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Abstract. This paper presents a feasible way to construct a honeycomb structured mi-
crostrip antenna for UWB (Ultra-Wide Band) applications with dual notch characteristics.
The antenna is designed based on the concept of the initial stage of honeycomb nest
construction and Defected Ground Structure (DGS) with dual notch for UWB applications.
The two notches for WiMAX (3.5 GHz center frequency) and WLAN (5.5 GHz center
frequency) are introduced by etching two asymmetrical quarter-wavelength slots in the
ground. The compact antenna of size 12 � 20 mm2 with simple geometry achieves very
wide bandwidth of 3:1 � 13:8 GHz (covers UWB and higher frequency band) with dual
notch characteristics.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Nature is an exceptionally large and unique laboratory
comprising e�cient explanations on and solutions to
numerous technical and scienti�c problems. Hon-
eycomb structures inspired by the Mother Nature's
bee honeycomb construction process have tremendous
potentials and applications in various �elds includ-
ing mechanical engineering, nanofabrication, chemi-
cal engineering, architecture, aerospace engineering,
biomedicines, and RF (Radio Frequency) and mi-
crowave. The ideas and theories taken from nature
have inspired many novel designs of antennas for
various wireless applications [1{3].
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The fractal patterns exist around every corner of
nature. The fractal structure of honeycomb evolving
from natural honeycomb is a tessellation of uniformly
distributed double-layer hexagonal shapes. There are
mainly two viewpoints on how the shape of honeycomb
cells becomes hexagonal. One is that the particular
structure is merely the result of physics law. The
other point of view suggests that honeybees are skilled
engineers that operate under simple rules. With the
advent of new technology, the application of honey-
comb structure is growing on nano and micro scales.
Various micro and nano antennas based on honeycomb
structure have been proposed for various applications
[4{7].

The wide-band antennas were built with
monopoles of various shapes or fractal shapes [8,9].
At a particular frequency, the antenna must normally
maintain a minimum size, usually in the order of
quarter wavelengths. These factors a�ecting the
antenna performance in telecommunication systems
have remained restricted for a long time. Fractal
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electromagnetic engineering embodies a comparatively
fresh domain of research that amalgamates aspects
of fractal geometry with electromagnetics. Research
within this stream has lately given rise to a rich
category of innovative structures for antennas along
with metamaterial rudiments. Fractals are space-�lling
structures that could be utilized as electromagnetic
devices to e�ciently accommodate long electrical
lengths into tiny areas. Honeycomb is the most
suitable fractal shape found in nature for the design
of patch antennas [7].

Since FCC (Federal Communication Commission)
regulated the frequency range of 3:1�10:6 GHz for the
Ultra-Wideband (UWB) applications, much attention
has been paid to the growing demand for UWB anten-
nas for the UWB technology [10,11]. For millimeter-
wave applications, a honeycomb fractal antenna array
of size 97 � 7 mm2 was introduced in [5]. The broad
bandwidth of 14.337 GHz (25.347{39.684 GHz) was
obtained with 4.15 dBi (single component) and 12.7 dBi
(antenna array) gain. For wireless applications, Desai
et al. [6] presented a hexagon fractal antenna of
bandwidth 1.31{6.81 GHz and a gain of 6.8 dBi and
40� 45 mm2 size. This referenced study [7] presented
an 80 � 80 mm2 honeycomb-shaped antenna for Ku
band communication at a frequency of 11.85 GHz with
a gain of 8.87 dBi. The CPW (Coplanar Waveguide)
fed hexagonal fractal antenna of size 39 � 36:5 �
1:524 mm3 design was proposed for UWB applications
[12]. The modeling of the PIN (Positive-Intrinsic-
Negative) diode RF (Radio Frequency) switch on HFSS
(High-Frequency Structure Simulator) was presented
for recon�gurable antenna applications [13]. A simple
compact-size antenna with the partial ground is added
with a frequency recon�gurable property to switch
from the ultra-wideband to narrowband mode. In [14],

plasmonic mode propagation properties of graphene-
based terahertz PCA (Photoconductive Antennas) are
studied. Some of the nature-inspired algorithms are
applied to antenna optimization [15,16].

In this paper, the honeycomb structure construc-
tion is considered for the design of the conducting patch
of an antenna. This paper presents a honeycomb-
structured fractal antenna with dual-band notch rejec-
tion characteristics for UWB applications.

2. Antenna design

2.1. Initial antenna design
The mechanism through which honeybees assemble
honeycomb cells in such a particular order is nev-
ertheless an open discussion. When the honeycomb
structure is subjected to di�erent loads and stresses,
much attention should be paid to the mechanical
properties [17]. In this paper, the honeycomb structure
is explored for the microstrip antenna design. A
critical understanding of the construction principle
of the honeycomb structure to design an antenna is
important. In order to construct the honeycomb
antenna, the focus of attention is the initial structure of
the honeycomb. By considering this initial honeycomb-
structured construct procedure [18], the design of an
antenna is initiated, as shown in Figure 1. Figure 1(a)
shows the �rst stage of honeycomb construction, and
Figure 1(b) shows the antenna patch using conducting
material. The antenna is constructed on the FR-4
substrate of size 20� 12 mm2.

As can be observed from the above antenna
design, the antenna forms the quarter-wavelength or
half-wavelength monopole. The length of the radiating
patch is approximately a quarter of the wavelength and
the total length ltotal is given by:

Figure 1. (a) Initial stage of honeycomb structure [18]. (b) Initial antenna design.
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Figure 2. Return loss variation for quarter-wavelength
patch.
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where C is the speed of light in the free space, �r
the free space wavelength, "eff e�ective dielectric
constant, and fr the resonant frequency of the quarter-
wavelength monopole [19]. The total patch length
ltotal for the above design is approximately 10 mm
(l1 = 1:4 mm, l2 = 2 mm, and t = 0:5 mm).
The resonating frequency for the quarter-wavelength
monopole of 10 mm length is 4.4 GHz. According to the
obtained return loss characteristics shown in Figure 2,
the resonating frequency is 4.3 GHz and the obtained
bandwidth ranges from 3.6 to 7.2 GHz (3.6 GHz).

The initial design is optimized by the tessellation
of the hexagonal fractal shapes in a circular manner
and hence, the initial design of quarter wavelength is
modi�ed into the honeycomb shape [20], as shown in
Figure 3.

Figure 4. Variation of return loss (S11) with frequency
for di�erent ground sizes.

For a wide bandwidth, the parametric analysis
of ground is conducted by changing the ground size.
Figure 4 shows the variation of return loss (S11) with
frequency for di�erent ground sizes. By observing the
obtained graphs closely, it can be noted that the results
are optimum when the ground length L1 is 10 mm.
With a ground length of 10 mm, the bandwidth ranges
from 6.749 to 13.743 GHz, which covers the part of
UWB and Ku-band.

To further enhance the bandwidth in the UWB
range, the ground is modi�ed into Defected Ground
Structure (DGS) by inserting a triangular slot in the
upper part of the partial ground plane [21]. In addition
to the triangular slot, hexagonal patches are introduced
in the patch, as shown in Figure 5. Incorporation of
hexagon shapes into the patch and triangular slot in
the partial ground further improves the bandwidth of
an antenna by changing the current distribution and
electrical path lengths. The electrical path length for

Figure 3. (a) Honeycomb shaped fractal antenna, (b) single hexagonal fractal, and (c) back view of antenna.
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Figure 5. (a) Honeycomb structure �lled with hexagonal front view (left panel) patches and with DGS (right panel). (b)
Single hexagonal fractal with �lled patch (left panel) and return loss variation (right panel).

the ground without a triangular slot is Lg + W (8.5
mm+12 mm = 20.5 mm). The electrical path length is
changed into Lg+ l3 + l3+ (W �Sg) (8.5 mm + 8.2 mm
+ 8.2 mm + (12 mm �6:67 mm) = 30.23 mm). The
impedance bandwidth is highly enhanced from 6:749�
13:743 GHz to 3:74� 13:85 GHz, as shown in Figure 5.

2.2. Dual-band notch antenna
After obtaining wide bandwidth, the next step is
to address the issue of interference in the coexisting
microwave systems by introducing slots in the ground,
as shown in Figure 6. The �rst notch for WiMAX
(3:25�3:85 GHz) is introduced by etching the quarter-
wavelength (�g=4) slot of length 10.5 mm. Here,
�g is the guided wavelength for the corresponding
notch-band center frequency. As depicted in Figure 7,
slot 1 introduces a notch for WiMAX. Similarly, the
WLAN notch is introduced at the center frequency
of 5.5 GHz by etching a quarter-wavelength inverted
L-shaped slot in the ground, as shown in Figure 8.
The inverted L shape is chosen to accommodate the
quarter-wavelength slot in a very-compact-size DGS.
The length of the quarter-wavelength slot is calculated,
as given in Eq. (1) [19,22].

Figure 6. Quarter-wavelength slots in DGS for band
notch characteristics (proposed antenna design) and
enlarged view of ground slots.

3. Results and discussions

The e�ective lengths of the two slots (slots 1 and 2)
are 10.5 mm and 7.75 mm, respectively. Here, the
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Figure 7. WiMAX notch by quarter-wavelength slot.

Figure 8. WLAN notch by qutaer-wavelength slot.

e�ective lengths of slots are considered �g=4 instead
of �g=2 to accommodate the slots in very compact size
ground and to reduce the design complexity. When
both slots are added together, the obtained return
loss, VSWR (Voltage Standing Wave Ratio), gain
characteristics, and e�ciency variations are displayed
in Figure 9. The band rejection notches are created
at the center frequencies of 3.5 GHz and 5.5 GHz to
mitigate the issue of interference. The gain is reduced
to �2:7 dBi and �4:75 dBi at the WiMAX and WLAN
notches, respectively, and a maximum gain of 2.6 dBi
is acquired at 11 GHz, as shown in Figure 9(b). Due
to the introduction of band notches at 3.5 GHz and
5.5 GHz, the gain is reduced at these two frequencies.
In addition, at the reaming frequency band, the gain
variation is positive and above 0 dBi. The e�ciency
of an antenna is reduced at band notch frequencies,
as shown in Figure 9(c). The optimized antenna
parameters are shown in Table 1.

To get an insight into antenna characteristics, the
surface current distributions and normalized radiation
pattern are shown in Figures 10 and 11, respectively, at
resonating frequencies. Figure 10(b) shows the surface
current distribution at band notch frequencies for
WLAN and WiMAX. The current is mainly distributed

Figure 9. (a) Return loss and VSWR variation with
frequency, (b) gain variation with di�erent frequency, and
(c) e�ciency variation with frequency.

in slots 1 and 2 and is responsible for the current
disturbance and, thus, for the notch creation. The
current ows around the periphery of the L-shaped
slots, acting, in turn, as a resonator and preventing
signal propagation. As can be noted from the current
distributions shown at notch band frequencies, at a
frequency of 3.5 GHz, maximum current is distributed
around 3.5 GHz and it plays an essential role in
the creation of WiMAX band notch. Moreover, the
maximum current is owing at the periphery of slot 2,
resulting in a band notch for the WLAN at 5.5 GHz. At
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Figure 10. (a) Surface current distributions at resonating frequencies (3.2, 4.5, 8.7, 11.2, and 12.8 GHz). (b) Surface
current distribution in slots at band notch frequencies.

Table 1. Optimized parameters of an antenna.

Parameters Value
(mm)

Parameters
Value
(mm)

L 20 Lg 8.5

W 12 Sg 6.67

W1 3 l3 8.2

L1 10 lh 2

W2 0.3 L2 1

W3 0.5 l1 1.4

t 0.5 l2 2

l4 1.5 l5 6

l6 3.5 l7 3.7

higher frequencies, the current is owing in the patch
and responsible for the high frequency resonance.

In thermal equilibrium considering the collective
e�ects of absorption, reection, and emission in the
case of practical materials, the universality of cavity ra-
diation collapses. Radiation inside the cavity depends
on the walls, external temperature, and frequency of
observation. Thus, the frequency in a perfectly reect-
ing or arbitrary cavity may di�er from that emitted
from the ideal case. Emitted radiation pattern inside
the considered hexagonal honeycomb cavity follows
the back-and-forth wave propagation that depends on
the honeycomb cavity wall [23]. Cavity radiation is

detached from the nature of the cavity wall and some
other external factors like temperature and frequency
of observation if cavity walls are of symmetrical shape
or plane nature. The contained radiation inside the
cavity has the same radiation nature [24]. Observed
simulated results of EM wave patterns at resonant
frequencies, as shown in Figure 11, illustrate that
the emitted radiation patterns are not symmetrically
distributed in the hexagonal-shape cavity and they
are dependent on the cavity wall of the mimicked
honeycomb. Kirchho�'s law in terms of radiated
emissive power (E) and absorptivity (a) is given as [25].

E = a:f (T; �) : (3)

We know that the sum of emissivity (") and reectivity
(k) is always equal to 1 for all materials.

"+ k = 1:

However, this rule is also the validation of emissivity "
and absorptivity a [26,27]. Thus, we have:

a+ k = 1;

or

a = 1� k;

E = (1� k) :f (T; �) : (4)

This equation contains reectivity of cavity material
that totally depends on the nature of the cavity's wall.
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Figure 11. Radiation pattern at resonating frequencies (3.2, 4.5, 8.7, 11.2, and 12.8 GHz).

Table 2. Comparisons of the proposed work with the reported antenna.

Reference
Size of antenna

(in mm2)
BW Gain

Ullah et al. 2017 [5] 97� 7 14.337 GHz (25.347{39.684 GHz) 4.15 dBi (single antenna)
Desai et al. 2018 [6] 40� 45 (1.31{6.81 GHz) 6.8 dBi
Bhatoa et al. 2016 [7] 80� 80 11.85 GHz (Single frequency) 8.87 dBi
Aissaoui et al. 2016 [12] 39� 36:5 (3.1{13.67 GHz) 10.57 GHz Not given
Proposed design 20� 12 10.70 GHz (3.1{13.80 GHz) with dual notch 2.6 dBi

Through Eq. (3), we can calculate the total emissive
and absorptive power for the proposed geometry.

The simple geometry and compact size of antenna
have achieved dual notch characteristics in addition to
the very wide bandwidth of 10.7 GHz (3:1�13:8 GHz).
The comparison between the proposed design and the
reported work is shown in Table 2.

4. Conclusion

The compact honeycomb-shaped fractal antenna based
on the concept of the initial stage of honeycomb
nest construction with dual notch characteristics was
presented for Ultra-Wideband (UWB) applications.
The antenna obtained very wide bandwidth from 3.1 to
13.8 GHz with WiMAX and WLAN rejection notches
at 3.5 GHz and 5.5 GHz, respectively. Stable radiation
pattern and notch band characteristic make an antenna
suitable for Ultra-Wide band (UWB) application with
high immunity from the existing interference.
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