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Abstract. The rapid population growth has resulted in ever-growing demand for
healthcare services, which forces managers to use costly resources such as operating
rooms e�ectively. The surgery-scheduling problem is a general title that is attributed
to such problems as patient selection and sequencing of surgeries at the operational level,
setting their start times, and assigning resources. Hospital managers usually encounter
elective surgeries that can be delayed slightly and emergency surgeries whose arrivals
are unexpected, and most of them need quick access to operating rooms. Reserving
operating room capacity for handling incoming emergency surgeries is expensive. Moreover,
emergency surgeries cannot a�ord long waiting times. This paper deals with the problem
of surgery scheduling in the presence of emergency surgeries with a focus on balancing the
e�cient use of operating room capacity and responsiveness to emergency surgeries. We
proposed a new algorithm for surgery scheduling with a speci�c operating room capacity
planning and analyzed it using simulation method based on real data. This algorithm
respects working hours and availability of sta� and other resources in a surgical suite.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Most of the hospital revenues and expenditures result
from Operating Rooms (ORs) which represent the
heart of hospitals. Due to the expenses associated
with ORs, their e�cient use in surgery scheduling
is considerable. The quality of surgery scheduling
directly a�ects waiting times and admission or rejection
of patients since it has a crucial role in maintaining
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patient health. Moreover, the work lives of surgeons,
anesthesiologists, nurses, and other OR sta� are also
a�ected by how a schedule distributes sta� workload.

The OR management consists of many decisions
in OR capacity planning and scheduling. Some of these
decisions from the viewpoint of the hierarchical pyra-
mid of decision-making are strategic decisions (long-
term), tactical decisions (medium-term), and opera-
tional decisions (short-term) [1]. Strategic decisions
or case-mix planning initiate with demand forecasting
for the long term. According to this forecasting, some
surgery specialties (such as cardiothoracic surgery and
neurological surgery) are selected for patient admission.
Furthermore, the amount of OR capacity acquisition
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is determined. How many ORs to be constructed is
based on a very long-term (one to �ve years) demand
estimation. Which surgical specialties to be served is
based on long-term (6 months to one year) estimation
[2]. Decision-making about how to divide the OR
capacities among these specialties (OR time blocks)
is part of the tactical decision-making. The medium-
term demand forecasting in
uences OR time blocks
[2]. These problems are known as master surgical
scheduling in the literature. The OR time blocks
determine the time duration and the amount of OR ca-
pacity that are accessible for patients from each surgery
specialty. Finally, patient selection and sequencing of
the surgeries, determination of their start times, and
resource allocation in surgery cases are the problems at
the operational level [3,4]. The scope of this paper is
only limited to the Surgery Scheduling Problem (SSP)
at the operational level. This means that only surgery
requests for some surgery specialties are admitted and
the determination of surgery specialties that should be
selected for providing service to patients is not within
the scope of this research. Moreover, the OR time
blocks that divide the OR capacity among surgery
specialties are given and their determination is beyond
the scope of our work. In this paper, we encounter the
problem of determining a sequence of patient surgeries,
assigning proper resources to them, and setting their
start times. These patient surgeries require various
specialties and by the same logic, the corresponding
resources are of various types (ORs, surgeons, recovery
rooms, sta�, and so on) and are available based on
working hours and OR time blocks

1.1. Elective and emergency surgeries
Hospitals consider the scheduling of two classes of
elective and emergency surgeries. Elective surgeries
are related to patients who are admitted a few days
ago. On the contrary, emergency surgeries have speci�c
characteristics: their occurrences are unexpected and
often during the execution of the schedule of other
surgeries. Moreover, emergency surgeries generally
require quick access to ORs [5]. Handling emergency
surgeries is a complicated task for hospital managers.
These surgeries often have high urgency. Sometimes,
emergency surgeries need immediate access to an OR,
but most of them can a�ord some waiting time. The
amount of the tolerable waiting time for an emergency
patient depends on the severity and kind of illness.
Emergency surgeries can arise 24/7. The stochastic
nature of emergency surgeries and their threats to
patients' lives force managers to reserve resources at a
certain capacity to handle emergency surgeries, which
lead to particular resource planning.

Performing patient surgery needs access to mul-
tiple expensive resources such as OR and professionals
simultaneously. This necessity clari�es the di�culties

of surgery scheduling in case of emergency surgeries.
Furthermore, the arrival of emergency surgeries may
disturb the prescheduled surgeries, causing instability
in sta�ng and shift scheduling in surgical suites. Be-
sides, it causes reorganizing resources in surgical suites
and even sometimes in other upstream and downstream
units at hospitals [6]. Hospitals usually ask on-call
surgery teams to attend within thirty minutes, and the
problem of availability of professionals is dealt with
in this way. Managers concern themselves about the
OR capacity planning for handling emergency surgeries
better.

1.2. Various OR capacity planning
In fact, creating a balance between responsiveness
for saving the lives of emergency patients and e�ec-
tive utilization of expensive resources such as ORs is
a challenge that every hospital manager encounters.
Only a limited number of previous papers have dealt
with the subject of emergency surgery scheduling [7,8].
Flexible ORs and dedicated ORs are two main OR
capacity planning for encountering emergency surgeries
that have been examined in the literature. In the

exible ORs policy, OR capacity is shared between
elective and emergency surgeries. This OR policy
can result in disruptions during the execution of the
scheduled tasks and lead to higher waiting times and
the cost of using resources overtime [9]. In order
to avoid these disruptions, a dedicated OR policy is
suggested in the literature [10,11]. In the dedicated
OR policy, ORs are divided into two separate groups.
Each group of elective and emergency surgeries only
can be scheduled in their ORs. This policy prevents
disruptions from the arrival of emergency surgeries,
but OR utilization is the drawback and it is a costly
method [9,12]. Dedicated ORs to emergency surgeries
are never used by elective surgeries even when they
are free for a long time, and many elective surgeries
experience longer waiting times. \How to divide ORs
capacity between emergency and elective surgeries" is
an important question, which is dealt with in some
papers like Persson and Persson [13]. The selection
of each OR policy can in
uence the e�ciency of the
resulting schedule. Furthermore, the selected OR
policy a�ects the number of schedule disruptions and
the amount of OR utilization [12].

As mentioned before, all the ORs are utilized
for both elective and emergency surgeries in 
exible
OR policy. The authors apply di�erent approaches
to implementing 
exible ORs policy. In the �rst
category of papers, some fraction of OR time is reserved
for inserting emergency surgeries. This fraction of
OR time can be considered as an integrated time-
space of OR availability interval or as various shorter
slack times between elective surgeries in the schedule.
These approaches utilize OR capacity partitioning
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to handle emergency surgeries [9]. In some others,
scheduling of elective surgeries is done without any
prior time allocation for emergency surgeries. In
this approach, emergency surgery can be inserted in
any free slack or replaced with elective surgeries in
the schedule at moments when elective surgeries are
expected to �nish. This approach partitions OR
capacities between elective and emergency surgeries in
real time [9]. Consequently, the implementation of this
approach is more complicated than the former category.
The terminology of Break-In-Moment (BIM) is the
potential start times of emergency surgeries or the
equivalent �nish times of elective surgeries [14]. Indeed,
scheduling elective surgeries in this approach is done by
concentrating on spreading the BIMs at OR intervals
to reduce waiting times in emergency surgeries.

Figure 1 clarifying the insertion of an emergency
surgery into the schedule of elective surgeries in three
ORs. The OR policy is 
exible, and emergency surgery
is inserted to be scheduled at BIMs.

The BIMs approach is implemented in a few pa-
pers. This approach was introduced by Van Essen et al.
[14]. Vandenberghe et al. extended the BIMs approach
to cases where surgery durations are stochastic with
known distributions [15]. Duma and Aringhieri also
used the BIMs approach in their paper [16]. Another
recent work proposes a combination of dedicated and

exible ORs (hybrid policy) in which some rooms are
dedicated strictly to elective surgeries or emergency
surgeries, while others are 
exible to serve both of
them [17].

Each of the previous OR policies (dedicated,

exible, and their subgroups) is utilized in the liter-
ature. The question about \which of these policies is

better in a speci�c scenario" has no strict answer and
strongly depends on the hospital conditions and other
operational conditions [16].

1.3. The SSP in the literature review
Many researchers from the operation research commu-
nity have expressed interests in the SSP, also named as
OR scheduling problem. Plenty of the SSP works have
been presented in the recent review papers [1,3,18,19].
Generally, the number of SSP articles has signi�cantly
increased in the current decade [18]. Moreover, recent
studies on SSP have tended to solve complicated
problems [19].

In the literature, the authors consider SSP from
di�erent points of view. Pham and Klinkert supposed
a 
ow of patients that moves through some hospital
units. They have formulated the SSP as a generalized
job shop-scheduling problem [20]. Van Essen et al.
provided a decision support system that constructed
schedules by considering patients and wards desirabil-
ity as di�erent stakeholders of the SSP [21]. Jung et
al. considered a class of parallel machines scheduling
for the SSP [22]. Aringhieri et al. covered the demands
of some patients for surgery over the weekends and
considered both the OR time blocking problem and
the SSP together [23]. Moosavi and Ebrahimnejad
considered the SSP when unscheduled surgeries defer to
the next scheduling period [24]. Riise et al. supposed
any patient surgery as a project, which consisted of sev-
eral activities. The execution of any activity requires
some sets of resources (modes). Each resource can
be available with a prede�ned capacity at some time
intervals [25]. They proposed a multi-project, multi-
mode resource-constrained project-scheduling problem

Figure 1. Scheduling of elective and emergency surgeries under the BIM policy.
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with generalized precedence relations for the SSP. The
authors classi�ed this problem as an NP-hard problem
with reference to Hans et al. [26] and developed the
Generalized Operational Surgery-Scheduling Problem
(GOSSP), which is a meta-heuristic algorithm for this
problem. Santib�a~nez et al. focused on the interrelation
master surgical scheduling and the feasibility of the
schedules. The authors mentioned that because some
post-surgical resources such as recovery rooms were
limited and shared by all the patients, their capacity
can make an OR time block impossible. They consid-
ered both of the problems (master surgical scheduling
and scheduling of the patients at the operational level)
jointly to create a feasible OR time block. They
de�ned surgical groups in each surgery specialty. These
surgical groups have the same resource requirements
and consist of the same procedures. Then, they
concentrated on scheduling surgical groups instead of
scheduling surgeries [27]. The utilization of surgical
groups was developed by Banditori et al. by adding the
patient's due dates and durations. The authors utilized
mixed-integer programming and simulation methods
and suggested an approach to determine which surgical
specialties can serve in the ORs and determine OR
time blocks in the surgery suite. In doing so, they
solve strategic and tactical planning problems jointly
[28]. Cappanera et al. integrated master surgical
scheduling with patient selection and sequencing prob-
lems and developed a multi-objective mixed-integer
programming model [29]. Visintin et al. considered
the master surgical scheduling problem jointly with
managing some critical resources (surgical teams, ORs,
and surgical units) [30]. Table 1 reports the main
characteristics of some recent literature in the SSP.

1.4. Contributions
To our best knowledge, only Riise et al. [25,31] uti-
lized \a multi-project multi-mode resource-constrained
project-scheduling problem with generalized prece-
dence relations" as the optimization model for the
SSP. Moreover, the implementation of the BIMs idea
has only been addressed in few papers and is yet not
fully explored in the literature. Riise et al. merely
focused on elective surgery scheduling in their works
[25,31] and as a result, all the ORs were dedicated to
elective surgeries. In this paper, we consider emergency
surgeries to extend their work. Furthermore, to handle
emergency surgeries, we consider the 
exible OR policy
and implement the idea of BIMs to attend to emergency
surgeries.

One of the di�culties of the SSP comes from
uncertainty, such as the patient's arrival uncertainty,
duration's uncertainty, and failure of critical medical
equipment [19]. In this paper, we ignore the equipment
failure and the unpredictability of elective patient's
arrival. As mentioned by Riise et al., for dealing

with the deviation of the duration time of surgeries,
many hospitals use estimations [25]. Therefore, we
assume that after any surgery referral (elective surgery
or emergency surgery), an expert estimates all the
possible modes for the activities. The expert estimates
a duration for any activity in any mode based on his
or her prior experiences. These estimations help us
to deal with uncertainty in the durations which comes
from the di�erence between various resources.

The rest of this paper is structured as follows.
Section 2 provides an overview of the problem de�ni-
tions, and Section 3 discusses the proposed algorithm.
Section 4 illustrates experimental designs and some
computational experiments. Finally, Section 5 ad-
dresses conclusions and some outlines for future works.

2. Problem description

This paper is an attempt at scheduling a set P of
patient surgeries with some specialties such as cardio-
thoracic surgery, neurological surgery, and so on. These
surgical specialties have been previously determined,
and the determination of them is not within our scope.
Initially, this set only contains elective surgeries, but
during the execution of the schedule, the set changes
to include some emergency surgeries. Performing a
patient surgery needs allocating more than one resource
type simultaneously.

2.1. Resources
The patient surgeries in the set P use a shared set of
resources R that includes various resource types such as
ORs, surgeons, etc. Any resource in R has a particular
working hour or availability interval, and this resource
is only available at these hours in some capacities.
Any resource 8r 2 R has a set of non-overlapping
availability intervals Kr = fk1; k2; :::g in which kq 2
Kr refers to one of the availability intervals with the
capacity cq. This way of representing the availability of
resources helps us consider a continuous-time model for
representing the availability and capacity of resources
[25,31].

The ORs are available for each surgery specialty
according to the master surgical planning (OR time
blocks). In other words, each time interval kq in any
OR can only be assigned to a speci�c surgery specialty
(see Figure 2).

It is assumed that the resources availability inter-
vals, resource capacities at each availability interval,
and OR time blocks are known and given. It is
supposed that the restrictions, which come from OR
time block, only apply to elective surgeries. However,
emergency surgeries can use any OR available interval
without considering the OR time blocks.

2.2. Activities and activity modes
Performing each patient surgery 8p 2 P consists of
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Table 1. The main characteristics of SSP in recent literature.
OR capacity con�guration

Patient classi�cation Flexible ORs

Authors Elective Emergency Dedicated
ORs

Reserved
spaces

or slacks

BIMs
adjustment

Partially

exible

ORs

Solution
technique

Optimization
model

formulation
Ferrand et al. (2014)

p p p p p
Simulation

Duma and Aringhieri (2018)
p p p

Simulation
Real time

management
model

Duma and Aringhieri (2015)
p p p p Hybrid simulation

and optimization
method

Real time
management

model

Jung et al. (2019)
p p p Hybrid heuristics

and mixed
integer programming

Mixed integer
programming

Banditori et al. (2013)
p p Hybrid simulation

and mixed integer
programming

Mixed integer
programming

Van Essen
et al. (2012 a) [21]

p p p Hybrid simulation
and optimization

method

Mixed integer
programming

Van Essen
et al. (2012 b) [14]

p p p
Hybrid simulation,

heuristics and
mixed integer
programming

Mixed integer
programming

Hans et al. (2008)
p p Hybrid simulation

and heuristic
Stochastic knapsack

problem

Moosavi &
Ebrahimnejad (2018)

p p p Hybrid Mixed
Integer Programming

and heuristic

Mathematical
programming

Cappanera et al. (2016)
p p Mixed integer

programming
Goal

programming

Litvak et al. (2008)
p p p Equivalent random

method over
simulation

Over
ow models
in telecommunication

systems

Lamiri et al.
(2008)-stochastic

p p p Hybrid simulation
and mixed

integer programming

Stochastic
mathematical
programming

Persson & Persson (2010)
p p p

Simulation Bin packing
model

Pham & Klinkert (2008)
p p p Hybrid simulation

and mixed
integer programming

Generalized
job shop

scheduling
problem

Santib�a~nez et al. (2007)
p p p

Hybrid simulation
and mixed

integer
programming

Mixed integer
programming

Tancrez et al. (2013)
p p p p

Simulation Markovian model

Tancrez et al. (2009)
p p p p

Simulation Markovian model
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Table 1. The main characteristics of SSP in recent literature (continued).
OR capacity con�guration

Patient classi�cation Flexible ORs

Authors Elective Emergency Dedicated
ORs

Reserved
spaces

or slacks

BIMs
adjustment

Partially

exible

ORs

Solution
technique

Optimization
model

formulation

Vandenberghe et al. (2019)
p p p Hybrid simulation

and heuristic

Stochastic
mathematical
programming

Visintin et al. (2016)
p p p Hybrid simulation

and mixed
integer programming

Mixed
integer

programming

Riise et al. (2016)
p p

Heuristic

A multi-project,
multi-mode

resource-constrained
project-scheduling

problem

Riise et al. (2012)
p p Mixed integer

programming

A multi-project,
multi-mode

resource-constrained
project-scheduling

problem

Our paper
p p p Hybrid simulation

and heuristic

A multi-project,
multi-mode resource-
constrained project-

scheduling
problem

Figure 2. An instance of OR time blocks.

the execution of Np treatment activities, e.g., prepar-
ing the patient, preparing the OR, surgery, cleaning
the OR, and recovery. Various precedence relations
(including the maximum and minimum time lags) can
be assumed between each pair of these activities in
any patient's surgery. As an instance, maximum time
lag can explain the extreme waiting time of a patient
between a pair of activities. Usually, more than one
set of resources or activity modes can be applied for
the execution of activities. As discussed in the previous
section, activity modes in surgery activity resulted from
various combinations of di�erent surgeons with the

same specialty and di�erent ORs. Each activity mode
has its own set of resources and durations.

In any activity i in any patient's surgery p 2 P ,
there is a set of activity modes M i. The selection of
one of the activity modes m 2 M i is necessary for
the execution of this activity. This selection clari�es a
set of resources Rm where the number of �mr units of
any resources r 2 Rm is necessary for the execution
of the activity. The simultaneous availability of all
the resources in the activity mode is necessary for the
execution of the activity.

Each patient surgery is considered as a project.
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The execution of this project means scheduling all of its
activities. Keeping the project activities unscheduled
makes scheduling other activities useless; thus, these
activities must be removed from the schedule.

2.3. Inter-activity mode compatibility
constraints and project modes

Some resources (such as OR and surgeon) are applied
in more than one activity in a project. It is necessary
to use the same resource in the case of all the activities
in a project. For instance, if two activities in a project
require resource OR, the same OR must be used in
this project. Inter-activity mode compatibility con-
straints represent a group of constraints that guarantee
the usage of the same common resource among the
activities of a project. Project modes are a set of
various combinations of common resources in a project
and are utilized for implementing these constraints.
Inter-activity mode compatibility constraints limit the
selection of activity modes to those modes, which are
compatible with a project mode.

As an illustration, consider a sample project p1
that consists of two activities P=fSurgery; Cleaningg.
Activity Surgery is the predecessor of activity
Cleaning with precedence relation FSmax (15) (activ-
ity Cleaning must start up to 15 minutes after the
termination of the activity Surgery). The execution
of Surgery activity requires one Surgeon and one OR,
and also the execution of Cleaning activity requires
one OR and one Cleaner. It is supposed that resource
type OR contains three resources (OR1; OR2; OR3).
The inter-activity mode compatibility constraint states
that when resource OR1 is used for activity Surgery in
the project p1, only OR1 must be used for the activity
Cleaning in this project. Project mode only contains
the OR resource type here and gets one of fOR1g,fOR2g, and fOR3g, among which fOR1g is selected
as the project mode.

Generally, to implement inter-activity mode com-
patibility constraints in any project p 2 P , some
project modes W p are considered. The selection of
a project mode w 2 W p in any project p 2 P leads
to the fact that in any activity i 2 Np, only a subset
of activity modes M i

w � M remains compatible with
the selected project mode. Each activity mode m 2
M i has its activity duration which is dependent on
some resource considerations such as surgeon's skills or
whether the surgery is performed in the training mode
or not.

2.4. Project's disjunction constraints
The project's disjunction constraints prevent the use
of a common resource in other projects at the interval
between its �rst usage in a project and the completion
of its last usage in the same project. It means that these
constraints make a common resource quarantined and

unavailable after its �rst usage in a project, similar to
other projects. A resource can be available for other
projects only after the termination of its last usage
in the activities of the current project. For the sake
of more clarity on the project's disjunction constraint,
suppose another project p2 with the same structure
as p1 discussed previously. Suppose the project p1 is
before the project p2 in the schedule. Now, in both
of them, the project mode fOR1g is selected (both
of the projects require the usage of the same common
resource). The project's disjunction constraint states
that the activity Surgery in the project p2 cannot
start until the activity Cleaning of the project p1
is terminated, even if the resource OR1 remains idle
between the activities Surgery and Cleaning of the
project p1.

This problem is classi�ed as a multi-project,
multi-mode resource-constrained project-scheduling
problem with generalized precedence in the literature
and this belongs to NP-hard problems [25,31]. The
mathematical model of this problem in the case of
scheduling elective surgeries was presented as a mixed-
integer linear programming model by Riise and Man-
nino [31]. Then, we extended that mathematical model
by considering both elective and emergency surgeries
when the BIMs approach in the 
exible OR policy was
implemented [32]. For scheduling elective surgeries in
real-size problems, Riise et al. presented the GOSSP
algorithm [25].

This study develops an algorithm called Schedul-
ing Elective and Emergency Surgeries (SEES). As
mentioned in the introduction, scheduling emergency
surgeries and the e�cient usage of ORs are challenges
for hospital managers. The BIMs approach was applied
to the 
exible OR policy and its e�ciency in emer-
gency surgery scheduling was examined. A Norwegian
medium-sized hospital data available on the web for
testing our algorithm were utilized [33]. The BIMs
approach enjoys the capability of scheduling emergency
surgeries with e�cient use of ORs capacities. More-
over, this approach has received less spotlight in the
literature. To the best of our knowledge, this approach
has not been implemented before in an environment
where surgeries are considered as projects. In this
method, any emergency surgery is inserted into the
schedule after terminating one of the currently under-
going surgeries or, in other words, at the BIMs. For
minimizing the waiting time in emergency surgeries,
it is necessary to minimize the interval between the
sequential BIMs in the sequencing of elective surgeries.
This problem entails minimizing the maximum interval
between sequential BIMs [14].

As discussed earlier, our main contribution is
to implement the BIM approach when each surgery
is a project with multi-mode activities. The most
important requirement for implementing the BIMs
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approach is to know the duration of OR usage in the
projects. Although we only consider the problem in
a deterministic state, we cannot estimate the duration
time of surgery activities with distinct values. The �rst
reason is that in the surgery activity of a project, the
durations in di�erent ORs are not the same because
of the di�erence between activity modes. The second
reason is that variation in the durations in the activity
surgery in a project is not negligible because of the large
number of activity modes (in some projects, there are
36 activity modes for activity surgery). As discussed
before, the main cause of this variation in durations
lies in some resource considerations. For instance, the
surgeon's experience or whether the operation is in the
training environment or not can change the duration
of the surgery activity.

The GOSSP algorithm belongs to a class of NP-
hard optimization problems [25]. Moreover, OR plan-
ning with elective and emergency surgeries is a strongly
NP-hard problem [34]. Furthermore, adjusting the
BIMs is a strongly NP-hard problem, in which case
the number of ORs exceeds one [14]. Due to the
di�culty of solving this problem, we extend the original
meta-heuristic algorithm of the GOSSP conveniently
to handle emergency surgeries at the BIMs. The next
section presents the SEES algorithm.

3. Proposed algorithm

The SEES algorithm concerns scheduling elective and
emergency patient's surgeries. This algorithm initially
provides a schedule of elective surgeries. Then, during
the execution of this schedule, after the arrival of any
emergency surgery, it attempts to insert the emergency
surgery into the schedule with rescheduling.

3.1. Constraints
Some constraints are the same in both of the prob-
lems of scheduling and rescheduling of elective and
emergency surgeries. Scheduling a project requires
satisfying all the constraints mentioned in the previous
section (such as availability of resources, precedence
relations between activities, inter-activity mode con-
straints, and project's disjunction constraints). How-
ever, it is necessary to consider some factors during the
scheduling of elective surgeries to implement the BIMs.
This study develops a new heuristic for scheduling
elective surgeries. Inserting elective surgeries to a
partial schedule is bound to potential insertion of a
possible coming emergency surgery up to a limited
period to the schedule. Each elective surgery can be
inserted into the schedule only after satisfying one of
the following conditions. First, after the estimated
start time in an elective surgery up to a limited period
(maximum tolerable waiting time in the emergency
surgeries), one of the ORs becomes free and remains

available for a speci�c duration (the average duration
of emergency surgeries). Second, after the estimated
start time of the elective surgery up to a limited
period (the maximum tolerable waiting time in the
emergency surgeries), another elective surgery starts
in one of the ORs. The possible coming emergency
surgery can access an OR in a tolerable waiting time,
because in the �rst case, one of the ORs becomes free
while in the second case, the emergency surgery is
substituted instead of one of the elective surgeries in
the schedule. However, these limitations do not apply
to emergency surgeries. Providing their resources is
the only condition for inserting emergency surgeries to
schedule.

3.2. Objective components
Usually, scheduling all the projects is impossible. A
feasible schedule results from scheduling activities of a
subset of total projects ~P � P . Selecting this subset
depends on some objective components. For scheduling
these selected projects ( ~P ), it is necessary to select an
activity mode m 2M i

w and a feasible start time for any
activity i 2 Np in each project p 2 ~P . The selection
of an activity mode m and determination of start
time for each activity i should be compatible with the
availability of all of the resources r 2 Rm in the activity
mode m. Moreover, for scheduling the projects, all the
previously mentioned constraints should be satis�ed.

Various objective components are included in the
SEES through a linear combination and it is supposed
that minimization of the objective function is desirable.
If we consider O as the objective function, then Of is
an objective component and �f is its corresponding
weight. The next formula illustrates the SEES objec-
tive function:

O =
X

f
�fOf : (1)

As will be discussed in the following, each of the
objective components has a speci�c scale; a simple
summation of the weighted objective components is
not reasonable. Therefore, each of the objective
components is normalized. The variable Of refers to
the normalized objective component. In this way, the
e�ect of di�erent scales is removed from the objective
function.

In this problem, we consider many objective
components. Some of them (`unscheduled surgeries',
`patient's waiting time', `violation of scheduling chil-
dren and patients with diabetes in the early day', and
�nally `makespan' or �nishing the schedule early in
the day) come from the GOSSP. Moreover, we include
some other objective components in the SEES as in the
following.

The deviance for the start times of the elective
surgeries between the �nal schedule (after inserting
all emergency surgeries) and the initial schedule (that
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only includes elective surgeries) is calculated in the
`un-stability' objective component. This objective
component is the summation of the violation of start
times of elective surgeries in the �nal schedule from
their start times in the initial schedule.

The problem includes various ORs, each of which
has its OR capacity, and the `VORL' objective com-
ponent tends to resource leveling through balancing
the OR usage. The value of this objective component
is equal to the di�erence between the maximum and
minimum percentages of OR usage among various ORs
in the schedule. For instance, suppose a case in
which there are three ORs; in the �nal schedule, 85%
of the total available capacity of OR1, 25% of the
total available capacity of OR2, and 70% of the total
available capacity of OR3 are consumed. In this case,
the `VORL' takes the value of 60, which is the di�erence
between 85 and 25.

Any patient surgery has its due date and it is de-
sirable to start without any lateness to achieve its due
date. Therefore, we consider the following objective
components: `the number of electives scheduled with
lateness' (`NElecL'), `the number of emergencies that
scheduled with lateness' (`NEmgL'), `the summation of
lateness in electives' (`SLElec'), and `the summation of
lateness in emergencies' (`SLEmg').

We also consider some special objective compo-
nents that are related to elective surgeries: `the number
of unscheduled electives' (`NUnElec') and `average wait-
ing time in electives' (`AWTElec'). Similarly, for emer-
gency surgeries, the following objective components
are added: `the number of unscheduled emergencies'
(`NUnEmg') and `average waiting time in emergencies'
(`AWTEmg'). In this paper, it is supposed that the
entire patient surgeries should be scheduled at ordinary
working hours. Only those emergency surgeries that
remain unscheduled during ordinary working hours can
be scheduled in overtime.

3.3. ACI function
The SEES algorithm is a constructive-improvement
algorithm and consists of some functions. The main
function of the SEES algorithm is ACI function
or adaptive construction and improvement algorithm,
which is an iterative search algorithm. The ACI func-
tion (Figure 3) uses a limited size pool for maintenance
of schedules and the corresponding Project Insertion
Order (PIO). Each schedule has a PIO that keeps the
order of insertion of each project into this schedule.
For example, if we suppose the set of projects as P =
fProject1; P roject2; P roject3g, then the array PIO =
(2; 3; 1) means that the �rst project for scheduling is
Project2 followed by Project3 and Project1. This
function always updates the best schedule of the pool
after any change in each iteration of the execution.
At each iteration, a decision determines whether a

new schedule should be constructed or one of the
pool's schedules must be improved. A roulette wheel
sampling makes this decision. This roulette wheel
works based on how much each of the two methods
(construction of a new schedule or improvement of
one of the existing schedules) has been successful in
reaching a good solution.

The construction method creates a new schedule.
Each project has a clinical priority that exhibits its
importance for early scheduling. A roulette wheel sam-
pling, which works based on these projects' priorities,
is applied to generate a PIO �0. Then, the Schedule
Creator function that will be discussed later in this
section uses the PIO �0 and a parameter to create a
schedule.

This parameter has a critical role in mode selec-
tion (activity modes and project modes) in the process
of inserting projects into the schedule.

For scheduling each project, di�erent project
modes and di�erent activity modes lead to the usage
of di�erent sets of resources and result in di�erent
duration times. Three parameters for scheduling a
project are considered: `the best objective function',
`the earliest �nish time', and `the �rst feasible mode'.
Another roulette wheel sampling is applied to selecting
the parameter, which works based on each parameter's
success to conduct good schedules. The Schedule
Creator function �nally generates the schedule S0 and
adds this schedule S0 and its corresponding PIO �0 to
the pool.

The improvement method improves one of the
existing schedules of the pool and the selection is done
randomly, but better schedules have a higher chance of
selection. The Insertion Order Modi�cation function
tries to modify the PIO, � of the selected schedule S
and gives the resulting PIO, �0.

If the new PIO, �0 remains the same as the
previous �, then the algorithm tries to select another
schedule from the pool. This step is repeated until
the modi�ed PIO di�ers from its initial PIO. Then,
the Schedule Creator function is employed to generate
a new schedule, S0, through the modi�ed PIO, �0.
Finally, the resulting schedule, S0, with its PIO, �0 is
replaced by S and � in the pool.

After any change in the pool, the best schedule of
the pool is updated. Then, the success of construction
and improvement methods and the success of various
parameters in reaching good solutions are updated in
their learning mechanisms separately. Finally, after
completing its execution, the ACI function returns the
best schedule of the pool as its output.

In the SEES algorithm, initially, the ACI function
is executed for producing a schedule for elective surg-
eries or equivalently elective projects. That is o�ine
scheduling, and the resulting schedule is valid before
the arrival of the �rst emergency surgery. After the



246 M. Yazdi et al./Scientia Iranica, Transactions E: Industrial Engineering 30 (2023) 237{259

Figure 3. Adaptive construction and improvement algorithm (ACI function).

arrival of any emergency surgery, old projects take one
of these three various states. The execution of some
projects is terminated before this arrival time and some
of them are currently undergoing surgeries, but they
are not complete and the last ones are those that have
not been initiated yet.

The SSP is non-preemptive scheduling. There-

fore, insertion of the emergency surgery to the schedule
takes place right after the currently undergoing surg-
eries are �nished and prior to the projects that have
not been started yet. Moreover, after the arrival of any
emergency surgery, the state of resources must also be
updated and modi�ed to consider the consumed and in-
use capacities. After these changes, the ACI function
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is employed again for producing a new schedule. This
process is repeated after any emergency arrival, and it
creates online schedules.

3.4. Schedule Creator function
In ACI function, if the construction method is selected,
then Schedule Creator function creates a new schedule
from a new PIO and a parameter. Figure 4 illustrates
the algorithm of Schedule Creator function. This
function partially schedules the projects one by one,
according to the PIO. Initially, a random activity order
�p is generated for the set of activities Np in any
project p 2 �. In this activity order, all the precedence
relations between activities are considered.

For initialization, the variable w� is set to null
and this variable refers to the selected project mode,
and the set feasiblews is cleared, this set collects
all the feasible project modes. The variable Pr o
Param is initialized to the input parameter. This
variable indicates the selected parameter for scheduling
a project. It is only in case of emergency surgeries that
the value of this variable changes to `the earliest �nish
time' in order to consider the urgency of these surgeries.

Next, the algorithm searches among various
project modes w 2 W p to �nd the best project mode
for scheduling the project p. For each project mode,
the SGS(S; p; w; �p; P r o Param) function tries to
insert activities of the project p with the activity order
�p and project mode w into the partial schedule S
with the parameter Pr o Param. This function is
the most complicated part of the Schedule Creator
function because this function should satisfy all the
constraints mentioned in the previous section during
the insertion of the activities to the partial schedule.
If the SGS function can schedule the project p, then
it is investigated whether the project is an emergency
surgery or not. The success of the SGS function is
su�cient in the emergency surgeries, but the following
conditions must be examined in elective surgeries for
encountering probable coming emergency surgeries.

From the start time of using the OR in the elective
surgery p until a speci�ed time later (`the Prede�ned
BIM Interval' (PBIMI)), another BIM must be found,
or one of the ORs must be available. Moreover, the
available OR must remain accessible for a speci�c
duration (`the Mean Surgery Time for emergency surg-
eries' (MST)). If the project mode w overcomes these
conditions, then the project mode will be inserted into
a group of feasible project modes.

Then, this project is removed from the partial
schedule and this process is repeated to examine the
feasibility of other project modes. Finally, the best
project mode is chosen for inserting the project into
the schedule. This process is repeated for all projects in
PIO. At the end of the algorithm, the Schedule Creator
function returns the resulting schedule as its output.

Figure 5 gives more explanation on the feasibility
conditions of project modes in elective surgeries. For
inserting Surgery1 into the schedule, OR2 is available
at the BIM2. Since the distance between BIM1 and
BIM2 is less than `PBIMI ' and OR2 is available for
an interval as long as `MST ', this project is inserted
into the schedule. In the second case, Sergery2 can be
inserted into the schedule, because OR1 is available for
an interval longer than `MST '. However, in the case
of inserting Surgery3 to the schedule, none of these
conditions is satis�ed because none of the ORs becomes
free during the interval of `PBIMI ' and none of the
elective surgeries starts in this interval. Therefore, this
project cannot be inserted into the schedule.

3.5. Insertion Order Modi�cation function
The ACI function is based on the selection of one
of the construction and improvement methods. In
the improvement method, a roulette wheel selects a
schedule and its corresponding PIO from the pool for
improvement. The main idea for improving a schedule
is that earlier projects in PIO have a higher chance to
be scheduled better than the other projects.

Therefore, after recognizing the projects with
more contributions to the objective function, the
Insertion Order Modi�cation function tries to move
their position earlier in the PIO. The Insertion Order
Modi�cation function uses the vector �EP that keeps
the earliest position in which each project has ever been
in the schedule. Then, this function recognizes a set
of projects with more contributions to the objective
function or bad projects. These projects are sorted
based on their earliest positions in �EP and their
contributions to the objective function. After that,
the Insertion Order Modi�cation function tries to take
their positions to one place earlier than their positions
in �EP . In case that two projects compete for one
place, one of these projects is randomly selected for
that position while the other one takes place in the next
position. Finally, this function returns the new PIO to
the ACI function. Figure 6 illustrates the Insertion
Order Modi�cation function.

4. Computational results

4.1. Data speci�cations
We use real information of the patients in a Norwegian
hospital, which is available on the web [33], for testing
our algorithm. The �le w40-1 is selected as the data
source of elective surgeries. This �le contains the
availability information of resources and the details of
40 patients' surgeries, including their activities, project
modes, and activity modes. Then, �le w40-2 is used as
the data source for emergency surgeries so that it can
incorporate the information of the other 40 patients'
surgeries. Except for disaster conditions, usually,
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Figure 4. Schedule Creator Function.
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Figure 5. Scheduling of elective surgeries with respect to adjusting the BIMs.

Figure 6. Insertion Order Modi�cation function.

the number of emergency surgeries is supposed as a
speci�c percentage of the number of elective surgeries.
Bowers and Mould found that the number of emergency
patients is about 25% of the number of elective patients
at the orthopedic department [35]. In this study, the
number of emergency surgeries is supposed 20% of

the number of elective surgeries; therefore, in each
experiment, eight projects are selected randomly from
�le w40-2 as emergency surgeries.

4.2. Projects' speci�cations
In our problem instance, each project consists of
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three activities: surgery, recovery, and cleaning p =
fSurgery;Recovery; Cleaningg. The surgery activity
is the predecessor of the other two, and both of
the recovery and cleaning activities can start simul-
taneously. Execution of activities in any project
requires a subset of four resource types including
ORs, surgeons, recovery rooms, and cleaners R =
fORs; Surgeons;Recovery Rooms;Cleanersg. Re-
sources are available at some capacities in some avail-
ability intervals. Because of the existence of OR time
blocks, the OR resource in each availability interval is
only usable by surgeries from a speci�c surgery spe-
cialty (such as urology). It is supposed that emergency
surgeries can be performed in any available OR with no
respect for OR time blocks. The period of scheduling
is one week, and all the elective surgeries that cannot
be scheduled in a week remain unscheduled. Only
emergency surgeries that remain unscheduled will be
scheduled in overtime.

4.3. Comparison of methods
To investigate the e�ciency of our proposed algorithm
in dealing with emergency surgeries, two di�erent
methods are considered. In the �rst one, elective
surgeries are scheduled regardless of adjusting the
consecutive BIMs interval (ordinary scheduling). In
the second one, scheduling elective surgeries is tied up
to adjusting the BIMs as discussed in Schedule Creator
function (scheduling surgeries with the BIMs interval
adjustment).

In the �rst method (ordinary scheduling), the only
condition for the acceptance of a project mode in the
Schedule Creator function is the success of the SGS
function in inserting the patient's surgery with this
project mode into the schedule.

In the BIMs interval adjustment method (the
second method), besides the above-mentioned condi-
tions for scheduling elective surgeries, the existence of
another BIM or available OR is examined.

In both methods, after the arrival of emergency
surgery, the PIO changes in a way that the emergency
surgery is inserted before all the projects that have not
be initiated yet. Then, online rescheduling with this
new PIO is done. Both methods are implemented in the
Visual C++ environment and run under Windows 8.1
on a system featuring Intel Core i7, 2.2 GHz processor,
and 8 GB RAM.

4.4. Quality measurements and main factors
This study investigates whether (a) the BIMs interval
adjustment has any role in decreasing the waiting
time for emergency surgeries and (b) how this method
in
uences other quality measurements. Initially, some
factors that can a�ect the waiting time for emer-
gency surgeries are recognized as follows: `the way of
scheduling', `emergency arrival times', and `emergency

Table 2. Priorities of emergency surgeries.

Due-date (min) 60 120 180 240

Probability 0.25 0.25 0.25 0.25

surgeries priorities' (or their due dates for the opera-
tion). Moreover, in the second method of scheduling
that adjusts the BIMs interval, two parameters `MST'
and `PBIMI' can a�ect the scheduling of emergency
surgeries. To deal with these variability factors in our
experiments, `emergency arrival times' and `emergency
projects priorities' are randomized, and di�erent levels
are considered for `MST' and `PBIMI' parameters.

A Poisson process for modeling the emergency
arrival process is utilized. Given that the weekly period
consists of several workdays, `emergency arrival times'
are adjusted such that they can occur only during work
hours. In the case of `emergency projects priorities' or
project's due dates, it is supposed that the due date
of each emergency surgery randomly takes one of the
numbers 60, 120, 180, or 240 minutes with an equal
probability (Table 2).

For choosing the levels of `MST' and `PBIMI'
factors, we suppose that the �rst method is equivalent
to the second method when `MST' is zero and `PBIMI'
is 15000, being longer than the scheduling period. In
the second method, two levels of 100 and 300 minutes
for the factor `MST' and two levels of 60 and 90 minutes
for the factor `PBIMI' are chosen based on our data.
Thus, the required experiments can be classi�ed at
di�erent levels of two main factors. Table 3 shows the
details.

We consider seven di�erent patterns of emergency
surgeries with the following discussion. These patterns
are implemented by selecting eight projects randomly
as emergency projects, eight arrival times from the
Poisson process that are adjusted in the weekly working
hours for emergency arrivals, and eight surgery prior-
ities that are selected randomly based on Table 2 for
the due dates of emergency surgeries.

Finally, our elective surgeries are scheduled based
on various settings of two main factors and their levels
are mentioned in Table 3. In each schedule, all the
seven patterns of emergency surgeries are examined
and the values of the response variables are collected.
This step is repeated ten times. Table 4 shows the
average of the response variables in each pattern.
Table 5 refers to the mean of response variables at
di�erent levels of two main factors.

Then, these results are analyzed by Factorial
ANOVA analysis in SAS software at the con�dence
level (� = 0:05). This analysis tests whether the mean
of quality measurements is the same at varying impact
levels. Factorial ANOVA cannot indicate what impact
levels cause a di�erence in the mean of the response
variable. Therefore, Tukey's Studentized Range (HSD)
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Table 3. Main factors and their levels.

Factor A Factor B Description

PBIMI MST

Levels of factors

15000 0 Ordinary scheduling method

60
100

The BIMs interval adjustment method
300

90
100

300

test, which is one of the most common ANOVA Post-
hoc tests, is used after the Factorial ANOVA analysis
at the same con�dence level.

This section investigates whether changing the
impact levels of `MST' and `PBIMI', as well as their
interaction e�ect, is statistically signi�cant in the mean
of the response variables. The Factorial ANOVA
tables summarize the information about the sources
of variation in our quality measurements. The results
of Factorial ANOVA for response variables related to
emergency surgeries are presented in Tables 6 to 9.
The p-values in Tables 6, 7, and 8 do not identify
any statistically signi�cant factor. On the other hand,
the p-value for the main e�ect of `PBIMI' in Table 9
is less than the signi�cant level (� = 0:05). In this
way, this e�ect is statistically signi�cant and we can
reject the null hypothesis concerning the equality of
the means of response variable `AWTEmg'. Tukey
test is conducted to distinguish the mean of the
response variable in which levels of `PBIMI' vary from
one another. Table 10 shows the comparison of the
means of `AWTEmg' between levels 90 and 15000 of
`PBIMI' and levels 60 and 15000 of `PBIMI', which
are statistically signi�cant at a level of 0.05; however,
this comparison is not statistically signi�cant at levels
60 and 90 of `PBIMI'. Thus, according to Tables 10
and 5, we can conclude that the mean of `AWTEmg'
at levels 60 and 90 of `PBIMI' are smaller than level
15000 of `PBIMI'.

In other words, we can summarize all of the above
analyses about the quality measurements related to
emergency surgeries as follows: The BIMs interval
adjustment has a better performance in `AWTEmg',
but there is no evidence to suggest that each of these
methods has a better performance in terms of `NEmgL',
`NUnEmg', and `SLEmg'.

The results of Factorial ANOVA for response
variables related to elective surgeries are presented in
Tables 11 to 14. In the case of quality measurements
related to elective surgeries, similarly, the following re-
sults are obtained. The p-value column in Table 11 that
is related to `NElecL' does not indicate any statistically
signi�cant factor. However, this column in Table 12
indicates that the factors `PBIMI', `MST', and their

interaction are statistically signi�cant for `SLElec'.
Since the interaction of the e�ects is present, our main
e�ects do not have their usual interpretations. It is
di�cult to state how independent e�ects of `PBIMI'
and `MST' act because the nature and magnitude of
each e�ect depend on the particular level of another
e�ect. In the case of `NUnElec', Table 13 shows that
the e�ect of `MST' is statistically signi�cant. The
Tukey test results (Table 15.) show that all the levels
of `MST' are statistically signi�cant. Tables 5 and
15 show that the mean of `NUnElec' has its lowest
value when `MST' is at level 0, while `NUnElec' has
its highest value when `MST' is at level 300.

Investigating the p-value column in Factorial
ANOVA for `AWTElec' (Table 14) shows that both of
the main e�ects of `PBIMI' and `MST' are statistically
signi�cant. The results of the Tukey test in Table 16
verify that the di�erence between the means at levels 60
and 15000 of `PBIMI' and levels 60 and 90 of `PBIMI'
is statistically signi�cant. Tables 16 and 5 indicate that
the mean of `AWTElec' gets its highest value at level 60
of the `PBIMI'. However, the results of the Tukey test
(Table 17) do not detect which `MST' levels can cause
a meaningful di�erence between `AWTElec' values.

Tables 18 and 19 are related to `Un-stability' and
`VORL'. ANOVA Factorial analysis of `Un-stability' in
Table 18 shows that the `PBIMI' e�ect is meaningful,
and its related Tukey test analysis in Table 20 indicates
that the di�erence between the means at levels 60 and
15000 of `PBIMI' is statistically signi�cant. Tables 21
and 5 show the mean of `Un-stability' when `PBIMI'
at level 60 gets a higher value than the case where
`PBIMI' is at level 15000. However, ANOVA Factorial
analysis of `VORL' in Table 19 does not indicate any
statistically signi�cant factor.

Finally, Table 21 shows the results of Factorial
Analysis for `Objective Function'. In this table, the
p-value column indicates that `PBIMI' is statistically
signi�cant. Tukey test in Table 22 indicates that
the comparison between the means at levels 90 and
15000 and levels 90 and 60 is statistically signi�cant.
Investigation of Tables 22 and 5 veri�es that the
`Objective Function' gets its lowest value when `PBIMI'
is at a level of 90.
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Table 4. The average of response variables after 10 repeats.
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1

15000 0 0.2 31 1.7 54.45189 1 1021.1 0.4 2964.011 19674.3 11.396 1.96E-04
60 100 0.6 13.9 1.8 26.5106 0.4 2965 1.8 3330.926 20027.9 12.422 2.34E-04
60 300 0.4 23.1 1.4 37.5964 0.5 1982.5 7.1 3211.499 26210.9 10.6417 3.07E-04
90 100 1 10.9 1.9 42.1469 0.5 4986.4 1 3024.604 13620.6 11.4084 2.29E-05
90 300 0.3 25.7 1.6 44.2418 0.7 1497.1 7.1 2950.443 22700.8 11.4557 3.29E-05

2

15000 0 0.2 5.1 1.5 44.5206 0.2 1031.4 1.7 3000.825 25846.4 11.718 1.99E-04
60 100 0.3 20.8 1 17.1419 0.4 1495.5 4.3 2876.971 26149.6 12.7133 2.03E-04
60 300 0.2 0.9 1.1 11.2548 0.2 1044.5 6.4 2846.976 29773.7 10.502 2.56E-04
90 100 0.2 29.6 1.1 28.00728 0.5 3463.6 2.9 2783.035 16136.5 12.8753 1.86E-05
90 300 0.2 2.6 0.9 7.5621 0.1 971.2 6.6 2627.616 22788.8 10.112 1.40E-04

3

15000 0 0.3 42.2 2 42.1322 0.4 1489.4 0.5 3008.248 29716 10.87798 7.28E-04
60 100 0.1 0 2 24.9994 0 3987.8 3 3342.277 66792.3 11.489 2.79E-04
60 300 0.5 1.2 2 20.28246 0.1 2467.8 9.6 3061.365 43941.6 7.9404 4.17E-04
90 100 1.2 0.7 2 46.4146 0.1 5956.4 1.4 3142.13 38236.9 9.2584 1.46E-04
90 300 0.5 2.2 2 38.7482 0.2 2499.6 8.3 2769.62 39654 8.7365 1.39E-04

4

15000 0 0.2 16 2 47.6986 0.5 986.2 0 2915.261 7055.8 6.858 2.17E-04
60 100 0.3 13.8 2 30.2494 0.4 2930.6 1.3 3502.799 26376.4 10.5744 2.45E-04
60 300 0.5 45 2 33.149 0.8 2530.6 5.4 3343.474 24974.8 11.48994 3.33E-04
90 100 1 20.2 2 41.8831 0.5 4953.5 0.7 3085.512 11005.2 9.2545 2.32E-05
90 300 0.2 32.6 1.9 50.2826 0.5 998.3 6.4 2928.979 24122.4 9.0995 1.34E-04

5

15000 0 0.6 1.1 0.2 58.1624 0.1 2933.9 0.8 3073.144 23107.8 9.4294 4.51E-04
60 100 0.8 6.8 0 22.7375 0.1 3938.5 5.6 3324.167 44578 12.934 1.24E-04
60 300 0.4 15.5 0.2 24.6497 0.3 1999.6 7.6 3375.375 56762.2 11.5463 1.90E-04
90 100 1 0 0.1 25.0875 0 5013 3.5 3190.673 36963.3 10.88335 9.15E-05
90 300 0.2 5.6 0 23 0.1 2005.9 7.9 3106.396 36820.4 12.0768 7.31E-05

6

15000 0 0.5 21.8 1.1 63.6563 0.3 2419.8 1 3496.847 45124.3 14.2877 1.44E-04
60 100 0.6 6 1 32.1421 0.3 3064.8 3 3532.152 49716.9 14.01048 1.77E-04
60 300 0.3 3.1 0.9 33.0421 0.2 1532.1 8.9 3178.958 42986.1 12.1122 2.99E-04
90 100 0.1 28.2 1.1 46.12489 0.5 5415.5 2.1 3143.474 36277.1 11.9657 6.86E-05
90 300 0.5 8.6 1.2 50.2707 0.4 2506.3 8.4 2986.309 35778.3 9.2503 3.11E-05

7

15000 0 0.3 18.8 1 43.5414 0.8 1538.3 1.3 2758.248 10467 9.5427 1.43E-04
60 100 0.2 15.7 1 14.01399 0.4 3435.2 3.5 3381.961 50912.3 10.6997 1.88E-04
60 300 0.5 3.7 1 9.3279 0.2 2483.5 8.5 3259.839 43868 9.7731 2.92E-04
90 100 0.1 7.3 1 20.78463 0.4 4990.2 1.8 3150.072 33034.4 9.4066 1.53E-05
90 300 0.4 24.1 1.2 17.93 0.4 2025.3 7.9 2809.2 38133 8.9339 3.01E-04

1PBIMI is the prede�ned BIM interval in the second method (the BIMs interval adjustment method),
the level 15000 is used for referring to �rst method (ordinary scheduling);
2MST is the Mean Surgery Time for emergency surgeries in the second method (the BIMs interval adjustment method),
the level 0 is used for referring to �rst method (ordinary scheduling);
3NEmgL or the Number of Emergencies that are scheduled with lateness;
4SLEmg or the Summation of Lateness in Emergencies;
5NUnEmg or the Number of Unscheduled Emergencies in ordinary time that are scheduled in the overtime;
6AWTEmg or Average Waiting Time in Emergencies;
7NElecL or the Number of Electives that are scheduled with Lateness;
8SLElec or the Summation of Lateness in Electives;
9NUnElec or the Number of Unscheduled Electives;
10AWTElec or Average Waiting Time in Electives;
11Un-stability is the summation of the violation of start times of electives in the �nal schedule
(after inserting all the emergencies) from their start times in initial schedule (without any emergencies);
12VORL or `Violation from OR Leveling' is the di�erence between the maximum and minimum percentage of
the OR usage among various ORs.
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Table 5. The mean value table.
Mean of response variables

PBIMI MST Number of
observations
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1500 0 7 0.3286 19.4286 1.3571 50.5948 0.4714 1631.44 0.8143 3030.94 22998.80 10.5871 2.97E-04
60 - 14 0.4071 12.1071 1.2429 24.0784 0.3071 2561.29 5.4286 3254.91 39505.05 11.3463 2.53E-04
90 - 14 0.4929 14.1643 1.2857 34.4632 0.3500 3377.31 4.7143 2978.43 28947.98 10.3369 8.84E-05
- 100 14 0.5357 12.4214 1.2857 29.8746 0.3214 4042.57 2.5643 3200.77 33559.10 11.4211 1.31E-04
- 300 14 0.3643 13.8500 1.2429 28.6670 0.3357 1896.02 7.5786 3032.57 34893.93 10.2622 2.10E-04

Table 6. Factorial ANOVA for NEMGL.

Source DF SS MS F P
PBIMI 1 0.0514 0.0514 0.70 0.4105
MST 1 0.2057 0.2057 2.79 0.1054
PBIMI�

MST
1 0.1729 0.1729 2.34 0.1364

Error 30 2.2143 0.0738
Total 34 2.7269

Table 7. Factorial ANOVA for SLEmg.

Source DF SS MS F P
PBIMI 1 29.62 29.62 0.18 0.6755
MST 1 14.29 14.29 0.09 0.7711
PBIMI�
MST

1 4.32 4.32 0.03 0.8728

Error 30 4974.35 165.81
Total 34 5244.34

Table 8. Factorial ANOVA for NUnEmg.

Source DF SS MS F P
PBIMI 1 0.0129 0.0129 0.03 0.8687
MST 1 0.0129 0.0129 0.03 0.8687
PBIMI�
MST

1 0.0014 0.0014 0.00 0.9560

Error 30 13.8743 0.4625
Total 34 13.9497

Table 9. Factorial ANOVA for AWTEmg.

Source DF SS MS F P
PBIMI 1 754.907 754.91 5.90 0.0214
MST 1 10.208 10.21 0.08 0.7796
PBIMI�
MST

1 14.173 14.17 0.11 0.7416

Error 30 3840.35 128.01
Total 34 7166.03

This section examines the e�ciency of the ordi-
nary method (the �rst method) and the BIMs interval
adjustment method (the second method) using a num-
ber of experiments based on real data.

In the case of the quality measurements related
to the emergency surgeries, the second method is
preferable because both methods achieve similar results

in `NEmgL', `NUnEmg', and `SLEmg', but the second
method decreases `AWTEmg'. However, by considering
quality measurements related to the elective surgeries,
the �rst method outperforms the second method. Both
methods have similar results in `NElecL', but the �rst
method gives better results in `NUnElec' and then, in
the second method, the level 100 of the `MST' e�ect
acts somewhat better than level 300 in this quality
measurement. In `AWTElec' quality measurement,
the second method gives the worst results when the
`PBIMI' e�ect is at a level of 60, but the di�erence
between the level 90 (in the second method) and level
15000 (the �rst method) of the `PBIMI' e�ect is not
statistically signi�cant.

Moreover, in the `Un-stability' quality measure-
ment, level 60 of the `PBIMI' e�ect gives the worst
results for `Un-stability', but there is no signi�cant
di�erence between the �rst method and the second
method when `PBIMI' is at the level 90. In the case
of `VORL' quality measurement, both methods achieve
similar results.

Finally, the best value for `Objective Function' is
related to the level 90 of the `PBIMI' e�ect in the
second method. Table 23 gives a summary of the
comparison between two methods according to various
quality measurements.

The analysis results show that our proposed
algorithm for the BIMs interval adjustment is more
preferable than the ordinary method of scheduling
elective surgeries. For this reason, decreasing the
average waiting time in emergency surgeries and having
equivalent performance in other quality measurements
for related to emergency surgeries are achieved. Our
proposed algorithm for the BIMs interval adjustment
gives a better objective function when `PBIMI' is at
level 90. Generally, when `PBIMI' is at level 90 and
`MST' is at level 100, the BIMs interval adjustment has
a better or similar performance in many of our quality
measurements.

5. Conclusion and future works

This study proposed the Scheduling Elective and Emer-
gency Surgery (SEES) algorithm, which is an improved
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Table 10. Tukey (HSD) test for `AWTEmg'.

Alpha 0.05
Error DF 30
Error MS 128.01
Critical value of studentized range 3.49

PBIMI
comparison

Di�erence
between means

Simultaneous 95%
Con�dence limits

15000 - 90 16.132 3.22 29.043 ***
15000 - 60 26.516 13.605 39.428 ***
90 - 15000 {16.132 {29.043 {3.22 ***
90 - 60 10.385 {0.158 20.927
60 - 15000 {26.516 {39.428 {13.605 ***
60 - 90 {10.385 {20.927 0.158

Note: Comparisons signi�cant at the 0.05 level are indicated by ***.

Table 11. Factorial ANOVA for NElecL.

Source DF SS MS F P

PBIMI 1 0.0129 0.0129 0.22 0.6404
MST 1 0.0014 0.0014 0.02 0.8760
PBIMI�

MST
1 0.0057 0.0057 0.1 0.7552

Error 30 1.7314 0.0577
Total 34 1.8657

Table 12. Factorial ANOVA for SLElec.

Source DF SS MS F P

PBIMI 1 4.7E+06 4.7E+06 9.0 0.0054
MST 1 3.2E+07 3.2E+07 62.3 0.0001
PBIMI�

MST
1 7.5E+06 7.5E+06 14.5 0.0006

Error 30 1.6E+07 5.2E+05
Total 34 7.0E+07

Table 13. Factorial ANOVA for NUnElec.

Source DF SS MS F P

PBIMI 1 3.57 3.57 2.84 0.1025
MST 1 176.00 176.00 140 0.0001
PBIMI�

MST
1 2.40 2.40 1.91 0.1775

Error 30 37.77 1.26
Total 34 321.24

constructive meta-heuristic algorithm, for SEES. The
SEES algorithm is an extension of the Generalized
Operational Surgery-Scheduling Problem (OGOSSP)
algorithm by including the scheduling of emergency
surgeries and developing the idea of the Break-In-

Table 14. Factorial ANOVA for AWTElec.

Source DF SS MS F P

PBIMI 1 535076 535076 15.2 0.0005
MST 1 198023 198023 5.63 0.0243
PBIMI�

MST
1 3823 3823 0.11 0.7440

Error 30 1055352 35178
Total 34 1833432

Moments (BIMs) interval adjustment in the Operating
Rooms (ORs). Our main contribution is implementing
the BIMs interval adjustment in scheduling elective
surgeries when surgeries are projects with multi-mode
activities. To the best of our knowledge, in all previous
works done on the BIMs interval adjustment, the
duration of using the OR had a determined value.
Moreover, the set of elective surgeries in any OR
was given. Despite the previous literature on the
BIMs interval adjustment, here, we assumed that the
algorithm determined which elective surgeries would
be assigned to each OR. Moreover, surgery activity
has multiple modes; thus, its duration depends on the
selected mode during the execution of the algorithm.

To investigate the e�ciency of this algorithm, two
methods of scheduling elective surgeries were consid-
ered: the ordinary method and the BIMs interval ad-
justment method. Then, some experiments for insert-
ing the emergency surgeries into these two schedules
were examined and various quality measurements were
compared. The results of the analysis demonstrated
that our algorithm achieved better performance in
quality measurements related to emergency surgeries.
This algorithm managed to reduce the average waiting
time in emergency surgeries and our algorithm gave a
better objective function at some levels of the main
factors. However, in the case of quality measurements
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Table 15. Tukey (HSD) test for `NUnElec'.

Alpha 0.05

Error DF 30

Error MS 1.26

Critical value of studentized range 3.49
PBIMI

comparison
Di�erence

between means
Simultaneous 95%
Con�dence limits

100 - 300 {5.0143 {6.0598 {3.9688 ***

100 - 0 1.7500 0.4695 3.0305 ***

300 - 100 5.0143 3.9688 6.0598 ***

300 - 0 6.7643 5.4838 8.0448 ***

0 - 100 {1.7500 {3.0305 {0.4695 ***

0 - 300 {6.7643 {8.0448 {5.4838 ***

Note: Comparisons signi�cant at the 0.05 level are indicated by ***.

Table 16. Tukey (HSD) test for `AWTElec' (PBIMI).

Alpha 0.05

Error DF 30

Error MS 35178.39

Critical value of studentized range 3.49
PBIMI

comparison
Di�erence

between means
Simultaneous 95%
Con�dence limits

15000 - 90 52.51 {161.53 266.55

15000 - 60 {223.97 {438.01 {9.93 ***

90 - 15000 {52.51 {266.55 161.53

90 - 60 {276.48 {451.24 {101.71 ***

60 - 15000 223.97 9.93 438.01 ***

60 - 90 276.48 101.71 451.24 ***

Note: Comparisons signi�cant at the 0.05 level are indicated by ***.

Table 17. Tukey (HSD) test for `AWTElec' (MST).

Alpha 0.05

Error DF 30

Error MS 35178.39

Critical value of studentized range 3.49
PBIMI

comparison
Di�erence

between means
Simultaneous 95%
Con�dence limits

100 - 300 168.19 {6.57 342.96

100 - 0 169.83 {44.21 383.87

300 - 100 {168.19 {342.96 6.57

300 - 0 1.63 {212.41 215.68

0 - 100 {169.83 {383.87 44.21

0 - 300 {1.63 {215.68 212.41
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Table 18. Factorial ANOVA for Un-stability.

Source DF SS MS F P

PBIMI 1 7.8E+08 7.8E+08 4.90 0.0346
MST 1 1.3E+07 1.3E+07 0.08 0.7815
PBIMI�

MST
1 9.2E+07 9.2E+07 0.58 0.4530

Error 30 4.8E+09 1.6E+08
Total 34 6.4E+09

Table 19. Factorial ANOVA for VORL.

Source DF SS MS F P

PBIMI 1 7.1322 7.1322 2.8 0.1049

MST 1 9.4016 9.4016 3.69 0.0644

PBIMI�

MST
1 1.0607 1.0607 0.42 0.5239

Error 30 76.5122 2.5504

Total 34 94.4694

related to elective surgeries, the ordinary method
achieved better results.

The most important point of our proposed algo-
rithm is the ability to decrease the average waiting time
in emergency surgeries without dedicating any OR to
emergency surgeries while having a good performance
in the objective function. Generally, the proposed algo-
rithm in this paper is appropriate for OR departments
with the following speci�cations: expensive surgeries,
normal rate of emergency arrivals, and patients that
can a�ord some waiting time.

The problem of scheduling surgeries at the oper-
ational level is dealt with in this paper. The structure
of the proposed algorithm allows us to treat all the

Table 21. Factorial ANOVA for `Objective Function'.

Source DF SS MS F P

PBIMI 1 1.90E-07 1.90E-07 14.5 0.0007

MST 1 4.41E-08 4.41E-08 3.36 0.0768

PBIMI�

MST
1 1.15E-09 1.15E-09 0.09 0.7690

Error 30 3.94E-07 1.31E-08

Total 34 7.18E-07

resource types as homogeneous entities that have some
availability intervals with some capacities. Nurses are
one of the resources and their availability comes from
the nurse rostering problem. This is a complicated
problem because it requires considering many nursing
speci�cations including skills, quali�cations, attentive-
ness to shift preferences, and contractual agreements.
There are many papers on this issue in the literature.
The nurse rostering problem and the Surgery Schedul-
ing Problem (SSP) are two interrelated problems, but
a few papers have dealt with these problems in a
synchronous manner. We suggest an extension of our
work by integrating it with the nurse rostering problem
for future research.

In this paper, we supposed that the information
of the OR time blocks that determined the availability
of ORs for each surgery specialty was given. These OR
time blocks have a real impact on the quality of the
schedules in the SSP. We also suggest the integration
of our work with the problem of determination of the
OR time blocks for future works.

After surgery, patients need to access some post-
operative care resources. Recovery rooms, ward beds,
and Intensive Care Units (ICUs) are important down-
stream resources. These resources are the bottleneck

Table 20. Tukey (HSD) test for `Un-stability'.

Alpha 0.05

Error DF 30

Error MS 1.6E+08

Critical value of studentized range 3.49
PBIMI

comparison
Di�erence

between means
Simultaneous 95%
Con�dence limits

15000 - 90 {5949 {20349 8450

15000 - 60 {16506 {30906 {2107 ***

90 - 15000 5949 {8450 20349

90 - 60 {10557 {22314 1200

60 - 15000 16506 2107 30906 ***

60 - 90 10557 {1200 22314

Note: Comparisons signi�cant at the 0.05 level are indicated by ***.
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Table 22. Tukey (HSD) test for `Objective Function'.

Alpha 0.05
Error DF 30
Error MS 1.31E-08
Critical value of studentized range 3.49

PBIMI
comparison

Di�erence
between means

Simultaneous 95%
Con�dence limits

15000 - 90 2.0848E-04 7.8E-05 0.00034 ***
15000 - 60 4.3870E-05 {8.7E-05 0.00017
90 - 15000 {2.0848E-04 {0.00034 {7.8E-05 ***
90 - 60 {1.6461E-04 {0.00027 {5.8E-05 ***
60 - 15000 {4.3870E-05 {0.00017 8.7E-05
60 - 90 1.6461E-04 5.8E-05 0.00027 ***

Note: Comparisons signi�cant at the 0.05 level are indicated by ***.

Table 23. The results of the comparisons between two methods in quality measurements.

Quality
measurement

Comparison result
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ts NEmgL Both methods act similarly

SLEmg Both methods act similarly
NUnEmg Both methods act similarly
AWTEmg The BIMs interval adjustment method acts better
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ts

NElecL Both methods act similarly

SLElec
The main factors and their interaction are statistically signi�cant
It is di�cult to judge which method is better

NUnElec
The ordinary method acts better, but in the case of the
BIMs interval adjustment method, level 100 is preferable to level 300 in MST

AWTElec
The ordinary method acts similarly to the BIMs interval
adjustment method when PBIMI is at the level of 90. Both of
these act better than level 60 in PBIMI in the BIMs interval adjustment method

O
th

er
s Un-stability

The ordinary method acts similarly to the BIMs interval
adjustment method when PBIMI is at a level of 90. Both of
them act better than level 60 in PBIMI in the BIMs interval adjustment method

VORL Both methods act similarly

Objective function
The BIMs interval adjustment method has the best result
when PBIMI is at a level of 90

resources of the surgery-scheduling problem because
their unavailability can cause schedule disruption and
cancellation of elective surgeries and other di�culties.
As for future work, we suggest the integration of our
work with the problem of determining the optimum
capacity of important downstream resources.
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