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Abstract 

The rapid growth of the population has resulted in an increasing demand for healthcare 

services, which forces managers to use costly resources such as operating rooms 

effectively. The surgery-scheduling problem is a general title for problems that consists 

of the patient selection and sequencing of the surgeries at the operational level, setting 

their start times, and assigning the resources. Hospital managers usually encounter 

elective surgeries that can be delayed slightly and emergency surgeries whose arrivals 

are unexpected, and most of them need quick access to operating rooms. Reserving 

operating room capacity for handling incoming emergency surgeries is expensive. 

Moreover, emergency surgeries cannot afford long waiting times. This paper deals 

with the problem of surgery scheduling in the presence of emergency surgeries with a 

focus on balancing the efficient use of operating room capacity and responsiveness to 

emergency surgeries. We proposed a new algorithm for surgery scheduling with a 

specific operating room capacity planning and analyzed it through a simulation method 

based on real data. This algorithm respects working hours and availability of staff and 

other resources in a surgical suite.  

Keywords Surgery scheduling; Operating rooms; Emergency surgery; Break-In-

Moments; Project scheduling. 

1. Introduction 

Most of the revenues and expenditures in hospitals are related to operating rooms (ORs) and 

ORs are known as the heart of hospitals. Due to the expenses of ORs, their efficient use in 

surgery scheduling is considerable. The quality of surgery scheduling directly affects waiting 

times and admission or rejection of patients since it has a crucial role in patient health. 
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Moreover, the work lives of surgeons, anesthesiologists, nurses, and other OR staff are also 

affected by how a schedule distributes staff workload.  

The OR management consists of many decisions in OR capacity planning and scheduling. 

Some of these decisions from the viewpoint of the hierarchical pyramid of decision-making are 

strategic decisions (long-term), tactical decisions (medium-term), and operational decisions 

(short-term) [1]. Strategic decisions or case-mix planning initiate with demand forecasting for 

the long term. According to this forecasting, some surgery specialties (such as cardiothoracic 

surgery, neurological surgery) are selected for patient admission. Furthermore, the amount of 

OR capacity acquisition is determined. How many ORs to be constructed is based on a very 

long-term (one to five years) demand estimation. Which surgical specialties to be served is 

based on long-term (6 months to one year) estimation [2]. Decision making about how to divide 

the ORôs capacities among these specialties (OR time blocks) is part of the tactical decision-

making. The medium-term demand forecasting influences OR time blocks [2]. These problems 

are known as master surgical scheduling in the literature. The OR time blocks determine the 

time duration and the amount of OR capacity that are accessible for patients from each surgery 

specialty. Finally, patient selection and sequencing of the surgeries, determination of their start 

times, and resource allocation in surgery cases are the problems at the operational level [3], 

[4]. The scope of this paper is only on the SSP at the operational level. That means only 

surgery requests for some surgery specialties are admitted and the determination of surgery 

specialties that should be selected for providing service to patients is not within our scope. 

Moreover, the OR time blocks that divide the OR capacity among surgery specialties are given 

and their determination is beyond the scope of our work. In this paper, we encounter the 

problem of determining a sequence of patient surgeries and assigning the resources to them 

and the determination of their start times. These patient surgeries are from various specialties. 

The resources are from various resource types (ORs, surgeons, recovery rooms, staff, and so 

on) and are available based on their working hour and OR time blocks 

1.1. Elective and emergency surgeries 
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Hospitals consider the scheduling of two classes of elective and emergency surgeries. Elective 

surgeries are related to patients who are admitted a few days ago. On the contrary, emergency 

surgeries have specific characteristics: their occurrences are unexpected and often during the 

execution of the schedule of other surgeries. Moreover, emergency surgeries generally 

require rapid access to ORs [5]. Handling emergency surgeries is a complicated task for 

hospital managers. These surgeries often have high urgency. Sometimes, emergency 

surgeries need immediate access to an OR, but most of them can afford some waiting time. 

The amount of the tolerable waiting time for an emergency patient depends on the severity 

and kind of illness. Emergency surgeries can arise 24/7, the stochastic nature of emergency 

surgeries and their threats to patientsô lives, force managers to reserve some capacities of 

resources to handle emergency surgeries, which lead to particular resource planning. 

Performing patient surgery needs access to multiple expensive resources such as OR and 

professionals simultaneously. That clarifies the difficulties of surgery scheduling in the 

presence of emergency surgeries. Furthermore, the arrival of emergency surgeries results in 

disturbing the prescheduled surgeries, which causes instability in staffing and shift scheduling 

in surgical suites. Besides, it causes reorganizing resources in surgical suites and even 

sometimes in other upstream and downstream units in hospitals [6]. Hospitals usually ask on-

call surgery teams to attend within thirty minutes, and the problem of availability of 

professionals is dealt with in this way. Managers concern themselves about the OR capacity 

planning for handling emergency surgeries better. 

1.2. Various OR capacity planning 

In fact, balancing between responsiveness for saving the lives of emergency patients and 

effective utilization of expensive resources such as ORs is a challenge that every hospital 

manager encounters. Only a limited number of previous papers have dealt with the subject of 

emergency surgery scheduling [7], [8]. Flexible ORs and dedicated ORs are two main OR 

capacity planning that have been examined in the literature for encountering emergency 
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surgeries. In the flexible ORs policy, OR capacity is shared between elective and emergency 

surgeries. This OR policy can result in disruptions during the execution of the scheduled tasks 

and lead to higher waiting times and the cost of using resourcesô overtime [9]. In order to avoid 

these disruptions, a dedicated OR policy is suggested in the literature [10], [11]. In the 

dedicated OR policy, ORs are divided into two separate groups. Each group of elective and 

emergency surgeries only can be scheduled in their ORs. This policy prevents disruptions 

from the arrival of emergency surgeries, but OR utilization is the drawback and it is a costly 

method [9], [12]. Dedicated ORs to emergency surgeries are never used by elective surgeries 

even when they are free for a long time, and many elective surgeries experience extra waiting 

times. ñHow to divide ORs capacity between emergency and elective surgeriesò is an 

important question that in some papers like Persson and Persson, this subject is dealt with 

[13]. The selection of each OR policy can influence the efficiency of the resulted schedule. 

Furthermore, the selected OR policy affects the number of schedule disruptions and the 

amount of OR utilization [12].  

As mentioned before, all the ORs are utilized for both elective and emergency surgeries in 

flexible OR policy. The authors apply different approaches for implementing flexible ORs 

policy. In the first category of papers, some fraction of OR time is reserved for inserting 

emergency surgeries. This fraction of OR time can be considered as an integrated time-space 

of OR availability interval or as various shorter slack times between elective surgeries in the 

schedule. These approaches utilize the partitioning OR capacity to handle emergency 

surgeries [9]. In some others, the scheduling of elective surgeries is done without any prior 

time allocation for emergency surgeries. In this approach, emergency surgery can be inserted 

in any free slack or replaced with elective surgeries in the schedule at moments when elective 

surgeries are expected to finish. This approach partitions the OR capacities between elective 

and emergency surgeries in real-time [9]. Consequently, the implementation of this approach 

is more complicated than the former category. The terminology of the break-in-moment (BIM) 

is the potential start times of emergency surgeries or the equivalent finish times of elective 



6 

surgeries [14]. Indeed, scheduling elective surgeries in this approach is done by concentrating 

on spreading the BIMs in OR intervals to reduce waiting times in emergency surgeries. 

 

ééééééééééééé..é.PLEASE PLACE FIGURE 1 HEREééé..éééééé 

Figure 1. Scheduling elective and emergency surgeries under the BIM policy. 

  

Figure 1. clarifies the insertion of an emergency surgery into the schedule of elective surgeries 

in three ORs. The OR policy is flexible, and emergency surgery is inserted to be scheduled at 

the BIMs.  

The BIMs approach is implemented in a few papers. This approach is introduced by van Essen 

et al. [14]. Vandenberghe et al. extended the BIMs approach for the case that surgeries 

durations are stochastic with known distributions [15]. Duma and Aringhieri also use the BIMs 

approach in their paper [16]. Another recent work proposes the combination of dedicated and 

flexible ORs (hybrid policy) in which some rooms are dedicated strictly to elective surgeries or 

emergency surgeries, and others are flexible to serve both of them [17].  

Each of the previous OR policies (dedicated, flexible, and their subgroups) is utilized in the 

literature. The question about ñwhich of these policies is better in a specific scenarioò has no 

strict answer and strongly depends on the conditions of the hospital and other operational 

conditions [16]. 

1.3. The surgery scheduling problem literature review 

Many researchers from the operation research community have been interested in the surgery 

scheduling problem (SSP) also named as OR scheduling problem. Plenty of the SSP works 

have been presented in the recent review papers [1], [18], [19], [3]. Generally, the number of 

SSP articles has been significantly increased in the current decade [18] also, recent studies 

on SSP has been tended to solve complicated problems [19]. 
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In the literature, the authors consider SSP from different points of view. Pham and Klinkert 

suppose a flow of patients that moves through some hospital units. They have formulated the 

SSP as a generalized job shop-scheduling problem [20]. Van Essen et al. provide a decision 

support system that constructs schedules by considering patients and wards desirability as 

different stakeholders of the SSP [21]. Jung et al. consider a class of parallel machines 

scheduling for the SSP [22]. Aringhieri et al. cover the demands of some patients for surgery 

over the weekends and consider both the OR time blocking problem and the SSP together 

[23]. Moosavi and Ebrahimnejad consider the SSP when unscheduled surgeries defer to the 

next scheduling period [24]. Riise et al. suppose any patient surgery as a project, which 

consists of several activities. The execution of any activity requires some sets of resources 

(modes). Each resource can be available with the predefined capacity in some time intervals 

[25]. They propose a multi-project, multi-mode resource-constrained project-scheduling 

problem with generalized precedence relations for the SSP. The authors classify this problem 

as an NP-hard problem by referring to Hans et al. [26] and develop the generalized operational 

surgery-scheduling problem (GOSSP), which is a meta-heuristic algorithm for this problem. 

Santibáñez et al. focus on the interrelation master surgical scheduling and the feasibility of the 

schedules. The authors mention that because some post-surgical resources such as recovery 

rooms are limited and shared by all the patients, the capacity of them can make an OR time 

block impossible. They consider both of the problems (master surgical scheduling and 

scheduling of the patients at the operational level) jointly to create a feasible OR time block. 

They defined surgical groups in each surgery specialty. These surgical groups have the same 

resource requirements and consist of the same procedures. Then, they concentrate on 

scheduling surgical groups instead of scheduling surgeries [27]. The utilization of surgical 

groups is developed by Banditori et al. by adding the patientôs due dates and durations. The 

authors utilize mixed-integer programming and simulation methods and suggest an approach 

to determine which surgical specialties can serve in the ORs and determine OR time blocks 

in the surgery suite. In such a way, they solve strategic and tactical planning problems jointly 

[28]. Cappanera et al. integrate master surgical scheduling with patient selection and 
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sequencing problems and develop a multi-objective mixed-integer programming model [29]. 

Visintin et al. in their paper consider the master surgical scheduling problem jointly with 

managing some critical resources (surgical teams, operating rooms, and surgical units) [30]. 

Table 1. reports the main characteristics of some recent literature in the SSP.  

1.4. Contributions 

To our best knowledge, only Riise et al. [25], [31] have been utilized ña multi-project multi-

mode resource-constrained project-scheduling problem with generalized precedence 

relationsò as the optimization model for the SSP. Moreover, the implementation of the BIMs 

idea has only been used in a few papers and less dealt with in the literature. Riise et al. merely 

focus on elective surgery scheduling in their works [25], [31], and as a result, all the ORs are 

dedicated to elective surgeries. In this paper, we extend their work by considering emergency 

surgeries. Furthermore, to handle emergency surgeries, we consider the flexible OR policy 

and implement the BIMs idea for inserting the emergency surgeries. 
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Table 1. The main characteristics of some recent SSP literature. 

 
………………………PLEASE PLACE TABLE 1 HERE……………………. 
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One of the difficulties of the SSP comes from the existence of uncertainty, such as the patientôs 

arrival uncertainty, durationôs uncertainty, failure of critical medical equipment [19]. In this 

paper, we ignore the equipment failure and the unpredictability in elective patientôs arrival. As 

it is mentioned by Riise et al., for dealing with the deviation of the duration time of surgeries, 

many hospitals use estimations [25]. Therefore, we assume that after any surgery referral 

(elective surgery or emergency surgery), an expert estimates all the possible modes for the 

activities. The expert estimates a duration for any activity in any mode, based on his or her 

prior experiences. These estimations help us to deal with the uncertainty in the durations that 

comes from the difference between various resources.   

The rest of this paper is structured as follows. Section 2 provides an overview of the problem 

definitions, and section 3 discusses the proposed algorithm. Section 4 illustrates experimental 

designs and some computational experiments. Finally, section 5 addresses conclusions and 

some outlines for future works. 

2. Problem description 

This paper is about scheduling a set P  of patientôs surgeries from some specialties such as 

cardiothoracic surgery, neurological surgery, and so on. These surgical specialties are 

determined previously, and the determination of them is not within our scope. Initially, this set 

only contains the elective surgeries, but during the execution of the schedule, the set changes 

to include some emergency surgeries. Performing a patientôs surgery needs allocating more 

than one resource type simultaneously. 

2.1. Resources 

The patientôs surgeries in the set P  use a shared set of resources R  that includes various 

resource types such as ORs, surgeons, etc. Any resource in R  has a particular working hour 

or availability interval, and this resource is only available in these hours in some capacities. 

Any resource r R" Í  has a set of non-overlapping availability intervals { }1 2, ,...rK k k=  in 
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which 
r

qk KÍ  refers to one of the availability intervals with the capacity 
qc . This way of 

representing the availability of resources helps us to consider a continuous-time model for 

representing the availability and capacity of resources [25], [31].  

The ORs are available for each surgery specialty according to the master surgical planning 

(OR time blocks). In other words, each time interval 
qk  in any OR can only be assigned to a 

specific surgery specialty (see Figure 2). 

................................................PLEASE PLACE FIGURE 2 HERE ééééééééééé.. 

Figure 2. An instance of OR time blocks. 

 

It is assumed that the resources availability intervals, resource capacities in each availability 

interval, and OR time blocks are known and given. It is supposed that the restrictions, which 

come from OR time block only apply to elective surgeries. However, emergency surgeries can 

use any OR available interval without considering the OR time blocks. 

2.2. Activities and activity modes 

Performing each patientôs surgery p P" Í  consists of the execution of 
pN  treatment activities, 

e.g., preparing the patient, preparing the OR, surgery, cleaning the OR, and recovery. Various 

precedence relations (including the maximum and minimum time lags) can be assumed 

between each pair of these activities in any patientôs surgery. As an instance, the maximum 

time lag can explain the extreme waiting time of a patient between a pair of activities. Usually, 

more than one set of resources or activity modes can be applied for the execution of activities. 

As discussed in the previous section, activity modes in surgery activity resulted from various 

combinations of different surgeons with the same specialty and different ORs. Each activity 

mode has its own set of resources and duration. 

In any activity i  in any patientôs surgery p PÍ , there is a set of activity modes 
iM . The 

selection of one of the activity modes 
im MÍ  is necessary for the execution of this activity. 
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This selection clarifies a set of resources 
mR , that the amount of m

rm  units of any of them 

mr RÍ  is necessary for the execution of the activity. The simultaneous availability of all the 

resources in the activity mode is necessary for the execution of the activity. 

Each patientôs surgery is considered as a project. The execution of this project means 

scheduling all of its activities. Remaining any of the projectôs activities unscheduled makes 

scheduling other activities useless, thus, these activities must be removed from the schedule.  

 

2.3. Inter-activity mode compatibility constraints and project modes 

Some resources (such as OR and surgeon) are applied in more than one activity in a project. 

It is necessary to use the same resource in all the activities in a project. As an instance, if two 

activities in a project require resource OR, the same OR must be used in this project. Inter-

activity mode compatibility constraints are a group of constraints to guarantee the usage of 

the same common resource between the activities of a project. Project modes are a set of 

various combinations of common resources in a project and are utilized for implementing these 

constraints. Inter-activity mode compatibility constraints limit the selection of activity modes to 

those modes, which are compatible with a project mode.  

As an illustration, consider a sample project 1p  that consists of two activities {P= ,Surgery

}Cleaning  Activity Surgery is the predecessor of activity Cleaning with precedence relation 

max (15)FS  (activity Cleaning must start up to 15 minutes after the termination of the activity 

Surgery). The execution of Surgery activity requires one Surgeon and one ORand also the 

execution of Cleaning activity requires one OR and one Cleaner. It is supposed that 

resource type OR contains three resources 1 2 3( , , )OR OR OR . The inter-activity mode 

compatibility constraint says when resource 1OR  is used for activity Surgery in the project 1p  

then, only 1OR  must be used for the activity Cleaning of this project. Project mode only 
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contains the OR resource type here and gets one of { }1OR , { }2OR  and { }3OR , that in the 

above example, { }1OR  is selected as the project mode. 

Generally, to implement inter-activity mode compatibility constraints in any project p PÍ , 

some project modes 
pW  are considered. The selection of a project mode 

pw WÍ  in any 

project p PÍ  leads to the fact that in any activity 
pi NÍ  only a subset of activity modes 

i

wM MË  remains compatible with the selected project mode. Each activity mode 
im MÍ  has 

its activity duration that depends on some resource considerations such as surgeonôs skills or 

whether the surgery is performed in training mode or not.  

 

2.4. Project’s disjunction constraints 

The projectôs disjunction constraints prevent the usage of a common resource in other projects 

in the interval between the first usage of it in a project and the completion of the last usage of 

it in the same project. It means these constraints make a common resource after its first usage 

of it in a project as quarantined and unavailable for other projects. Only after the termination 

of the last usage of that common resource in the activities of the current project, the resource 

can be available for other projects. For more illustration of the projectôs disjunction constraint, 

suppose another project 2p  with the same structure as 1p  discussed previously. Suppose the 

project 1p  is before the project 2p  in the schedule, moreover, in both of them, the project 

mode { }1OR  is selected (both of the projects require the usage of the same common 

resource). The projectôs disjunction constraint says the activity Surgery in the project 2p  

cannot start until the termination of the activity Cleaning of the project 1p , even if the resource 

1OR  remains idle between the activities Surgery and Cleaning of the project 1p . 

This problem is classified as a multi-project, multi-mode resource-constrained project-

scheduling problem with generalized precedence in the literature that belongs to NP-hard 
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problems [25], [31]. The mathematical model of this problem in the case of scheduling elective 

surgeries is presented as a mixed-integer linear programming model by Riise and Mannino 

[31]. Then, we extended that mathematical model by considering both elective and emergency 

surgeries when the BIMs approach in the flexible OR policy is implemented [32]. For 

scheduling elective surgeries in real size problems, Riise et al. presented the GOSSP 

algorithm [25]. 

In this paper, we develop a scheduling elective and emergency surgeries (SEES) algorithm. 

As mentioned in the introduction, scheduling emergency surgeries and the efficient usage of 

ORs are challenges for hospital managers. We implement the BIMs approach in the flexible 

OR policy and examine its efficiency in emergency surgery scheduling. We utilize a Norwegian 

medium-sized hospital's data that are available on the web for testing our algorithm [33]. The 

BIMs approach has the capability of scheduling emergency surgeries with efficient usage of 

ORs capacities. Moreover, this approach has been less dealt with in the literature. To our best 

knowledge, this approach has not been implemented before in an environment where 

surgeries are considered as projects. In this method, any emergency surgery is inserted into 

the schedule after terminating one of the currently undergoing surgeries or, in other words, at 

the BIMs. For minimizing the waiting time in emergency surgeries, it is necessary to minimize 

the interval of the sequential BIMs in the sequencing of elective surgeries. This problem is as 

minimizing the maximum interval between sequential BIMs [14]. 

 As discussed earlier, our main contribution is to implement the BIM approach when each 

surgery is a project with multi-mode activities. The most important requirement for 

implementing the BIMs approach is to know the duration of OR usage in the projects. Although 

we only consider the problem in a deterministic state, we cannot estimate the duration time of 

surgery activities with distinct values. The first reason is that in the surgery activity of a project, 

the durations in different ORs are not the same because of the difference between activity 

modes. The second reason is that this variation of the durations in the activity surgery in a 

project is not negligible because of the large number of activity modes (in some projects there 



15 

are 36 activity modes for activity surgery). As discussed before, the main reason for this 

variation in durations is about some resource considerations. As an instance, the surgeonôs 

experience or whether the operation is in the training environment or not can change the 

duration of the surgery activity. 

The GOSSP algorithm belongs to the class of NP-hard optimization problems [25]. Moreover, 

operating room planning with elective and emergency surgeries is a strongly NP-hard problem 

[34]. Furthermore, adjusting the BIMs is a strongly NP-hard problem, in the case that the 

number of ORs exceeds one [14]. Due to the difficulty of solving this problem, we extend the 

original meta-heuristic algorithm of the GOSSP conveniently to handle emergency surgeries 

at the BIMs. The next section presents scheduling elective and emergency surgeries (SEES) 

algorithm.  

 

3. Proposed algorithm 

The SEES algorithm is about scheduling elective and emergency patientôs surgeries. This 

algorithm initially provides a schedule of elective surgeries. Then, during the execution of this 

schedule, after the arrival of any emergency surgery, it tries to insert the emergency surgery 

into the schedule with rescheduling. 

3.1. Constraints 

Some constraints are the same in both of the problems of scheduling and rescheduling of 

elective and emergency surgeries. Scheduling a project requires satisfying all constraints 

mentioned in the previous section (such as availability of resources, precedence relations 

between activities, inter-activity mode constraints, projectôs disjunction constraints). However, 

it is necessary to consider some aspects during the scheduling of elective surgeries to 

implement the BIMs idea. We develop a new heuristic for scheduling elective surgeries. 

Inserting elective surgeries to a partial schedule is bound to potential insertion of a possible 

coming emergency surgery up to a limited period to the schedule.  Only after satisfying one of 
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the following conditions, each elective surgery can be inserted into the schedule. First, after 

the estimated start time in an elective surgery up to a limited period (maximum tolerable 

waiting time in the emergency surgeries), one of the ORs becomes free and remains available 

for a specific duration (the average duration of emergency surgeries). Second, after the 

estimated start time of the elective surgery up to a limited period (the maximum tolerable 

waiting time in the emergency surgeries), another elective surgery starts in one of the ORs. 

The possible coming emergency surgery can access an OR in a tolerable waiting time, 

because in the first case, one of the ORs becomes free, and in the second case, the 

emergency surgery is substituted instead of one of the elective surgeries in the schedule. 

However, these limitations do not apply to emergency surgeries. Providing their resources is 

the only condition for inserting emergency surgeries to schedule. 

3.2. Objective components 

Usually, scheduling all the projects is impossible. A feasible schedule results from the 

scheduling activities of a subset of total projects P PË . Selecting this subset depends on 

some objective components. For scheduling these selected projects ( P ), it is necessary to 

select an activity mode i

wm MÍ  and a feasible start time for any activity 
pi NÍ  in each project 

p PÍ . The selection of an activity mode m  and determination of start time for each activity i  

should be compatible with the availability of all of the resources 
mr RÍ  in the activity mode m

. Moreover, for scheduling the projects, all the previously mentioned constraints should be 

satisfied. 

Various objective components by a linear combination of them are included in the SEES and 

it is supposed that minimization of the objective function is desirable. If we consider O  as the 

objective function, then 
fO  is an objective component and 

fa  is its corresponding weight. 

The next formula illustrates the SEES objective function: 

f

ff
O Oa=ä  (1) 
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As will be discussed in the following, each of the objective components has a specific scale, 

a simple summation of the weighted objective components is not reasonable. Therefore, each 

of the objective components is normalized. The variable 
fO  refers to the normalized objective 

component. In such a way, the effect of different scales is removed from the objective function. 

In this problem, we consider many objective components. Some of them (óunscheduled 

surgeriesô, ópatientôs waiting timeô, óviolation of scheduling children and patients with diabetes 

in the early dayô and finally ómakespanô or finishing the schedule early in the day) come from 

the GOSSP. Moreover, we include some other objective components in the SEES as below.  

The deviance for the start times of the elective surgeries between the final schedule (after 

inserting all emergency surgeries) and the initial schedule (that only includes elective 

surgeries) is calculated in the óun-stabilityô objective component. This objective component is 

the summation of the violation of start times of elective surgeries in the final schedule from 

their start times in the initial schedule.  

The problem includes various ORs, each of these ORs has its OR capacity, the óVORLô 

objective component tends towards resource leveling through balancing the OR usage. The 

amount of this objective component is the difference between the maximum and minimum 

percentage of OR usage among various ORs in the schedule. As an instance, suppose a case 

in which there are three ORs, and in the final schedule 85% of the total available capacity of 

1OR , 25% of the total available capacity of 
2OR , and 70% of the total available capacity of 

3OR  are consumed. In this case, the óVORLô takes the value of 60 that is the difference 

between 85 and 25. 

Any patient surgery has its due date, and it is desirable to start without any lateness to achieve 

its due date. Therefore, we consider the following objective components: óthe number of 

electives that are scheduled with latenessô (óNElecLô), óthe number of emergencies that are 

scheduled with latenessô (óNEmgLô), óthe summation of lateness in electivesô (óSLElecô) and 

óthe summation of lateness in emergenciesô (óSLEmgô). 
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We also consider some special objective components that are related to elective surgeries:  

óthe number of unscheduled electivesô (óNUnElecô) and óaverage waiting time in electivesô 

(óAWTElecô). Similarly, for emergency surgeries, the following objective components are 

added: óthe number of unscheduled emergenciesô (óNUnEmgô) and óaverage waiting time in 

emergenciesô (óAWTEmgô). In this paper, it is supposed that the entire patient surgeries should 

be scheduled in ordinary working hours. Only those emergency surgeries that remain 

unscheduled during ordinary working hours can be scheduled in overtime. 

 

3.3. ACI function 

The SEES algorithm is a constructive-improvement algorithm and consists of some functions. 

The main function of the SEES algorithm is ACI  function or adaptive construction and 

improvement algorithm, which is an iterative search algorithm. The ACI  function (Figure 3) 

uses a limited size pool for maintenance of schedules and their corresponding project insertion 

order (PIO). Each schedule has a PIO that keeps the order of insertion of each project to this 

schedule. For example, if we suppose the set of projects as {P=
1Pr ,oject 2Pr ,oject

3Pr }oject  then, the array ( )2,3,1PIO=  means that the first project for scheduling is 2Pr oject

then 3Pr oject  and finally 1Pr oject . This function always updates the best schedule of the pool 

after any change in each iteration of the execution. In each iteration, a decision determines 

whether a new schedule should be constructed or one of the poolôs schedules should be 

improved. A roulette wheel sampling makes this decision. This roulette wheel works based on 

how much each of the two methods (construction of a new schedule or improvement of one 

of the existing schedules) has been successful in reaching a good solution. 

The construction method creates a new schedule. Each project has a clinical priority that 

shows its importance for early scheduling. A roulette wheel sampling, which works based on 

these projectsô priorities, is applied to generate a PIO p¡. Then, the ScheduleCreator function 
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that will be discussed later in this section uses the PIO p¡ and a parameter to create a 

schedule. 

This parameter has a critical role in mode selection (activity modes and project modes) during 

inserting projects into the schedule. 

For scheduling each project, different project modes and different activity modes lead to the 

usage of different sets of resources and result in different duration times. Three parameters 

for scheduling a project are considered: óthe best objective functionô, óthe earliest finish timeô, 

and óthe first feasible modeô. Another roulette wheel sampling is applied for selecting the 

parameter, which works based on each parameterôs success to conduct good schedules. The 

ScheduleCreator function finally generates the schedule S¡ and adds this schedule S¡ and 

its corresponding PIO p¡ to the pool. 

The improvement method improves one of the existing schedules of the pool, the selection is 

done randomly, but better schedules have a higher chance of selection. The InsertionOrder

Modification function tries to modify the PIO, p of the selected schedule S and gives the 

resulted PIO, p¡. 

If the new PIO, p¡ remains the same as the previous p, then the algorithm tries to select 

another schedule from the pool. This step repeats until the modified PIO differs from its initial 

PIO. Then, the ScheduleCreator function is called to generate a new schedule, S¡ through 

the modified PIO, p¡. Finally, the resulted schedule, S¡ with its PIO, p¡ replace by S and p 

in the pool. 

After any change in the pool, the best schedule of the pool is updated. Then, the success of 

construction and improvement methods and the success of various parameters in reaching 

good solutions are updated in their learning mechanisms separately. Finally, the ACI  function 

after completing its execution returns the best schedule of the pool as its output. 

ééééééééééé..PLEASE PLACE FIGURE 3 HERE ééééééééééééé 

Figure 3. Adaptive construction and improvement algorithm ( ACI function). 
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In the SEES algorithm, initially, the ACI  function is executed for producing a schedule for 

elective surgeries or equivalently elective projects. That is offline scheduling, and the resulted 

schedule is valid before the arrival of the first emergency surgery. After the arrival of any 

emergency surgery, old projects take one of these three various states. The execution of some 

projects terminated before this arrival time, some of them are currently undergoing surgeries, 

but they are not complete, and the last ones are those, which have not started yet. 

The SSP is non-preemption scheduling. Therefore, the first position for inserting the 

emergency surgery to the schedule is after the currently undergoing surgeries, but before the 

projects that do not start. Moreover, after the arrival of any emergency surgery, the state of 

resources must also be modified to consider the consumed and in-use capacities. After these 

changes, the ACI  function is called again for producing a new schedule. This process repeats 

after any emergency arrival, and it creates online schedules. 

3.4. Schedule Creator function 

In ACI  function, if the construction method is selected, then ScheduleCreator function 

creates a new schedule from a new PIO and a parameter. Figure 4 illustrates the algorithm of 

ScheduleCreator function. This function partially schedules the projects one by one, 

according to the PIO. Initially, a random activity order 
pp  is generated for the set of activities 

pN  in any project p pÍ . In this activity order, all the precedence relations between activities 

are considered.  

For initialization, the variable 
*w  sets to null, this variable refers to the selected project mode, 

and the set feasiblews is cleared, this set collects all the feasible project modes. The variable 

ProParam initializes with the input parameter. This variable indicates the selected parameter 

for scheduling this project. Only in the case of emergency surgeries, the value of this variable 

changes to óthe earliest finish timeô to consider the urgency of these surgeries. 

Then, the algorithm searches among various project modes 
pw WÍ  to find the best project 

mode for scheduling the project p . For each project mode, the (SGS ,S ,p ,w ,pp Pr )oParam  
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function tries to insert activities of the project p  with the activity order 
pp  and project mode 

w  into the partial schedule S with the parameter ProParam. This function is the most 

complicated part of the ScheduleCreator function because this function should satisfy all the 

constraints mentioned in the previous section during the insertion of the activities to the partial 

schedule. If the SGS function can schedule the project p  then, it is investigated whether the 

project is an emergency surgery or not. The success of the SGS function is sufficient in the 

emergency surgeries, but the following conditions must be examined in elective surgeries for 

encountering probable coming emergency surgeries.  

From the start time of using the OR in the elective surgery p  until a specified time later (óthe 

predefined BIM intervalô (PBIMI)), another BIM must be found, or one of the ORs must be 

available. Moreover, that available OR must remain accessible for a specific duration (óthe 

mean surgery time for emergency surgeriesô (MST)). If the project mode w  overcomes these 

conditions, then the project mode will be inserted into the group of feasible project modes. 

……………………………….PLEASE PLACE FIGURE 4 HERE ……………………….. 

Figure 4. ScheduleCreatorFunction. 

Then, this project is removed from the partial schedule and this process is repeated to examine 

the feasibility of other project modes. Finally, the best project mode is chosen for inserting the 

project into the schedule. This process is repeated for all projects in PIO. At the end of the 

algorithm, the ScheduleCreator function returns the resulted schedule as its output. 

……………………………PLEASE PLACE FIGURE 5 HERE ………………………. 

Figure 5. Scheduling elective surgeries with respect to adjusting the BIMs. 

Figure 5 gives more explanation of the feasibility conditions of project modes in elective 

surgeries. For inserting 1Surgery into the schedule, 2OR  is available at the 2BIM . Since the 

distance between 1BIM  and 2BIM  is less than óPBIMIô and 2OR  is available for an interval as 

long as óMSTô, this project is inserted into the schedule. In the second case, 2Surgery  can be 

inserted into the schedule, because 1OR  is available for an interval longer than óMSTô. 
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However, in the case of inserting 3Surgery to the schedule, none of these conditions is 

satisfied because none of the ORs becomes free during the interval of óPBIMIô, and none of 

the elective surgeries starts in this interval. Therefore, this project cannot be inserted into the 

schedule. 

3.5. Insertion Order Modification function 

The ACI  function is based on the selection of one of the construction and improvement 

methods. In the improvement method, a roulette wheel selects a schedule and its 

corresponding PIO from the pool for improvement. The main idea for improving a schedule is 

that earlier projects in PIO have a higher chance to be scheduled better than the other projects. 

ééééééééééééPLEASE PLACE FIGURE 6 HERE éééééééééééé. 

Figure 6. InsertionOrderModification function. 

 

Therefore, after recognizing the projects with more contributions to the objective function, the 

InsertionOrder Modification function tries to move their position earlier in the project 

insertion order. The InsertionOrder Modification function uses the vector EPp  that keeps 

the earliest position in which each project has ever been in the schedule. Then, this function 

recognizes a set of projects with more contributions to the objective function or bad projects. 

These projects are sorted based on their earliest positions in EPp  and their contributions to 

the objective function. After that, the InsertionOrder Modification function tries to take their 

positions to one place earlier than their positions in EPp . In the case that two projects 

compete for one place, one of these projects is randomly selected for that position and the 

other one takes place in the next position. Finally, this function returns the new PIO to the 

ACI function.  

Figure 6 illustrates the InsertionOrder Modification function. 
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4. Computational results 

4.1. Data specifications 

We use real patientsô information in a Norwegian hospital that is available on the web [33] for 

testing our algorithm. We select the file w40-1 as the data source of elective surgeries. This 

file contains the availability information of resources and the details of 40 patientsô surgeries, 

including their activities, project modes, and activity modes. Then, we use file w40-2 as the 

data source for emergency surgeries so that this file includes the information of the other 40 

patientsô surgeries. Except for disaster conditions, usually, the number of emergency surgeries 

is supposed as a specific percentage of the number of elective surgeries. Bowers and Mould 

found that the number of emergency patients is about 25 percent of the number of elective 

patients in the orthopedic department [35]. We suppose the number of emergency surgeries 

is 20 percent of the number of elective surgeries, and therefore, in each experiment, eight 

projects are selected randomly from file w40-2 as emergency surgeries. 

4.2. Projects’ specifications 

In our problem instance, each project consists of three activities: surgery, recovery, and 

cleaning { ,p Surgery= Recov ,ery }Cleaning . The surgery activity is the predecessor of the 

other two, and both of the recovery and cleaning activities can start simultaneously. Execution 

of activities in any project requires a subset of four resource types including ORs, surgeons, 

recovery rooms, and cleaners { ,R ORs= ,SurgeonsRecov ,eryRooms }Cleaners . Resources 

are available in some capacities in some availability intervals. Because of the existence of OR 

time blocks, the OR resource in each availability interval is only usable by surgeries from a 

specific surgery specialty (such as urology). It is supposed that emergency surgeries can be 

performed in any available OR with no respect for OR time blocks. The period of scheduling 

is one week, and all the elective surgeries that cannot be scheduled in a week remain 

unscheduled. Only emergency surgeries that remain unscheduled will be scheduled in 

overtime. 
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4.3. Comparing methods 

For the investigation of the efficiency of our proposed algorithm in facing emergency surgeries, 

we consider two different methods. In the first one, elective surgeries are scheduled without 

any respect to adjusting the consecutive BIMs interval (ordinary scheduling). In the second 

one, scheduling elective surgeries is tied up to adjusting the BIMs as discussed in Schedule

Creator function (scheduling surgeries with the BIMs interval adjustment). 

In the first method (ordinary scheduling), the only condition for the acceptance of a project 

mode in the ScheduleCreator function is the success of the SGS function in inserting the 

patientôs surgery with this project mode to the schedule.  

In the BIMs interval adjustment method (the second method), besides the above-mentioned 

conditions for scheduling elective surgeries, the existence of another BIM or another available 

OR is examined. 

In both methods, after the arrival of emergency surgery, the PIO changes in a way that inserts 

the emergency surgery before all the projects that have not started yet. Then, an online 

rescheduling with this new PIO is done. Both methods are implemented in the Visual C++ 

environment and run under Windows 8.1 on a system with Intel Core i7, 2.2 GHz processor, 

and 8 GB RAM. 

4.4. Quality measurements and main factors 

We want to investigate if the BIMs interval adjustment has any role in decreasing the waiting 

time in emergency surgeries, and how this method influences other quality measurements. 

Initially, some factors that can affect the waiting time in emergency surgeries are recognized 

as follows: óthe way of schedulingô, óemergency arrival timesô, óemergency surgeries prioritiesô 

(or their due dates for the operation). Moreover, in the second method of scheduling that 

adjusts the BIMs interval, two parameters óMSTô and óPBIMIô can affect the scheduling of 

emergency surgeries. For facing these variability factors in our experiments, óemergency 
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arrival timesô and óemergency projects prioritiesô are randomized, and different levels are 

considered for óMSTô and óPBIMIô parameters.  

We utilize a Poisson process for modeling the emergency arrival process. For the reason that 

the weekly period consists of several workdays, óthe emergency arrival timesô are adjusted in 

a way that can occur only during work hours. In the case of óemergency projects prioritiesô or 

projectôs due dates, it is supposed that the due date of each emergency surgery randomly 

takes one of the numbers 60, 120, 180, or 240 minutes with an equal probability (Table 2.). 

Table 2. Priorities of emergency surgeries. 

................................................PLEASE PLACE TABLE 2 HERE ………………………… 

 

For choosing the levels for óMSTô and óPBIMIô factors, we suppose the first method is 

equivalent to the second method when 'MST' is zero and 'PBIMI' is 15000 that is greater than 

the scheduling period. In the second method, two levels of 100 and 300 minutes for the factor 

óMSTô and two levels of 60 and 90 minutes for the factor óPBIMIô are chosen based on our 

data. Thus, the required experiments can be classified based on various levels of two main 

factors. Table 3. shows the details. 

We consider seven different patterns of emergency surgeries, with the following discussion. 

These patterns are conducted by selecting eight projects randomly as emergency projects, 

eight arrival times from the Poisson process that are adjusted in the weekly working hours for 

emergency arrivals, and eight surgery priorities that are selected randomly based on Table 2. 

for the due dates of emergency surgeries. 

Finally, our elective surgeries are scheduled based on various settings of two main factors 

and their levels are mentioned in Table 3. In each schedule, all the seven patterns of 

emergency surgeries are examined and the values of the response variables are collected. 

This step is repeated ten times. Table 4. shows the average of the response variables in each 

pattern. Table 5. refers to the mean of response variables in various levels of two main factors. 
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Table 3. Main factors and their levels. 

ééééééééééééé..PLEASE PLACE TABLE 3 HERE éééééééééééééééé. 

Then, these results are analyzed by Factorial ANOVA analysis in SAS software at the 

confidence level (Ŭ=0.05). This analysis tests whether the mean of quality measurements are 

the same by varying the levels of effects. Factorial ANOVA cannot indicate which levels of the 

effect cause the difference in the mean of the response variable. Therefore, Tukeyôs 

Studentized Range (HSD) test that is one of the most common ANOVA Post-hoc tests is used 

after the Factorial ANOVA analysis at the same confidence level. 
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Table 4 . The average of response variables after 10 repeats. 

…………………………………PLEASE PLACE TABLE 4 HERE ……………………………………………………………………………………………………... 

 

 

Table 5. The mean value table. 

………………………………………………………………..PLEASE PLACE TABLE 5 HERE ………………………………………………………………. 
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Table 6. Factorial ANOVA for NEMGL. 
 

Table 7. Factorial ANOVA for SLEmg. 
 

éPLEASE PLACE Table 6 HERE éé 

Table 8. Factorial ANOVA for NUnEmg. 

éPLEASE PLACE Table 8 HERE....... 

éPLEASE PLACE Table 7 HERE éé.. 

Table 9. Factorial ANOVA for AWTEmg. 

éPLEASE PLACE TABLE 9 HERE é.. 

 

In this section, we investigate whether changing the levels of the effects óMSTô, óPBIMIô, and 

their interaction effect are statistically significant in the mean of the response variables. The 

Factorial ANOVA tables summarize the information about the sources of variation in our 

quality measurements. The results of Factorial ANOVA for response variables related to 

emergency surgeries are presented in Tables 6. to 9. The amounts of the p-value in Tables 

6., 7. and 8. do not identify any statistically significant factor. On the other hand, the p-value 

for the main effect of óPBIMIô in Table 9. is less than the significant level (Ŭ=0.05). In this way, 

this effect is statistically significant, and we can reject the null hypothesis of the equality of the 

means of response variable óAWTEmgô. Tukey test is utilized to distinguish the mean of the 

response variable in which levels of óPBIMIô is different from others. Table 10. shows the 

comparisons of the means of óAWTEmgô between levels 90 and 15000 of óPBIMIô, and levels 

60 and 15000 of óPBIMIô which are statistically significant at the 0.05 level, but this comparison 

is not statistically significant in the case of the levels 60 and 90 of óPBIMIô. Thus according to 

Tables 10. and 5., we can conclude that the mean of óAWTEmgô at levels 60 and 90 of óPBIMIô 

are smaller than level 15000 of óPBIMIô. 

 

Table 10. Tukey (HSD) test for ‘AWTEmg’. 

ééééééé.PLEASE PLACE TABLE 10 HERE ééééé. 

 

In other words, we can summarize all of the above analysis about the quality measurements 

related to emergency surgeries as follows: The BIMs interval adjustment has a better 

performance in óAWTEmgô, but there is not any evidence that each of the methods has a better 

performance in óNEmgLô, óNUnEmgô, and óSLEmgô. 
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Table 11. Factorial ANOVA for NElecL. 

….PLEASE PLACE TABLE 11 HERE ………… 

Table 12. Factorial ANOVA for SLElec. 

…….PLEASE PLACE TABLE 12 HERE …………… 

 

Table 13. Factorial ANOVA for NUnElec. 

….PLEASE PLACE TABLE 13 HERE ………. 

 

Table 14. Factorial ANOVA for AWTElec. 

….PLEASE PLACE TABLE 14 HERE ……………….. 

 

The results of Factorial ANOVA for response variables related to elective surgeries are 

presented in Tables 11. to 14. In the case of quality measurements related to elective 

surgeries, similarly, the following results are obtained. The p-value column in Table 11. that is 

related to óNElecLô does not indicate any statistically significant factor. However, this column 

in Table 12. Indicates factors óPBIMIô, óMSTô and their interaction are statistically significant for 

óSLElecô. Since the interaction of the effects is present, our main effects do not have their usual 

interpretations. It is difficult to state how independent effects óPBIMIô and óMSTô act because 

the nature and magnitude of each of the effects depend on the particular level of another 

effect. In the case of óNUnElecô, Table 13. shows the effect óMSTô is statistically significant. 

The Tukey test results (Table 15.) show that all the levels of óMSTô are statistically significant. 

Considering Tables 5. and 15. shows the mean of óNUnElecô has its lowest value when óMSTô 

is at level 0, and on the other hand, óNUnElecô has its highest value when óMSTô is at level 

300. 

 

Table 15. Tukey (HSD) test for ‘NUnElec’. 

éééé.PLEASE PLACE TABLE 15 HERE éééééé. 

 

Investigating the p-value column in Factorial ANOVA for óAWTElecô (Table 14.) shows both 

the main effects óPBIMIô and óMSTô are statistically significant. The results of the Tukey test in 

Table 16. verify that the difference between the means at levels 60 and 15000 of óPBIMIô, and 

levels 60 and 90 of óPBIMIô are statistically significant. Tables 16. and 5. indicate the mean of 

óAWTElecô gets its highest value at level 60 of the óPBIMIô but, the results of the Tukey test 
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(Table 17.) do not detect which levels of óMSTô can cause the meaningful difference between 

óAWTElecô. 

Table 16. Tukey (HSD) test for ‘AWTElec’ (PBIMI). 

éé..PLEASE PLACE TABLE 16 HERE ééééé.. 

Table 17. Tukey (HSD) test for ‘AWTElec’ (MST). 

éééé.PLEASE PLACE TABLE 17 HERE éééééé.. 

Table 18. Factorial ANOVA for Un-stability. 

……PLEASE PLACE TABLE 18 HERE ……… 

Table 19. Factorial ANOVA for VORL. 

……..PLEASE PLACE TABLE 19 HERE ……. 

Tables 18. and 19. are related to óUn-stabilityô and óVORLô. ANOVA Factorial analysis of óUn-

stabilityô in Table 18. shows the effect óPBIMIô is meaningful, and its related Tukey test analysis 

in Table 20. indicates that the difference between the means at levels 60 and 15000 of óPBIMI 

ôis statistically significant. Tables 21. and 5. show the mean of óUn-stabilityô when óPBIMIô is at 

the level 60 gets a higher value in comparison with the case that óPBIMIô is at the level 15000. 

However, ANOVA Factorial analysis of óVORLô in Table 19. does not indicate any statistically 

significant factor. 

Table 20. Tukey (HSD) test for ‘Un-stability’. 

ééé.PLEASE PLACE TABLE 20 HERE éé.. 

Finally, Table 21. shows the results of Factorial Analysis for óObjective Functionô. In this table, 

the p-value column indicates that óPBIMIô is statistically significant. Tukey test in Table 22. 

indicates that the comparison between the means at the levels 90 and 15000 and levels 90 

and 60 are statistically significant. The investigating of Tables 22. and 5. verify that the 

óobjective Functionô gets its lowest value when óPBIMIô is at the level of 90. 

Table 21. Factorial ANOVA for ‘Objective Function’. 

éééé.PLEASE PLACE TABLE 21 HERE éé. 

Table 22. Tukey (HSD) test for ‘Objective Function’. 

ééé..PLEASE PLACE TABLE 22 HERE ééé.. 

In this section, the efficiency of the ordinary method (the first method) and the BIMs interval 

adjustment method (the second method) are examined with some experiments using the real 

data. 
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Table 23. The Results of the comparisons between two methods in quality measurements.  

ééééé..PLEASE PLACE TABLE 23 HERE ,,,,,,,,,,,,,,, 

 

 In the case of the quality measurements related to the emergency surgeries, the second 

method is preferable because both of the methods have similar results in óNEmgLô, óNUnEmgô, 

and óSLEmgô but the second method decreases óAWTEmgô. However, by considering quality 

measurements related to the elective surgeries, the first method is better than the second 

method. Both methods have similar results in óNElecLô but the first method gives better results 

in óNUnElecô, and then in the second method, the level 100 of the effect óMSTô acts a little 

better than level 300 in this quality measurement. In óAWTElecô quality measurement, the 

second method gives the worst results when the óPBIMIô effect is at the level of 60, but the 

difference between the level 90 (in the second method) and level 15000 (the first method) of 

the óPBIMIô effect is not statistically significant.  

Moreover, in the óUn-stabilityô quality measurement, level 60 of the óPBIMIô effect gives the 

worst results for óUn-stabilityô, but there is not any significant difference between the first 

method and the second method when óPBIMIô is at the level 90. In the case of óVORLô quality 

measurement, both methods have similar results. 

Finally, the best value for óObjective Functionô is related to the level 90 of the effect óPBIMIô in 

the second method. Table 23. gives a summary of the comparison between two methods 

according to various quality measurements. 

The analysis results show that our proposed algorithm for the BIMs interval adjustment is more 

preferable than the ordinary method of scheduling elective surgeries. For this reason, 

decreasing the average waiting time in emergency surgeries and having equivalent 

performance in other quality measurements that are related to emergency surgeries. Our 

proposed algorithm for the BIMs interval adjustment gives a better objective function when 
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óPBIMIô is at level 90. Generally, when óPBIMIô is at level 90 and óMSTô is at level 100, the BIMs 

interval adjustment has a better or similar performance in many of our quality measurements. 

5. Conclusion and future works 

In this paper, we proposed the SEES algorithm that is an improvement constructive meta-

heuristic algorithm for scheduling elective and emergency surgeries. The SEES algorithm is 

an extension of the GOSSP algorithm by including the scheduling of emergency surgeries and 

developing the idea of the BIMs interval adjustment in the ORs. Our main contribution is 

implementing the BIMs interval adjustment in scheduling elective surgeries when surgeries 

are projects with multi-mode activities. To our best knowledge, in all previous works of the 

BIMs interval adjustment, the duration of using the OR is a determined value. Moreover, the 

set of elective surgeries in any OR is given. Despite the previous literature in the BIMs interval 

adjustment, here, we assumed that the algorithm determines which elective surgeries will be 

assigned to each OR. Moreover, surgery activity has multi-modes, thus, its duration depends 

on the selected mode during the execution of the algorithm. 

To investigate the efficiency of this algorithm, we consider two methods of scheduling elective 

surgeries, the ordinary method, and the BIMs interval adjustment method. Then, some 

experiments for inserting the emergency surgeries to these two schedules were examined and 

various quality measurements were compared. The results of the analysis show that our 

algorithm gets better performance in quality measurements related to emergency surgeries. 

This algorithm can decrease the average waiting time in emergency surgeries and our 

algorithm gives better objective function in some levels of main factors. However, in the case 

of quality measurements related to elective surgeries, the ordinary method gives better results.  

The most important point of our proposed algorithm is the ability to decrease the average 

waiting time in emergency surgeries without dedicating any OR to emergency surgeries while 

having a good performance in the objective function. Generally, the proposed algorithm in this 

paper is appropriate for OR departments with the following specifications: expensive 



33 

surgeries, the normal rate of emergency arrivals, and patients that can afford some waiting 

time. 

The problem of scheduling surgeries at the operational level is dealt with in this paper. The 

structure of the proposed algorithm allows us to treat all the resource types as homogeneous 

entities that have some availability intervals with some capacities. Nurses are one of the 

resources, and their availability comes from the nurse rostering problem. This is a complicated 

problem because it requires considering many specifications of nurses such as their skills, 

qualifications, and being attentive to shift preferences, and contractual agreements. There are 

many papers on this in the literature. The nurse rostering problem and the SSP are two 

interrelated problems but a few papers have dealt with these problems together. We suggest 

an extension of our work by integrating it with the nurse rostering problem as future work. 

In this paper, we supposed the information of the OR time blocks that determine the availability 

of ORs for each surgery specialty is given. These OR time blocks have a real influence on the 

quality of the schedules in the SSP. We also suggest the integration of our work with the 

problem of determination of the OR time blocks for future works. 

After surgery, patients need to access some postoperative care resources. Recovery rooms, 

ward beds, and intensive care units (ICUs) are important downstream resources. These 

resources are the bottleneck resources of the surgery-scheduling problem because their 

unavailability can cause schedule disruption and cancellation of elective surgeries and other 

difficulties. As future work, we suggest the integration of our work and the problem of 

determination of the optimum capacity of important downstream resources.  
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Figure 1. Scheduling elective and emergency surgeries under the BIM policy. 
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Figure 2. An instance of OR time blocks. 
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Figure 3. Adaptive construction and improvement algorithm ( ACI function). 
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Figure 4. ScheduleCreatorFunction. 
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Figure 5. Scheduling elective surgeries with respect to adjusting the BIMs. 
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Figure 6. InsertionOrderModification function. 
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Table 1. The main characteristics of some recent SSP literature. 

Authors 

Patient classification 
OR capacity configuration 

Solution technique Optimization model formulation Dedicated 

ORs 

Flexible ORs 
Partially 

flexible 

ORs Elective  Emergency  

Reserved 

spaces or 

slacks 

BIMs 

adjustment 

Ferrand et al. (2014) ṉ ṉ ṉ ṉ  ṉ Simulation  

Duma and Aringhieri 

(2018) 
ṉ ṉ   ṉ  Simulation Real time management model 

Duma and Aringhieri 

(2015) 
ṉ ṉ ṉ ṉ   

Hybrid simulation and 

optimization method 
Real time management model 

Jung et al. (2019) ṉ ṉ   ṉ  

Hybrid heuristics and 

mixed integer 

programming 

Mixed integer programming  

Banditori et al. (2013) ṉ  ṉ    

Hybrid simulation and 

mixed integer 

programming 

Mixed integer programming  

van Essen et al. (2012 a) 

[21] 
ṉ ṉ  ṉ   

Hybrid simulation and 

optimization method 
Mixed integer programming  

van Essen et al. (2012 b) 

[14] 
ṉ ṉ   ṉ  

Hybrid simulation, 

heuristics and mixed 

integer programming 

Mixed integer programming  

Hans et al. (2008) ṉ   ṉ   
Hybrid simulation and 

heuristic 
Stochastic knapsack problem 

Moosavi & Ebrahimnejad 

(2018) 
ṉ ṉ ṉ    

Hybrid Mixed Integer 

Programming and 

heuristic 

Mathematical programming 

Cappanera et al. (2016) ṉ  ṉ    
Mixed integer 

programming 
Goal programming 

Litvak et al. (2008) ṉ ṉ   ṉ     
Equivalent random 

method over simulation 

Overflow models in 

telecommunication systems 

 

Continued on next page  
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Table 1. The main characteristics of some recent SSP literature (continued). 

Authors 

Patient classification 
OR capacity configuration 

Solution technique Optimization model formulation Dedicated 

ORs 

Flexible ORs 
Partially 

flexible 

ORs Elective  Emergency  

Reserved 

spaces or 

slacks 

BIMs 

adjustment 

Lamiri et al. (2008)-

stochastic 
ṉ ṉ  ṉ   

Hybrid simulation and 

mixed integer 

programming 

Stochastic mathematical programming  

Persson & Persson (2010) ṉ ṉ  ṉ   Simulation Bin packing model 

Pham & Klinkert (2008) ṉ ṉ  ṉ   

Hybrid simulation and 

mixed integer 

programming 

Generalized job shop scheduling 

problem 

Santibáñez et al. (2007) ṉ ṉ  ṉ   

Hybrid simulation and 

mixed integer 

programming 

Mixed integer programming  

Tancrez et al. (2013) ṉ ṉ ṉ ṉ   Simulation Markovian model 

Tancrez et al. (2009) ṉ ṉ ṉ ṉ   Simulation Markovian model 

Vandenberghe et al. (2019) ṉ ṉ   ṉ  
Hybrid simulation and 

heuristic 
Stochastic mathematical programming  

Visintin et al. (2016) ṉ ṉ ṉ    

Hybrid simulation and 

mixed integer 

programming 

Mixed integer programming 

Riise et al. (2016) ṉ  ṉ    Heuristic 

A multi-project, multi-mode resource-

constrained project-scheduling 

problem  

Riise et al. (2012) ṉ  ṉ    
Mixed integer 

programming 

A multi-project, multi-mode resource-

constrained project-scheduling 

problem  

Our Paper ṉ ṉ     ṉ   
Hybrid simulation and 

heuristic 

A multi-project, multi-mode resource-

constrained project-scheduling 

problem  
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Table 2. Priorities of emergency surgeries. 

due-date (min) 60 120 180 240 

probability 0.25 0.25 0.25 0.25 
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Table 3. Main factors and their levels. 

 Factor A: Factor B: Description 

PBIMI MST 

Levels of 

factors 

15000 0 ordinary scheduling method 

60 

100 

the BIMs interval adjustment 

method 

300 

90 

100 

300 
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Table 4 . The average of response variables after 10 repeats. 

No. PBIMI1 MST2 NEmgL3 SLEmg4 NUnEmg5 AWTEmg6 NElecL7 SLElec8 NUnElec9 AWTElec10 
Un-

stability11 
VORL12 

objective 

function 

1 

15000 0 0.2 31 1.7 54.45189 1 1021.1 0.4 2964.011 19674.3 11.396 1.96E-04 

60 100 0.6 13.9 1.8 26.5106 0.4 2965 1.8 3330.926 20027.9 12.422 2.34E-04 

60 300 0.4 23.1 1.4 37.5964 0.5 1982.5 7.1 3211.499 26210.9 10.6417 3.07E-04 

90 100 1 10.9 1.9 42.1469 0.5 4986.4 1 3024.604 13620.6 11.4084 2.29E-05 

90 300 0.3 25.7 1.6 44.2418 0.7 1497.1 7.1 2950.443 22700.8 11.4557 3.29E-05 

2 

15000 0 0.2 5.1 1.5 44.5206 0.2 1031.4 1.7 3000.825 25846.4 11.718 1.99E-04 

60 100 0.3 20.8 1 17.1419 0.4 1495.5 4.3 2876.971 26149.6 12.7133 2.03E-04 

60 300 0.2 0.9 1.1 11.2548 0.2 1044.5 6.4 2846.976 29773.7 10.502 2.56E-04 

90 100 0.2 29.6 1.1 28.00728 0.5 3463.6 2.9 2783.035 16136.5 12.8753 1.86E-05 

90 300 0.2 2.6 0.9 7.5621 0.1 971.2 6.6 2627.616 22788.8 10.112 1.40E-04 

                                                 

1 PBIMI is the predefined BIM interval in the second method (the BIMs interval adjustment method), the level 15000 is used for referring to first method (ordinary 

scheduling) 
2 MST is the mean surgery time for emergency surgeries in the second method (the BIMs interval adjustment method), the level 0 is used for referring to first method 

(ordinary scheduling) 
3 NEmgL or the number of emergencies that are scheduled with lateness 
4 SLEmg or the summation of lateness in emergencies 
5 NUnEmg or the number of unscheduled emergencies in ordinary time that are scheduled in the overtime 
6 AWTEmg or average waiting time in emergencies 
7 NElecL or the number of electives that are scheduled with lateness 
8 SLElec or the summation of lateness in electives 
9 NUnElec or the number of unscheduled electives 
10 AWTElec or average waiting time in electives 
11 Un-stability is the summation of the violation of start times of electives in the final schedule (after inserting all the emergencies) from their start times in initial schedule 

(without any emergencies) 
12 VORL or ‘violation from OR leveling’ is the difference between the maximum and minimum percentage of the OR usage among various ORs 
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Table 4 . The average of response variables after 10 repeats (Continued). 

No. PBIMI MST NEmgL SLEmg NUnEmg AWTEmg NElecL SLElec NUnElec AWTElec 
Un-

stability 
VORL 

objective 

function 

3 

15000 0 0.3 42.2 2 42.1322 0.4 1489.4 0.5 3008.248 29716 10.87798 7.28E-04 

60 100 0.1 0 2 24.9994 0 3987.8 3 3342.277 66792.3 11.489 2.79E-04 

60 300 0.5 1.2 2 20.28246 0.1 2467.8 9.6 3061.365 43941.6 7.9404 4.17E-04 

90 100 1.2 0.7 2 46.4146 0.1 5956.4 1.4 3142.13 38236.9 9.2584 1.46E-04 

90 300 0.5 2.2 2 38.7482 0.2 2499.6 8.3 2769.62 39654 8.7365 1.39E-04 

4 

15000 0 0.2 16 2 47.6986 0.5 986.2 0 2915.261 7055.8 6.858 2.17E-04 

60 100 0.3 13.8 2 30.2494 0.4 2930.6 1.3 3502.799 26376.4 10.5744 2.45E-04 

60 300 0.5 45 2 33.149 0.8 2530.6 5.4 3343.474 24974.8 11.48994 3.33E-04 

90 100 1 20.2 2 41.8831 0.5 4953.5 0.7 3085.512 11005.2 9.2545 2.32E-05 

90 300 0.2 32.6 1.9 50.2826 0.5 998.3 6.4 2928.979 24122.4 9.0995 1.34E-04 

5 

15000 0 0.6 1.1 0.2 58.1624 0.1 2933.9 0.8 3073.144 23107.8 9.4294 4.51E-04 

60 100 0.8 6.8 0 22.7375 0.1 3938.5 5.6 3324.167 44578 12.934 1.24E-04 

60 300 0.4 15.5 0.2 24.6497 0.3 1999.6 7.6 3375.375 56762.2 11.5463 1.90E-04 

90 100 1 0 0.1 25.0875 0 5013 3.5 3190.673 36963.3 10.88335 9.15E-05 

90 300 0.2 5.6 0 23 0.1 2005.9 7.9 3106.396 36820.4 12.0768 7.31E-05 

 15000 0 0.5 21.8 1.1 63.6563 0.3 2419.8 1 3496.847 45124.3 14.2877 1.44E-04 

 60 100 0.6 6 1 32.1421 0.3 3064.8 3 3532.152 49716.9 14.01048 1.77E-04 

6 60 300 0.3 3.1 0.9 33.0421 0.2 1532.1 8.9 3178.958 42986.1 12.1122 2.99E-04 

 90 100 0.1 28.2 1.1 46.12489 0.5 5415.5 2.1 3143.474 36277.1 11.9657 6.86E-05 

 90 300 0.5 8.6 1.2 50.2707 0.4 2506.3 8.4 2986.309 35778.3 9.2503 3.11E-05 

 

Continued on next page 
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Table 4. The average of response variables after 10 repeats (Continued). 

No. PBIMI MST NEmgL SLEmg NUnEmg AWTEmg NElecL SLElec NUnElec AWTElec 
Un-

stability 
VORL 

Objective 

Function 

7 

15000 0 0.3 18.8 1 43.5414 0.8 1538.3 1.3 2758.248 10467 9.5427 1.43E-04 

60 100 0.2 15.7 1 14.01399 0.4 3435.2 3.5 3381.961 50912.3 10.6997 1.88E-04 

60 300 0.5 3.7 1 9.3279 0.2 2483.5 8.5 3259.839 43868 9.7731 2.92E-04 

90 100 0.1 7.3 1 20.78463 0.4 4990.2 1.8 3150.072 33034.4 9.4066 1.53E-05 

90 300 0.4 24.1 1.2 17.93 0.4 2025.3 7.9 2809.2 38133 8.9339 3.01E-04 
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Table 5. The mean value table. 

PBIMI MST 
Number of 

observations 

Mean of response variables 

NEmgL SLEmg NUnEmg AWTEmg NElecL SLElec NUnElec AWTElec 
Un-

stability 
VORL 

Objective 

Function 

1500 0 7 0.3286 19.4286 1.3571 50.5948 0.4714 1631.44 0.8143 3030.94 22998.80 10.5871 2.97E-04 

60 - 14 0.4071 12.1071 1.2429 24.0784 0.3071 2561.29 5.4286 3254.91 39505.05 11.3463 2.53E-04 

90 - 14 0.4929 14.1643 1.2857 34.4632 0.3500 3377.31 4.7143 2978.43 28947.98 10.3369 8.84E-05 

- 100 14 0.5357 12.4214 1.2857 29.8746 0.3214 4042.57 2.5643 3200.77 33559.10 11.4211 1.31E-04 

- 300 14 0.3643 13.8500 1.2429 28.6670 0.3357 1896.02 7.5786 3032.57 34893.93 10.2622 2.10E-04 
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Table 6. Factorial ANOVA for NEMGL. 

Source DF SS MS F P 

PBIMI 1 0.0514 0.0514 0.70 0.4105 

MST 1 0.2057 0.2057 2.79 0.1054 

PBIMI* 

MST 
1 0.1729 0.1729 2.34 0.1364 

Error 30 2.2143 0.0738   

Total 34 2.7269       
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Table 7. Factorial ANOVA for SLEmg. 

Source DF SS MS F P 

PBIMI 1 29.62 29.62 0.18 0.6755 

MST 1 14.29 14.29 0.09 0.7711 

PBIMI* 

MST 
1 4.32 4.32 0.03 0.8728 

Error 30 4974.35 165.81   

Total 34 5244.34       
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Table 8. Factorial ANOVA for NUnEmg. 

Source DF SS MS F P 

PBIMI 1 0.0129 0.0129 0.03 0.8687 

MST 1 0.0129 0.0129 0.03 0.8687 

PBIMI* 

MST 
1 0.0014 0.0014 0.00 0.9560 

Error 30 13.8743 0.4625   

Total 34 13.9497       
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Table 9. Factorial ANOVA for AWTEmg. 

Source DF SS MS F P 

PBIMI 1 754.907 754.91 5.90 0.0214 

MST 1 10.208 10.21 0.08 0.7796 

PBIMI* 

MST 
1 14.173 14.17 0.11 0.7416 

Error 30 3840.35 128.01   

Total 34 7166.03       
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Table 10. Tukey (HSD) test for ‘AWTEmg’. 

Alpha    0.05  

Error DF    30  

Error MS    128.01  

Critical value of Studentized Range 3.49   

 Comparisons significant at the 0.05 level are indicated by ***. 

PBIMI Difference Between  Simultaneous 95%  

Comparison  Mean Confidence Limits   

15000 - 90  16.132 3.22 29.043  *** 

15000 - 60 26.516 13.605 39.428   *** 

90 - 15000 -16.132 -29.043 -3.22   *** 

90 - 60 10.385 -0.158 20.927  

 60 - 15000 -26.516 -39.428 -13.605   *** 

60  - 90 -10.385 -20.927 0.158   
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Table 11. Factorial ANOVA for NElecL. 

Source DF SS MS F P 

PBIMI 1 0.0129 0.0129 0.22 0.6404 

MST 1 0.0014 0.0014 0.02 0.8760 

PBIMI* 

MST 
1 0.0057 0.0057 0.1 0.7552 

Error 30 1.7314 0.0577   

Total 34 1.8657       
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Table 12. Factorial ANOVA for SLElec. 

Source DF SS MS F P 

PBIMI 1 4.7E+06 4.7E+06 9.0 0.0054 

MST 1 3.2E+07 3.2E+07 62.3 0.0001 

PBIMI* 

MST 
1 7.5E+06 7.5E+06 14.5 0.0006 

Error 30 1.6E+07 5.2E+05   

Total 34 7.0E+07       
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Table 13. Factorial ANOVA for NUnElec. 

Source DF SS MS F P 

PBIMI 1 3.57 3.57 2.84 0.1025 

MST 1 176.00 176.00 140 0.0001 

PBIMI* 

MST 
1 2.40 2.40 1.91 0.1775 

Error 30 37.77 1.26   

Total 34 321.24       
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Table 14. Factorial ANOVA for AWTElec. 

Source DF SS MS F P 

PBIMI 1 535076 535076 15.2 0.0005 

MST 1 198023 198023 5.63 0.0243 

PBIMI* 

MST 
1 3823 3823 0.11 0.7440 

Error 30 1055352 35178   

Total 34 1833432       
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Table 15. Tukey (HSD) test for ‘NUnElec’. 

Alpha   0.05  

Error DF    30  

Error MS   1.26  

 Critical value of Studentized Range 3.49   

Comparisons significant at the 0.05 level are indicated by ***. 

MST Difference Between  Simultaneous 95%  

Comparison Mean Confidence Limits   

100 - 300 -5.0143 -6.0598 -3.9688 *** 

100 - 0 1.7500 0.4695 3.0305 *** 

300 - 100 5.0143 3.9688 6.0598 *** 

300 - 0 6.7643 5.4838 8.0448 *** 

0 - 100 -1.7500 -3.0305 -0.4695 *** 

0  - 300 -6.7643 -8.0448 -5.4838 *** 
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Table 16. Tukey (HSD) test for ‘AWTElec’ (PBIMI). 

Alpha 0.05  

Error DF 30  

Error MS 35178.39  

 Critical value of Studentized Range 3.49   

Comparisons significant at the 0.05 level are indicated by ***. 

PBIMI Difference Between  Simultaneous 95%  

Comparison Mean Confidence Limits   

15000 - 90 52.51 -161.53 266.55  

15000 - 60 -223.97 -438.01 -9.93 *** 

90 - 15000 -52.51 -266.55 161.53  

90  - 60 -276.48 -451.24 -101.71 *** 

60 - 15000 223.97 9.93 438.01 *** 

60 - 90 276.48 101.71 451.24 *** 
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Table 17. Tukey (HSD) test for ‘AWTElec’ (MST). 

Alpha 0.05  

Error DF 30  

Error MS 35178.39  

Critical value of Studentized Range 3.49   

Comparisons significant at the 0.05 level are indicated by ***. 

MST Difference Between  Simultaneous 95%  

Comparison  Mean Confidence Limits   

100 - 300  168.19 -6.57 342.96  

 100 - 0 169.83 -44.21 383.87  

 300 - 100  -168.19 -342.96 6.57  

 300 - 0 1.63 -212.41 215.68  

0 - 100 -169.83 -383.87 44.21  

0 - 300 -1.63 -215.68 212.41   
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Table 18. Factorial ANOVA for Un-stability. 

Source DF SS MS F P 

PBIMI 1 7.8E+08 7.8E+08 4.90 0.0346 

MST 1 1.3E+07 1.3E+07 0.08 0.7815 

PBIMI* 

MST 
1 9.2E+07 9.2E+07 0.58 0.4530 

Error 30 4.8E+09 1.6E+08   

Total 34 6.4E+09       
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Table 19. Factorial ANOVA for VORL. 

Source DF SS MS F P 

PBIMI 1 7.1322 7.1322 2.8 0.1049 

MST 1 9.4016 9.4016 3.69 0.0644 

PBIMI* 

MST 
1 1.0607 1.0607 0.42 0.5239 

Error 30 76.5122 2.5504   

Total 34 94.4694       
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Table 20. Tukey (HSD) test for ‘Un-stability’. 

Alpha 0.05  

Error DF 30  

Error MS 1.6E+08  

Critical value of Studentized Range 3.49   

Comparisons significant at the 0.05 level are indicated by ***. 

PBIMI Difference Between  Simultaneous 95%  

Comparison  Mean Confidence Limits   

15000 - 90  -5949 -20349 8450  

15000 - 60 -16506 -30906 -2107 *** 

90 - 15000 5949 -8450 20349  

90 - 60 -10557 -22314 1200  

 60 - 15000 16506 2107 30906 *** 

60 - 90 10557 -1200 22314   
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Table 21. Factorial ANOVA for ‘Objective Function’. 

Source DF SS MS F P 

PBIMI 1 1.90E-07 1.90E-07 14.5 0.0007 

MST 1 4.41E-08 4.41E-08 3.36 0.0768 

PBIMI* 

MST 
1 1.15E-09 1.15E-09 0.09 0.7690 

Error 30 3.94E-07 1.31E-08   

Total 34 7.18E-07       
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Table 22. Tukey (HSD) test for ‘Objective Function’. 

Alpha 0.05 

Error DF 30 

Error MS 1.31E-08 

Critical value of Studentized Range 3.49 

Comparisons significant at the 0.05 level are indicated by ***. 

PBIMI Difference Between  Simultaneous 95% 

Comparison  Mean Confidence Limits  

15000 - 90  2.0848E-04 7.8E-05 0.00034 *** 

15000 - 60 4.3870E-05 -8.7E-05 0.00017  

90 - 15000 -2.0848E-04 -0.00034 -7.8E-05 *** 

90 - 60 -1.6461E-04 -0.00027 -5.8E-05 *** 

 60 - 15000 -4.3870E-05 -0.00017 8.7E-05  

60 - 90 1.6461E-04 5.8E-05 0.00027 *** 
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Table 23. The Results of the comparisons between two methods in quality measurements.  

  Quality measurement Comparison result  

E
m

er
g

en
cy

 

su
rg

er
ie

s 

m
ea

su
re

m
en

ts
 NEmgL Both methods act similarly. 

SLEmg Both methods act similarly. 

NUnEmg Both methods act similarly. 

AWTEmg The BIMs interval adjustment method acts better. 

E
le

ct
iv

es
 s

u
rg

er
ie

s 

m
ea

su
re

m
en

ts
 

NElecL Both methods act similarly. 

SLElec 
The main factors and their interaction are statistically significant. It is 

difficult to judge which method is better. 

NUnElec 
The ordinary method acts better, but in the case of the BIMs interval 

adjustment method, level 100 is preferable to level 300 in MST. 

AWTElec 

The ordinary method acts similarly to the BIMs interval adjustment method 

when PBIMI is at the level of 90. Both of these acts better than level of 60 in 

PBIMI in the BIMs interval adjustment method.  

O
th

er
s 

Un-stability 

The ordinary method acts similarly to the BIMs interval adjustment method 

when PBIMI is at the level of 90. Both of them act better than level of 60 in 

PBIMI in the BIMs interval adjustment method.  

VORL Both methods act similarly. 

Objective Function 
The BIMs interval adjustment method, when PBIMI is at level of 90 has the 

best result. 

 


