studied as dynamic events.



The objective function developed for the problem is given as minimioitad weighted
earliness,tardiness,and due dat@ {&ngth of every job. Tardiness and earliness are

calculated a@n Eq. (32):

T, =maf ¢ -4.0) )
E = max(q - g:,O) 2

Where T,, E; denote the tardiness and earliness time of theh job, respectivelyc,,
d, corresponds to the completion and given due date time of jhéh job, respectively.

If the job is completed after its given due date time, tardiness will occur. In case of
tardiness, the penalty for early completion is 0, as expected. If the job is completed before
its given due date timegarlinesswill occur and in ase of the early completion time, the
tardiness penalty is given as \Weighted die dates are penalized along witeighted

earliness and tardiness and the penalty values of E/T/D are calculaiedEgs (36):
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WhereR,, B., B, B, denote the penalties ohdue date, earlinessardinessand total
penalty, respectivelyw, is the weight of thej -th job. The objective function of the model
is to minimize the total penalties. Then the final objective functi@y,) which is a fitness

value of the solution is represented esEq.(7):



fmin = a Ptotal (7)
j=1

Many due date assignment rules have been developed in st{@bdg44], [45], [46] and
[47]. It can be experimentally revealed which of these rules will give better results. The
due date assignment rules used in this study are given in Table 2 with explanation and

eguations.

Where a, p, 0 denote the arrival time, processing time and the operation number of
the i -th job, respectively P, is the average processing time of all waiting jofvs,, w,,)

are determined proportionally inverseo the job weights and k =1,2,2 and

P P
: = av , :P , 3 av .
QX 2 % av q 2

After determining the due dates of each job, dispatching rule for scheduling must be
determined. There are also many dispatching ruledies in the literature. With these
rules, it is determined which of the waiting job is to be processed next. Dispatching rules
can be divided into 4 categories which are process time based, due date based,
combination rules, and mixeblased ruleqd48]. For example, the SPT rule is a process
based rule. In SPhe job with the shortest processing time is prioritized. Process {ime
based rules do not take due dates into account. EDD can be given as an example of rules
that consider the due dat§36]. The EDD rule prioritizes the job with the shortest due
date. In the canbination rulesthe slack or critical rate is determined. Detailed studies on
this subject can be given as follows: Adibi e{48], Amin and EBouri[50], Dominic et
al.[51], Heger et al[52], Pierreval and Mebarkb3], Qi et al[54], Baker and Kangb5],
Raghu and Rajendrgb6], Vepsahinen and Morton[57]. As in the rules for due date
assignment, it is possible to find out which dispatching rule gives better solutions as a
result of experinental studies. The formulas of the priority index of dispatching rules are

given in Table 3.



Where |, denotes the priority index of theé-th job and max, is selected among the jobs

waiting. Slack is calculated as gim (8):

slack=d -p =4 (8)
3. Application of ICPSO to DIPPSDDA

Proposed ICPSO algorithm is based on the study of Strassgb8{.alvhen the algorithm

Ad LWL ASR gAGK {GN}aasSNna TF2NX3zI azfdzirzy
overcome this, ICPSO has been modified by the addition of crossover and mutation
operators. Thus, the developed algorithm has been made more useful tiegrated

scheduling problems. The position vector of particles in the classical PSO structure is

denoted asX, which is a candidate solution of particle. To keep categorical data in

ICPSO, a particle rementation is created using probability distributions. All dimensions

in this representation create probability distributions for a solution to the problem. For

X as each

p routes

this integrated problemX,, is divided into 3 partsX = gX X

p, ddrule? p dsprule

part is valid at different intervals. Fgs-th particle, its due date assignment rule position

can be represented aSXp,ddruIe:gDpl, ddrule’D p2, ddrule »’D p N, ddrule Where eaCh Dp,i,ddrule

represents the probability distriltion for variableX,; ..., and N1 denotes the due date
F2aA3yYSyid Nuz S aiAi So ¢KSyxr S@GSNB St SySyi
consists of a set of distribution®,; 4., = &%, sarier I d\! where d?

p i ddrule "***™~ pj ddrule p.i,ddrule

denotes the probability variabl& assumes value for p-th particle. Similarly, for

p.i,ddrule

p-th particle, the dispatchingrule position vector can be represented as
X asprue=8D pa. aspruie D 2, asprue » D pa aspie WHETe N2 denotes dispatching rule size. For

routes dimension, we need probability distributions for all jobs in the shop floor which

can be represented as
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= dapi=o i® BE j =
Xp,routes_ %D pl, routes », D p 18, routes 8 ng routes» 'D p:N routeg »8 DJ 1p§tes - p N 3routes Where

D™ .. denotes the probability distribution of

p,i,routes

for the routes ok -th job andp-

p.i,routes

th particle andN3 is the number of routes. The probability vector routes of each job can

be represented asD’* vk dEe LdV3 k= where d®)*  denotes the

p,l,routes pirouted = pj routes* p.i routes p,i,routes

probability that variablex ' assumes value of the p-th particle.

p.i, routes

In classical PS@articles move using velocity vectors. Again, we have 3 dimensions for
velocity vectors!  LJF NIi A Of SQ& RdzS R i Sectorsy ahichyswrey (i Nzt
for each variable in the solutiorhe elocity vector of the due date assignment rules

dimension can be represented asV, yue =& pdaue

p2, ddrule ) {N, ddrule and

fp,i,ddrule :gJ}pi,ddrule! jétddrule », %ddrule where y ip,ddrule denotes p-th particle velocity for
-th due date assignment rule. Similarlgdispatching rules can be represented as

—_ A — A N
Vp,dsprule - @’ pl, dsprule pr, dsprute >, ]; R, dsprule and fp,i,dsprule - SJ}p i, dsprule p i dsprule z}?l dsprule *

Lastly, routes vector consists of n jobs can be represented as

—ayis = ;
outes = BY b ioues Vo s ™V powes @Nd routes of k-th job can be represented as
=k —_ j k k= = =k — j k j k= N3, k=
Vp] routes Jpl, routes f ®, routes }p< Bl routes Where f []) i,routes @ in, routes jﬁ j routes >, |] routes *

The velocityvectorin the classical PSO hbasen modified to make it effectivior this
problem specifically. The particles update position vectors at each iteration. The velocity

vector of due date assignment rule, dispatching rule and routes of each job areigiven

Eq. (911).

Vp,ddrule = M)\/p ddrule '|'C1r1( pbestp ddrule X P ddrull Cz+r2( pbeg‘ ddrule X —gﬁdrule) (9)
Vp,dsprule = M/\/p dsprule —K;LE( p best,p dsprule x P dsprl)e C2+r2( pbesg rdip )%-Esprule) (10)
Vp] rcl;utes M)\/i) :(outes +qu( pj b:;&,es J ;r_out; Cz'"rz( l l;b;%s Xj+p rz € (11)
Where;
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w: inertia rate,

¢ : cognition constant,

r, : cognition random number within the range of [0,1]
c,: social constant

r, : social random number within the range of [0,1]

P, : Global best particle

P . Personal best particle

New position vectors that are created from velocity vectors are ginéy. (1214):

X p,ddrule = X p ddrule N p ddrule (12)
Xp,dsprule =X p dsprule v p dsprul (13)

j=k — j ® j k=
X;l),routes - X]p routes Nlp route (14)
Where X, e = 88X roues X' proues ™ X nrouesr 1N€ proposed method is presented as

follows: firstly, an initial swarm with random probabilities is generated. Then, the

LI NI AOf 8048 RdzS RIGS 8aA3yYSyis RAALI GOKAY

determined according to probabilities. All solutiealues in the initial swarm are also
recorded as personal best valgg,,.) of the particles. Thus, the initial swarm is obtained.
The fitness value of the particle which has the best fithess value in the swarm is recorded

as global bst values(p, ). At the same time, the best particle is savecagmrticle of

pgbest )

In the next iterations, the probabilities for the particles of the swarm are updated using
PSO velocity and position equationthe value of the due date assignment and
dispatching rules and routes obtained according to the assigned probability values and
the fitness for the particlés calculated If the fitness valugF 2 ¥ G KS OdzNNBy i
(o) hd 68GGSNI GKIY GKS QozyNE i of b pafiidedt S 0 4

12

LJ

(@]



updated and the particle is recorded pg,. Then, the same process is done for all

particles, it is examined whether there is a particle with a value of better fitnesshan
.If a better fitness value is achieved, tipg is updated and the relevantpticle is saved
as p,_ particle.Thealgorithm is iterated untithe iteration size(k,, ) . Pseudo codes of

the proposed ICPSO is given in Algorithm 1.

4. Other solution approaches

4.1. Genetic Algorithms (GA)

Genetic algorithra were developed by Holland59]. GA is focused on solving
computational optimization problems, inspired by the evolutiofspecies. Iterations are
performed based on the high probability of individuals with better compliance values in
the GA to move to the next population. Iterations-gelection, mutation and crossover
operators are used. GA has solved many schedulinglRR& problesioptimization.
Similar studies with the problem discussed in this study can be given as follows: Li et al.

[60], Lin et al[61], Park and Chdb2], Pezzella et aJ63], Xia et al[64], Zhang et al65].

The proposed algorithm is working with several steps. In the initialize popuktepnwe
proposed a classical GA for solving DIPPSDDA problem as well. Each gene of the solution
chromosome stores due date assignment rule dispatchingrule, and routes ofjobs,
respectively. For initialization of GArandom search is applied fof3terations and the

10 best chromosomes are selected for the initial population.

Selection: GA selection operator selects 3 pairs of chromosomes and 4 chromosomes for
crossover and mutation operations, respectively. A ranking probability method is applied
for the selection operator which has better performance for this problem. Becthese

performance difference between the best and the worst chromosome is getting smaller
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towards the end of the iterations. Chromosome probabilities for the selection operator
are fixed at every iteration and are given in Table 4. In here, we give mobakhility to

be selected to the chromosomes which have better fithess wlue

Crossover: Firstly, we determine the crossover point number which is based on the
number of jobs ashe number of jobs is related to the chromosome size. The number of

crossover pints is calculated usingeil(geng,*0.1) equation. Secondly, we select

crossover points with the selection probabilities of each gene. In here, we have two
dominant genes which are due date assignment and dispatching rule genes. Probabilities
of those genes are given 0.28,25, respectively. Other genes which are the selected
routes of the jobs are given 0.5 probabilities in total. Because due date assignment and
dispatching rule genes have a significant impact on the fitness value. If weectieasg
genesthe performance function will be dramatically affected. On the other hand, if we
change a route of a job, performance function will not be affected that much. These genes
should be selected more to see which pair working well together. Therethese two
genes have been identified as dominant genes in the solution and a higher selection
probability has been given those genes. Thirdly, we apply a4puitit crossover operator

between two parent chromosomes to produce new two offspring chmeomes.

Mutation: Like the crossover operator, we determine the mutation points number using

the following equationceil(geneg,*0.3) in the first step. At the second step, we apfhe

mutation operator to the selected genes. After crossover amatation operators, we
have a new population with 20 chromosomeko fix the population size to 10, we
determined the population by selecting the best 10 chromosomes. At the last step, we
iterate the selection, crossover and mutation operators until theration number is

reached. The parameters setting of GA&iven in Table 4.

4.2. Modified ICPSO (GA/ICPSO)
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We applied different variants of PSO to find better solutions. In the algorithm of MICPSO,
we add mutation and crossover operators to classical ICPSO. ICPSO tries to optimize the
probabilities of the solution but in this study when pure ICPSO is used vempents
become harderThat iswhy we integrate crossover and mutation operators to the ICPSO
algorithm and changacertain number of genes at inertia, cognitive and social part of the
algorithm. ICPSO calculates the probabilities and generates newosoiglues for the
problem at each iteration using and X vectors. Applying mutation operator and then
crossover to each particle witlp,., and g, improve solution performance. At first, we
applied mutation operator to each particle and with 0.25 probability each gene is replaced
with possible other values and this part constituttk® moment of inertia part of the
algorithm. Later, each particis crossed ovewith p,, and each genes replacedwith

0.25 probability with the associateg,.., values and this part constitutethe cognitive

part of the algorithm. Finally, with 0.25 probability each gdaecrossed over with
associatedg, ., values and this constituteie social part of the algorithm. These updates
are all applied for all particles in the swarm and we obtained better results. These steps
are stopped when the iteration ®zs reachedPseudo codes of the proposed MICPSO is

given in Algorithn®.

4.3. Modified Discrete PSO (MDPSO)

Here, Modified Discrete Particle Swarm Optimization (MDAR&&))s adapted to solve
the problem in which the posdidstructure of ICPSO has betied to be improved. In

the study of Pan et aJ66], a probabilityis giverfor evey gene of particles to be mutated
or crossed over. For example, according to Pan €66, firstly every gene is mutated

with approximately 25% probability and later every génehanged into associateg,

est

value with 25%robabilityand finally ever gene is changed into associadgg valuewith

%25 probability.
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In our MDPSO algorithm, we select %agenes of the particle randomly. Those genes
are mutated and changed into another possible value (Moment of Inertia applied). After
that, we select again randomly %@bgenes of the particle ahthese genes are changed

into associatedp, ., values (Cognitive part is applied). Thus, each particle and associated
Py Values are crossed over. Finally, we select #f2%enes of the particle again and
changethe values of these genes with associateg),., values (Social part is applied) and
thus,the crossover is applied between every particle agg, particle. This makes MDPSO

more practical to applyPseudo codes dhe proposed MDPSO is given in AlgoritBm

5. Experimental Results

In this study, the proposed algorithms are coded in Python programming language on
Ly St 1t -620PUINEPW @R BOGHz with 8 GB RAM a personal computer. Appropriate
Python packages such as NumBY], Matplotlib [68], pandas[69], salabim[70] are
utilized to analyze and solve the problem. Events such as new job arrivals, the end of an
operation of the jobs or the assignment of a job to a machine are simulated with the help
of salabim packag®&esidesthe job to be seleted by the machine among the jobs waiting

for machine queue is made by taking into consideration the dispatching rule. Thus, it is
aimed to find the optimal dispatching rule, due date assignment rule and routes of each
job combinations. Because there is research data on DIPPSDDA in published papers,
we generated 8 different sizes of shop floors and their data for this problem. The data

used for this study is given as the supplementary file.

One of the outcomes of this study is the most appropriate schedules for production.

Schedules obtained from the last iteration can be shown using Gantt charts. Gantt charts
created for this study also shows the arrival of jobs. The arrival time of theajutbshe

first machine to be assigned at the time of arrival are shown with the help of arrows. A

Gantt chart is created for all shop floors, but only a Gantt chart is shown for the first shop
16



floor. Asit is too hard to follow charts in medium and big esighops. Each job in the
diagram is showiin a differentcolor. Boxed pieces show the operations of jobs. Since
there are 10 operations iavery joh the jobs are shown with 10 pieces. The Gantt chart

of the optimal schedule obtained by MICPiS€hown in Fig. 3.

The proposed MICPSO algorithm is applied to the data and the experimental results of
MICPSO compared withe results ofMDPSO, ICPSO and GA in 8 different sizes of shop

floors which are illustrated in Fig. 4.

As it can be seen from Fi§j. MICPSO gave the best results in all shop floors except Shop
Floor 1, 4 and 5. From figures, mostly MICPSO algorithm has better performance than the
other algorithms. Meanwhile, the CPU time of ICPSO is better than other algorithms. Also,

the best, averge and worst results for all shop floors can be seen in detail in Fig. 5.

According to Table, MICPSO and MDPSO outperformed GA and pure ICPSO. At the five
out of eight shop floorsMICPSO gave better performance but in shop floor 1, 4 and 5
MDPSO gave lter performance. Since MDPSO is very practical to apply, it is also a
promising solution technique but mostly MICPSO gave better performance and can be

recommended for DIPPSDDA problems.

According to Table ,émost of the jobs have earliness. This is hmeatardiness is
undesired with greater fixed and variable cost terms. Fixed and variable cost parameters
for earliness are 5 and 4, but on the other hafided and variable cost parameters and
coefficients for tardiness are 8 and 6. If a job is tardiess of early than we penalize the

job with an additional 3-unit fixed penalty in terms of fixed cost and variable cost

coefficient becomes 6 instead of Bihe Ast column of the table shows the total penalty
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for every job and ifve sum up the last columthen we get the total penalty of all jobs

which gives fitness function for this shop floor.

The best, average (Avg) and worst results of executing eight shop floors with all algorithms
are presented in Table In general, MICPSO had better performance for eight shop floors
by having minimum best values mostly. Further analysis about the performance of the
algorithms was done using oneay analysis of variance (ANOVA) test to check if there is
a significant diffeence between the results ahe algorithms. Average values of the
fitness functiors are selected as the response vawandthe algorithms are assumed as
factors. To perform the ANOVA analysis, we run the program ten times with different seed
valuesin the shop floor 8 where the highest variability is expectElde results are given

in Table 8.

Before performing ANOVA test, weed to checkhe normality assumption As a result

of the normality test,tiwas determined that normality is not satisfied asan be seen in

Fig 6 (p<0.010). For this reason, the neparametric test, Kruskalallis test, was

performed instead of ANOVA. Krusk#hllis test results show a strong significant

difference between the algorithm results because thevalue (0.007) is too close to zero

asshownin Table9 and 10 The means plot in the least significant difference intervals at
99% confidencésillustrated in Fig7. Those results are indicating the superiority of the

MICPSO atgithm compared with GA, MDPSO and ICPSO.

6. Conclusion

In this study, process plannindynamic scheduling and due date assignment functions
are integrated which is a novel subject in the literature. It is assumed that the jobs arrive
at the shop floor wh the exponential distribution randomly. The problem is madele)

and populampopulationbasedPSO and GA algorithms are preferred from rastaristic
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algorithms as solution methods. Since GA solution has been introduced in the previous
studies[71,72] the structure of PSO which is developed anadified for the solution of

the problem is mentioned more than GA in the application section of the paper. The
results of the experimental studies show that MICPSO has better performance and quality
and is one of the best methods in terms of both the bestution and CPU usage rates.
Since classical PSO is usually worked with continuous data., lBRS&ion of PSQwvas
utilized in this studylue tothe discrete and categoricahtureof the problem. It has been
ensured that ICPSO is modified for theldem with some improvements. Since ICPSO is

a newly developed PSO variation algorithm; the implementation of the algorithm among
the NRhard combinational problems is limited in the literature. Only scheduling problem
with more than 3 machines is an Miard optimization problem[73]. Here a study has
been carried out to fulfil this gap. The method developed has been called modified PSO
and saved as a new method for further studies. To supnthgse conditions indicate the

originalaspets of the study.

With DIPPSDDA more efficiepffective,and balanced schedules in the shop floors can

be obtained. Because process plans, schedules and due dates are tried to be optimized
using the alternative process plans in DIPPSDDA. IPPS problemsaahed a certain
number of studies and many issues have been studied so far. Therefore, there is a need
for new study subjects and ideas. We presented a new study area for the researcher
working on IPPS and SWDDA. This issue needs further workfutuhe We can list the

possible future research that can be focused on as follows:

Comparison of the other discrete methods with proposed ICPSO.
1 Solving DIPPSDDA model with other successful algorithms (Artificial Bee, Colony
Honeybee Colony etc.)
1 Includhg more objectives such as makespan to consider the DIPPSDDA problem

in the form of target programming.
19



1 Adding other dynamic events to the DIPPSDDA problem such as machine break
downs, job cancellations.
1 Integrating other production functions such@alivery manufacturing function to

the DIPPSDDA problem.

Supplementary Materials: Representative data in the main text added here as

adzLILX SYSY G NE GRFGFHASGAT ALE TAL) FALSO

7. References

1. Chang, T. C. and Wysk, R.AA. Introduction to Automated Process Planning Systems
Prentice Hall Professional Technical Reference (1984).

2.  Kahlbacher, H. G. and Cheng, ® C9 ® dat I NI f £ St YI OKAYyS &aOKSRdz
SENI AySaa yR y disce® Nip2Mathdi72)NIR. 8139262 (1998) >

3. WBKlIy3ar {d [YyR 22y3T ¢d bd aLYGSANIGSR LINROSaA
colony optimizaton heNA a G A O ¢ A G K LI INall. WEnu{29(3), priAH8560H ¢ >
(2018).

4. {20S@12X hod |yR alyOKzZ [® aLyGSINI &R LINE OS:
Tt SEAGES 220 &K2 Lk Jd2bd Reb5),Pp. BIRDURM7L. G A 04 ¢ =

5. / KFIdzRKNEX Lo !'®@ ! DSYySGAO !'f3I2NRAGKY ! LILINRBLI O
{K2L) 9YQPANRYYSY(és LI ¢ OHAMHO D

6. [dz2X DX 2S8Sy3I . &3 [ A Zobjectivd geletic algdritthn ase¢ onS T ¥ SO
immune principle and external archifer multi-objective integrated process planning and
4 OK S R dat. & ¥Xd¥.&VANuf. Techn®1(9), pp. 3143158 (2017).

7. %KlIy3x {® FYR 22y33 ¢d b d-dépéndedeRséuip yirdes it KS A Y LJI
integrated process planning and schedulimigh E! / h K S dzitll. ®ibd. ReHE(16),
pp. 48154838 (2016).

8. tSUNROGAOGI ad> t SGNRYA2SPOAOGIT WHI aAldAdor adr !

LydSaNI GSR tNROSaa ttlyyAy3d FyR { OKSRdzZ Ay3és

20



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

al ydzLJ AL +® YOS tdzZiyAlS D® 505 C¢CAGlINAS ad
scheduling using mobHagent based approach in a networked manufacturing

Sy @A NB Confput.iné. Eng4, pp. 673 (2016).

Meenakshi Sundaram, R. and3Fu { ® dat NREOSaa LIX t Wydetfiad off YR & OF
AYUSaINI GA2Y T2 N LINRoRpzOld BEhglb(E4), o 2IRPA8E y i ¢ =
YK2aKYyS@Aas .® IyR /KSyZ vod ad aLYyGSaANIGAZ2Y
J. Intell. Manuf.2(3), pp. 168175 (1991).

BKIy3z | & /& YR albffdiNE {® a!'y AyiSaNIiGSR
4 OK S R dat. . Cainpul Integr. Manyf(6), pp. 356364 (1994).

a2NIRZ bd |YyR %lItllflZ | & &DRSBY Pahding addt 32 N& G
4 OK S R difinkel). Ma@ndf.10(2), pp. 169179 (1999).

t KFYRSYZ wod YOI WIHAYS ! @ FYR *SN¥IZI wod aLyid
state-of-the-l NIi  NIBIRA Gompul Integr. ManyR4(6), pp. 51¢534 (2011)

Li, X. and Gao, lEffective Methods for Integrated Process Planning and Schegduling
Engineering Applications of Computational Methods, Sprivgtag, Berlin Heidelberg

(2020).

Phanden, R. K., Jain, A., and Davim, J. PInExgation of Pocess Planning and Scheduling:
Approaches and Algorithm&st edition, CRC Press, Boca Raton (2019).

[AZ - ®X DIFI23X [®X trtys voexr Si Fftd aly 9F7FS(
Neighborhood Search for Integrated Process Planning and Saigdualia Packaging

al OKAY S 2 ERETaaKs29yd. Man Cybern. $180), pp. 19381945 (2019).

[AYySE [/ ® {dX [AZ td |, dXI 2SAI WP adr SiG |tod a
RA&GNAOGIzl SR FCoRputh OperSRe®22 p. 1G6063 (R02E).>

| KSys %o [® 4{OKSRdZ Ay3a I yR O22txdresspeRalids R S |
FYR o (0K REuE X OpaNBeS3QR @pika60 £1996).

D2NR2Yy I ®3 t NPGKI WP a ®Df-thHe-grFof corfnuaa dué dhte G ! & dzN.
FaaA3ayyYSyid I yR aEdKS Gpdzrt Rey391), b £25 R0 K £ X

BLKE2S |/ ®s | &ddzs / ® WoOE [AYyE 20 /[ dthtmdandl f ® a5c
Ll2aAdArz2ylf R SILIORtEYSTippSIHEF (3028).4 ¢ >

21



22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

SA2Yy 33T - dX 2t y3AI 5 @ ImacHng stieduling end ¢ommaod duE dagld | f ®
FaaA3ayyYSyid 6AGK LI2GSynt A IPfod. ResSO(B)ApS.334R1BED NHzLIG A 2 Y
(2018).

LAY S, ®3 2 y3s 2 dagent dingléhachire echedSing artd urestictedizt G A
RdzS RIGS aaArAdyyYSyid éAGK I ThnipSRndYERQDKA Y S dzy |

pp. 202,215 (2017).

[ AdzZ 2 ®dX 1 dzZ - ®dX YR 2Fy3as - o a{Ay3ItS YI OKAY:
Eng. Optim.49(4), pp. 709717 (2017).

2 y3s 50 WPI [ AyI |, odr [/ KSy3asx {d wods SiG |t d ¢
machine with two competing &y (i16t.£)3Prod. Re54(4), pp. 11521169 (2016).

Yin, Y., Wang, D., and Cheng, T. DuEDatewSt I i SR { OKSRdzZf Ay3 gAGK ¢3¢
and Algorithms Uncertainty and Operations Research, Springer Singapore (2020).

Wang, Y., Wang,.®> | yR ,Ay>S , & GadzZ GAGlIalAy3a aOKSRdz
RSGSNA2NI A2y STTFSO{CompyitRndERGISE O.AEHF60 RO20)INE Y2 (i A 2y
{KFLodGlrtes 50 4{OKSRdzAZ Ay3d IyR Rdz§ RIFIGS Faardayy:
Rdz§ RIFdGS FaaArA3ayyYSyid InyR Prod BcOE23B, $p. RBHURE 02 a ( ?
(2010).

CAYI o3 / KSy3aAI ¢ o/ -factin® batch delvery/ séhedulidgzandS i | £ d
common duedate assignment with arat¥ 2 RA F & A y Int. J. PradA R85 2{(18)s pp.

55835596 (2014).

LdzZhyz wo 4! y2GS 2 yhachire Schedding with& Edminén da@eTateg A y 3t S
earlinessi F NRAY Saas I yR Burd Opger. ReS4(1), ApSA02205Q1BI6YI & ¢ >
5SYANE [|IOAPAYIZY R ©¢ aLYyG§SINIGSR t NRPOBaied tftlyy
laaAdyyYSyliés tK5 ¢KSaaas {F1FNBF ! YAOSNEAGE ¢
| SGSYys 9d YR 5SYANE | oDae Assighyest WihiRtocessT Ly (i &
ttryyAy3 FyR { OKSRdz A ySakarga University @oar)2 T { OA Sy 0S8 ¢
5SYANE | & Td YR 9NRSYy>S / & a5yl YA Odatey G SANI (i

I 48A3yYSyd dzAy3 | Qoinpuddd. Bngldo p2 106799Y2040). (A 2y ¢ =

22



34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

5SYANE | @ To IDyeRatet AgeenyiaRtSn/lategratddl Phocess Planning and
Scheduling Environment Using Common Medéauristics CRC Press (2019).

hdzSt KFR2X 5@ YR t SINROAOT { @ d&a! &dzNBSe 27F R
Sched.12(4), pp. 412431 (2009).

Ramas&a KX w® a58ylYAO 220 &K2L) & OKSORezad8idyY ! & dzN
pp. 4357 (1990).

JAYS [ DIF2X [ [AX -®X S Ftd al!'y AYLINRGSI
for dynamic integrated process planning and schedlin LINR 80 BIFEE 21st Int. Conf.

Comput. Support. Coop. Work Des. CSQAD114419 (2017).

LT [ e [AZX ., dY [ Fy3dX adr SiG Ffto a! aldKSYF QA
t NB R dzOMath. Proli. Eng2018 p. 7948693 (2018).

t SINPOAGZ adr +dzl20A03X bdr aAdGAdor adzr Si |t o
dZaAy3 OKIF23G§AO LI NI AOf S Eapéart Iyt AmpbaAipp.Ysb4588i A 2y | €
(2016).

,dzz adr %KEyYy3AZ | &3 / K Sc¢sk plaining an§ dchebuling using. a/ G S 3 NI
KeoNAR D! kt {nhJ. Adv. ManNtAT@AKNGES(X), pp. 588592 (2015).

t SINPOAGEI adr aAlAdr adr +dzl 20A0X bdx Si o
Tt SEAOGE S LINBQINdvEAMahif. TefhyidisH P, X 25362555 (2016).

2 y3ay | d CodI w%KIy3IS | dbasedbiultiobjgcive dptizhzationwWd | &
F LILINRF OK G2 GKS Ay dS3NI (A2 yIEREACCARME.$Ba LI | vy,
619 (2010).

Erden,/ ®X 5SYANE |1 & TodX yR Yl {lceYZI !'®d | & af{2f¢
{ OKSRdzZf Ay3ds |yR 5dz5 5FGS ! aaA3IvaiPyobl. Ehnga Ay 3 a$
2019 p. 1572614 (2019).

WEYAF]1Z ! X WEYALF1Z 2 dyon seBedulhlPréblerhs| with duebs S

4 A Y R 2BE8rAX Qper. Re842(2), pp. 34€357 (2015).

JAYS 0 2Fy3I 50 WPI 2dzz /@ / ®X S fd a/ hbk

YI OKAY S ¢4 G MaviiRe® Lobish 8355 ppz416429 (2016).

23



46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

.NRgyAYyIS ¢d wod |y Ronstiaided mykifrgect!scheduliny: Paionity & 2 dzNO S
NOzf S LIS NJF 2 NI IhtydGPEod. R&E@A6R)Aph. 21228 (2010).
{KFEZ 5 , & yR [AdzZ [/ & | & nmentanfapyhaniiclldblShop A y A y 3

9y @A NB yhay B 4. Manuf. Technd@5(11), pp. 11641174 (2005).

I dzlJG 2 wo ! adaNBaSR 270 QRIS NekyaEs L) 2p S 16
(1989).
l RAOGAZ ad | &3 %l yRA SdbjEctiva selleduling B dynamic jah &hopa @ ¢ a d

dza Ay 3 @ NAI ot S yESperBIysi. AphB7ELR pp. 282387 RIIR)E

Amin, G. R.and EI2 dzZNA S ! & 4! YAYAYFE £ AYySInyJulINE I NI Y
4 St S Qdbrpity18dZEngl21, pp. 2%35 (2018).

52YAYAOZ t®d® 50 503 YItA&lIY22NIKe&zZ {®X FyR Ydzy
220 aKz2Ll oOKMARR NAnAfYTEchnER4(1), pp. 7Q75 (2004).

I SASNE WohX . Nry(1ST Wos | AfRSONIYRGE ¢dx S
parameters in flow shops with sequenrdependent setdzLJ { Alnt. 3. @& ReH4(22),

pp. 68126824 (2016).

t ASNNBGItzZ | & FyR aSol seledtich ofbdipatchmig silesyfarO & OK S
Y ydzF I Ol dzNInty HPrad 8R&856)Y#p.215761591 (1997).

VAZ WO DOPI . dzNyaz D® wdX YR | FNNRaA2YysX 50 YO
Algorithms to Dynamic Jep K 2 LJ { O KI&.R.dabvi MaRuf. Technpl6(8), pp. 609

615 (2000).

. F1SNE YO wod YR YEYySis wo Wod aMWM@per. Mafag. L) a8 OK ST
4(1), pp. 1£22 (1983).

wlk3IKdzZz ¢d {d YR wlka2SYyRNI yYy> |/ dscheduliigi®Sajdi OA Sy i

Q)¢

K 2 Ini¢ JZProd. Ecor82(3), pp. 308313 (1993).

I+

SLBAILfIAYSYS 1d td Wd YR az2NIlz2ys ¢d 9d &t N2
/ 2 & Managx Scj.33(8), pp. 10351047 (1987).

Strasser, S., Goodman, R.K S LILJ NRX Wdx Si Ffd a! bSg 5AiaO0ONE
I £ 32 NRracK¥1$6 Genet. Evol. Comput. CABECCO 18.CM Press, Denver, Colorado,

USA, pp. 580 (2016).

24



59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

l2ffFyRZI Wod | & SciDAy26/(i)App. 6678 AWRRA (1 KY & ¢

[AZ - & DIF2X [®X YR {KI2X - 4!y FFOGABS S
LI I yYAY 3 | yEpei SyktSARpRY(S), prd 66886691 (2012).

[AYSES {®Z D22RYlYyS 9¢® 5d3 |yR tdzyOlBicldbd CPd 4a'!
{ K2 LJ { OKP3oRIdRfros. Beveénth Int. Conf. Genet. Algorithpps481L489 (1997).

tEN]Z . WO YR /K2AZ 1 & wd ! DSySGAO 32
{ OKSRdzf A y3 Al 006-AdWELD. Inte]IK. Satlaand B. Kang, Eds., Lecture Notes

in Computer Science, Springer, Berlin, Heidelberg, pp;65%7(2006).

t STT Sttt Cdx az2ZNHIYGASZ DO YR [/ AlL-8hOKSGGAZ

{ OKSRdzt Ay BompulB®et. BeR%(1D), pp 32023212 (2008).

“AFZ 1 ®Z [AZ - @ FYyR DIFI2Z [® a! KE@ONAR ISy S
ReEYFYAO AydS3aINI (SR LINE Chmput. Ihdf Bngl92Apy. BLILY R & OK S
(2016).

%BKEFy3as [ ®X DI2F [dX YR [AZ - & 4! -dbgddwWAR 3ISyS
ReEYyFIYAO 220 aKz2LJ)Im ORBRReSEK1Z)Ipp.3BLE3630 Q018).5

tlhyZ veo YO ¢+Fa3a3SiANBYysS ad I€swarm lopfirRizatiorh I y 3 X
algorithm forthe neg A i Ff 2 64 K2 L) & CenHR.dZper.\RESS5QNGO f SY § =
28072839 (2008).

Oliphant, T. EA Guide to NumPRyfrelgol Publishing USA (2006).

| dzy i SNE Wao 5d @dal (L} 20 tCoropwt. Sci. ERE(3),D.ND ROR7A. 04 Sy @)
McKinney, WPython for Data Analysis: Data Wrangling with Pandas, NumPy, and IRython

H SRAGAZ2YZ hQwSAftfte& aSRAIF O6HAMTOO®

Gy RSNI I FYZ wod a{lfFroAYY RAAONBIS P&@dSYy(d ai)
Source Softw3(27), p. 767 (2018).

5SYANE | & Tos /yLRtFIGZ hedr 9NRSys: / ox SiG I+t

Weighted DueDate Assignment where Earliness, Tardiness and®Duei $& | NBJ.t Sy | £ Al

Intell. Syst.p. 10 (2018).

25



72. 58YANE | ® To yR 9ONRSYS /@ 64{2f@Ay3 LINROS&a L
weighted duedate assignment problem using some pure and hybrid sie® dzNA Sali.A O& € =
Univ. J. Sci21(2), pp. 21@222 (2017).

73. Garey, M. R, Johnson, D. SSRan{ SGKASZ wod G¢KS /2YL}X SEAGSE 27

{ OK § R dvfath. DfkE. Res1(2), pp. 112129 (1976).

26



List of FigureCaption

Figure 1. Unintegrated process planning, scheduling and due date assignment

Figure 2. Integrated process planning, scheduling and due date assignment

Figure 3. First Shop Floor Gantt Chart of the Optimal Schedule

Figure 4. Comparative results of the proposed algorithms for shop floofSlti¢g) Floor 1, (Ephop
Floor 2, (cShopFloor 3, (d3Shop Floor 4, (€shop Floor 5, #hop Floor 6, (¢3hop Floor 7, (k)

Shop Floor 8)

Figure 5. Comparative best, average and worst results of the proposed algorithms for shop floors

Figure 6. The normality test plot

Figure 7. Interval Plot @verage results for the algorithms

List of TableCaption

Table 1. Shop floor configuration

Table 2. Due date assignment rules

Table 3. Dispatching rules

Table 4. The parameters setting of GA

Table 5. Best algorithms and fithess values for all shop floors

Table 6. Experimental results for Shop Floor 1

Table 7. Comparative results for shop floors

Table 8. Algorithm results with different seeds

Table 9. Kruskalallis Descriptive Statistics

27



Table 10. KruskaWallist test results

Algorithm 1. Pseudo code dié proposed ICPSO

Algorithm 2. MICPSO Pseudocode

Algorithm 3. MDPSO Pseudocode

28



DUE DATES

PROCESS
PLANS

POOR INPUTS

Figure 1.

v

SCHEDULING,

29



DUE DATES

BETTER INPUTS

PROCESS
PLANS

Figure 2.

30



Machines

Shop floor 1

mb5 4

m4 -

m3

m2 -

m1l -

L ANl 1)

T T T T T T T T

150 225 300 375 450 525 600 675 750
— job0 =—— job5 —— jobl0 —— jobl5 — job20
— jobl job6 jobll —— jobl6 —— job21
= job2 = job7 = jobl2 jobl? = job22
— job3 —— job8 —— jobl3 —— jobl8 job23

job4  —— job9 —— jobld —— jobl9 —— job24

Figure 3.

31



performance

performance

performance

performance

Performance Comparisions

Performance Comparisions

370
200 360 4
350
190 -
o 3401
o
5 330
180 1 E
‘£ 320
o
(=3
170 310
300 4
160 290
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
iteration iteration
(a) (b)
Performance Comparisions Performance Comparisions
— GA 580
410+ —— ICPSO
— MICPSO
] 60
400 —— MDPSO 5
390 $ 540
£
380 i £ 5201
‘ g
370 |
500 4
360
! 480
350 4
0 20 a0 60 80 100 0 20 40 60 80 100
iteration iteration
(©) (d)
Performance Comparisions Performance Comparisions
8501 — GA — GA
—— ICPSO 800 1 —— ICPSO
— MICPSO —— MICPSO
800 —— MDPSO 780 4 —— MDPSO
g 760
g |
750 4 ©
E
S 740
t
g
700 7204
6509 T\ _\ \\ 7 ﬁlﬁ—ﬁ
TN
§ . - 680
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
iteration iteration
(e) (®
Performance Comparisions Performance Comparisions
1120 \
900 \ﬁ 1100
1080
880 4
— GA ﬁ 1060 — GA
—— ICPSO 2 1080 —— ICPSO
860 1 —— MICPSO s —— MICPSO
—— MDPSO 2 1020 —— MDPSO
840
1000 1
820 4 980
T T T 960 T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
iteration iteration
Figure 4.

32



Performance

Performance

Performance

Performance

Shop Floorl Shop Floor2

370
—— GA
200 360 1 —— ICPSO
—e— MICPSO
3307 . mopso
1901 o 3401
Y
5 330
180 1 £
2 320
o
a
170 4 310
300
160 4 290
best avg worst best avg worst
(@) (b)
Shop Floor3 Shop Floor4d
—-— GA 580 1 —— GA
4109 . cpso —— ICPSO
—e— MICPSO 5604 —— MICPSO
4001 . MpPsO ~+— MDPSO
390 { g 540
"
380 - £
£ 520 1
&
370 -
500 -
360 -
480 -
350 A
hést a;g wt;rst best avg worst
(© (d)
Shop Floor5 Shop Flooré
— GA
800 1 —— ICPSO
800 - —e— MICPSO
780 1 —=— MDPSO
]
7504 g 760
E 740
g
700 4 & 720
ol 700 Z—//,:-—A
! ! 680 17
best avg worst best avg worst
(e) ()
Shop Floor7 Shop Floor8
/ 1100 -
900 -
1080
880 1 o 1060 1
— GA g
—+— ICPSO o ]
] £ 1040
8601 o micPso 5
—e— MDPSO E 1020 1
840 -
1000
820 A 980
T T T 960 1 T T T
best avg worst best avg worst

Figure 5.

33



Probability Plot of Avg

MNeormal
Mean 1omn
StDev 39,50
N 40
KS 0197

P-Value <0010

Percent

80

80
50

20
20




Interval Plot of Avg vs Algorithm
99% Cl for the Mean

1075

1050

1025
=

Av

1000

975

GA 1ICPSO MDPSO MICPSO
Algorithm

The pooled standard deviation is used to calculate the intervals,

Figure 7.

35



Table 1.

Numbers SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8
Jobs 25 50 75 100 125 150 175 200
Machines 5 10 15 20 25 30 35 40
Operations 10 10 10 10 10 10 10 10
Routes 5 5 5 5 3 3 3 3
Iterations 150 150 100 100 75 75 50 50
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Table 2.

Rule No Name Explanation Equations
0,1,2 SLK Slack d=g H e
3,45 WSLK Weighted slack d=ag + wq
6,7,8 TWK Total work content d=3 *p
9,10,11 WTWK  Weighted total work content d=a wkp
Number of operations plus _
S d=3
12,13,14 NOPPT processing time =& Sk
The weighted number of operation | _
d=a #H
15,16,17 WNOPPT plus processing time =& h Swko
18 RDM Randomallowance due dates d =3 N~(32,R)
19,20,21,22,23 I . _
242526 27 PPW Processingime-plus-wait d=3 Kkp ¢
28,29,30,31,32 . - . _
33.34.35.36 WPPW  Weighted processintjme-pluswait d =g w kp W g
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Table 3.

Rule No  Name Explanation Equations
. . &max(slack,0) i
0-1-2 WATC Weighted Apparent Tardiness L =ﬂe@ oo |
Cost ''p
1 &max slacko)
345 ATC Apparent Tardiness Cost |, =—eb ©
P
6 WMS Weighted Minimum Slack |, = {slack) w
MS Minimum Slack I, = {slack)
- w
8 WSPT We|ghtedshortest process | =
time s}
, 1
9 SPT Shortest process time l; = F
10 WLPT Weighted longest process tim | =%
11 LPT Longest process time I =p
i i w
12 WSOT We|ghted shortesbperation | =—
time o
o 1
13 SOT Shortest operation time ;= F
i
14 WLOT Welghted longest operation | _P
time W
15 LOT Longest operation time li =By
1
16 EDD Earliest due date L =4
. . W
17 WEDD Weighted Earliest due date  |; = R
_ 1
18 ERD Earliest release date l; =a
. , W
19 WERD Weighted earliest release dati |, =—
20 SIRO Service in random order random
1
21 FIFO First in first out l; =;
22 LIFO Last in first out li =4
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Table 4.

Parameters SF1
Population size 10
Crossover probability 0.7
Mutation probability 0.3

Number of crossover points
Number of mutation points

Chromosome probabilities for
selection

ceil((n+2)*0.1)
ceil((n+2)*0.3)

[0.3,0.2, 0.15, 0.12, 0.10, 0.07, 0.03, 0.02, 0.006,

0.004]
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Table 5.

Shop Floor Best Algorithm Fitness Value
SF1 MDPSO 155.93
SF2 MICPSO 285.09
SF3 MICPSO 348.69
SF4 MDPSO 470.66
SF5 MDPSO 629.16
SF6 MICPSO 682.71
SF7 MICPSO 810.50
SF8 MICPSO 964.31
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Table 6.

JokWeight

Earlines:Tardines:

Penalty Penalty Penalty Penalty
earlines:tardinessdue date: total

o~NoOOOTh~WNEO

NNNNNREPERRPRRRERRRERE
ARWONRPOOWONOUDNMWNRO

1.00
0.66
0.33
0.33
0.66
1.00
0.33
0.66
0.66
0.66
0.33
0.66
0.66
1.00
0.66
1.00
0.66
0.66
1.00
0.66
1.00
0.33
1.00
0.66
1.00

ArrivalDeparture  Given
time(s) time(s) due date(s
71 218 274.41
76 260 269.28
83 227 268.41
88 303 284.66
98 290 291.28
124 259 299.28
133 312 321.78
188 334 362.16
196 339 362.28
218 364 442.78
288 432 493.66
353 484 520.41
367 646 554.66
371 553 557.53
377 619 550.03
393 573 595.28
408 556 590.03
416 753 616.03
429 578 602.03
458 601 628.78
467 601 620.91
468 647 705.16
492 716 716.78
496 657 664.53
537 727 744.91

56.41
9.28
41.41
0
1.28
40.28
9.78
28.16
23.28
78.78
61.66
36.41
0
4.53
0
22.28
34.03
0
24.03
27.78
19.91
58.16
0.78
7.53
17.91

0

=
oo
w
N

b o)) ©
O P ocoocoocoocoooof

w
N

©
~

(o]
~

5.47
3.35
1.76
0
3.31
5.34
1.68
3.45
3.43
3.73
1.82
3.5
0
5.04
0
5.19
3.49
0
5.20
3.45
5.17
1.81
5.01
3.34
5.15

0

0

0
2.06

»

N
D000 OO (HOL L L OOOOOOOO
w Pk

&)

3.39
2.13
1.02
1.08
2.13
2.92
1.04
1.92
1.83
2.47
1.13
1.84
2.06
3.11
1.9
3.37
2
2.2
2.88
1.88
2.57
13
3.75
1.85
3.47

8.86
5.48
2,78
3.14
5.43
8.26
2.72
5.37
5.26
6.21
2.95
5.34
6.78
8.15
6.43
8.56
5.49
7.29
8.08
5.33
7.73
3.11
8.75
52
8.61
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Table 7.

GA ICPSO MICPSO MDPSO
Best Avg Worst Best Avg Worst Best Avg Worst Best Avg Worst

SF1175.8 176.4 188.4 176.5 182.1 204.6 163.2 166.4 204.6 155.9 161.6 192.3
SFz 304.6 308.8 349.1 306.5 307.2 366.5 285.1 296.3 366.5 292.6 309.3 350.2
SFz 377.5 378.5 386.4 359.2 365.7 414.0 348.7 357.5 414.0 349.1 366.9 414.1
SF4 486.4 503.8 533.0 488.5 494.1 582.0 473.1 509.7 582.0 470.7 477.4 499.4
SFE 636.0 693.3 838.1 642.4 650.9 658.8 630.5 635.9 658.8 629.2 650.5 797.3
SFe 690.7 692.7 701.9 705.2 708.6 809.8 682.7 739.0 809.8 685.4 689.0 699.7
SF7 897.1 898.5 910.8 832.3 834.9 844.3 810.5 818.6 844.3 813.6 822.1 859.1
SF£1098.31099.81108.6 994.9 996.6 1000.1 994.9 996.6 1000.1 967.9 1047.31087.0
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Table 8.

GA ICPSO MICPSO MDPSO

Seed« Best Avg Worst Best Avg Worst Best Avg Worst Best Avg Worst

1

© 0 N O O &~ WDN

974.3 991.8 1180.1988.3 998.9 1104.7966.0 982.1 1104.7 993.8 1086.31292.2
976.1 985.8 1010.2982.8 1018.31220.9978.4 993.4 1220.9 973.5 981.9 992.9
977.0 987.5 1172.3984.6 993.3 1017.9965.1 977.8 1017.9 971.0 977.2 1008.7
992.8 1032.21068.1983.0 994.3 1076.1967.7 984.6 1076.11042.61051.81082.0
1088.71104.51158.4989.01013.01151.0974.21029.71151.0 970.1 977.3 1005.4
988.0 1046.51079.4986.0 987.7 989.3 962.1 969.6 989.3 970.2 979.9 1101.2
1050.91058.41068.2988.1 992.1 999.4 967.2 974.2 999.4 970.1 1020.91110.9
1088.61091.41106.4989.0 993.0 997.9 963.5 968.0 997.9 967.9 1017.01233.6
1078.41088.91141.4990.0 1005.81221.8967.8 1002.81221.8 968.9 976.7 1003.3

10 1098.31099.81108.6994.9 996.6 1000.1964.3 971.5 1000.1 967.9 1047.31087.0
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Table 9.

Algorithm N Median

MeanRank Z-Value

GA
ICPSO
MDPSO
MICPSO

Overall

10
10
10
10
40

1052.48
995.44
999.44
979.97

29.5
21.4
19.6
11.5
20.5

2.81
0.28
-0.28
-2.81
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Table 10.

Null hypothesis
Alternative hypothesis

£t St

DF H-Value
3 11.97

P-Value
0.007
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Selected Shop Floor Numberst
Determine PSO parametefs, w, c, I,, G, I,, Ky, «

GenerateN particles for initiakwarm
Fopest =iNf

For puyen N initial swarm:
AssignX,, vector probabilities top,,, randomly
AssignV, as zerevector
Make sample values fronX ; vector
CalculateF,

Fovest = F Burrent
if Fpmem ¢ ngesr:
gbeSt = FQurrent
pghesl = pcurrent
Bse
ngest = ngest
end if
While generatiorx k, . :
F . =0

total

FOr Pyyen IN NEW SWArM:
generatior 4
r,,r, = random number
Determine new velocity vectorg,
Determine new position vectorsx ; .

Weight all probabilities to make sumto 1
Generate sample values of , with probabilities of position vector

Run simulation and calculate new fitness fof,....

If churrent Poest *
Fpnesl - churrem
pbest = pcurrent
else:
pbest = pbes
End if
If churrem Obest
Obest  Peurrent
gbest = pcurrent
Endif
+

end for

Algorithm 1.
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