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Abstract. This paper proposes the implementation of a novel predictive control scheme
known as Adaptive Generalized Predictive Control (AGPC) in the actuation system of
a high-powered test rig. Through the use of actuation system, the required torque for
simulating di�erent conditions can be applied to the tested gearboxes. Accurate and precise
control of this system is of great importance as it a�ects the overall performance of the test
rig. The considered actuation system in this investigation is an electro-hydraulically driven
system with nonlinear and uncertain characteristics. The performance of the proposed
control scheme in di�erent conditions of the parametric uncertainty as well as the presence
of disturbances is evaluated and the results are discussed. The obtained results con�rmed
the superior performance of the proposed scheme in di�erent studied conditions.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Given the signi�cance of evaluating high-powered gear-
boxes that are widely used in helicopters, test rigs
are developed. By checking their overall performance
through the use of test rigs, the occurrence of major
failures would be minimized [1]. The test rigs are
capable of providing realistic conditions which are
mostly encountered during the performance with the
help of changing the applied torque and speed of the
system [2]. Hence, an actuation system is required
for the implementation of the desired torque automat-
ically. Among the di�erent systems used for actuation,
electro-hydraulically powered systems are of great im-
portance given their superior characteristics. These
characteristics include higher power/force generation,
smaller equipment size, fast response, enhanced robust-
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ness, and good positioning accuracy [3{5]. However,
these actuators su�er the existing nonlinearities and
time-dependent characteristics, which would result in
backlash, friction, and increased complexity in model-
ing [6,7]. The main issue in the use of these systems for
the e�cient control of actuation systems is to achieve
enhanced accuracy and maintain robustness.

Prior to the design of a controller, appropriate
modeling of Electro Hydraulic Actuator (EHA) is very
important due to its impact on the performance of the
designed controller. Di�erent approaches to modeling
these actuators have been used, among which linearized
mathematical models, simpli�ed physical models, and
data-driven models can be named. Considering the
nonlinear and uncertain dynamics of EHA, the use of
data-driven modeling is superior to other approaches
[8{10]. Yao et al. [11] utilized the dynamic model of
EHA in the form of mathematical relations and used a
multi-layered neural network structure as a black-box
estimator to overcome the mismatched and matched
disturbances besides improving the compensation accu-
racy. In fact, the whole system was not identi�ed and
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only the disturbances were supposed to be identi�ed.
They declared the excellent performance of the pro-
posed strategy for estimation of existing uncertainties
in the system. Lu et al. [7] used hybrid online/o�ine
identi�cation of the model parameters of hydraulic
system including time-varying and nonlinear deforma-
tion forces. They obtained the dynamic model of the
system upon considering the pressure, displacement,
velocity, and acceleration data which were obtained
from di�erent experiments. The required parameters
were identi�ed using nonlinear optimization algorithm
such as the particle swarm optimization method. Then,
a tracking control strategy was implemented for the
provision of satisfactory force and velocity for the
piston rod to perform the desired task. Their modeling
procedure and control scheme were validated through
experimental tests. In the mentioned study, some
parameters were estimated in an o�ine manner and
were used in the subsequent online identi�cation step,
which increased the computational cost. In addition,
the whole dynamics of the system was not identi�ed.

After achieving an appropriate model for the
system, the control issue can be addressed. Several
investigations have been dedicated to the development
of control scheme for precise position control of EHA
with its usage in industrial applications. Takloo
et al. [12] employed Fractional-Order Proportional-
Integral-Derivative (FOPID) controller with a math-
ematical model of EHA system to control the actu-
ation system in a mechanically closed-loop test rig
constructed for testing the gearboxes. They de-
clared the improved accuracy and increased speed in
comparison with conventional Proportional-Integral-
Derivative (PID) controllers. In another research,
Maddahi et al. [13] used the same controller for the
position control of hydraulic actuators with unknown
parameters. The parameters were determined through
System Identi�cation (SI) procedure. In addition, the
controller parameters were tuned experimentally with
an iterative algorithm to achieve tracking accuracy as
well as stability. In a research study by Li et al. [14],
a nonlinear back-stepping controller was developed
for high-velocity tracking performance and achieving
reduced energy consumption. In addition, Radial-
Based Function Neural-Network (RBFNN) was utilized
to compensate the uncertainties and disturbances in
the velocity control loop. In this study, the system
model was obtained in the state-space form and only
the load force was estimated.

The optimal control approach to achieving energy
e�ciency and force tracking performance was proposed
by Heybroek and Sj�oberg [15] for the control of EHA.
This study implemented a simpli�ed model of the
system for control purposes. In addition, a Model
Predictive Control (MPC) controller was utilized to
achieve force control, while another controller was

used for energy e�ciency property. The conducted
study was limited to the force control rather than
motion control. Rozali et al. [16] suggested using
PID controller for controlling EHA. The model of
the system was obtained through SI technique by
collecting the input-output data from the real exper-
iments and implementing auto-regressive models with
exogenous inputs (ARX) structure. The coe�cients of
PID controller were tuned by Ziegler-Nichols tuning
method. Their results revealed acceptable tracking
of the controller; however, the response was slow.
Generally, several approaches have been proposed for
the adaptive control of di�erent systems. In [15], an
output feedback control scheme was developed with the
help of an unknown dynamic estimator to overcome
the existing problems in previous adaptive control
designs. Mostly, the traditional adaptive schemes
can be classi�ed as designs using back-stepping or
dynamic surface control or the designs using intelligent
approximation-based controls such as neural networks
or fuzzy logic control. The former group requires
direct measurement of all system states. In addition,
complex implementation and stability analysis are
challenging in these controllers. The latter group of
controllers, despite their superior performance in the
face of uncertainties and nonlinearities, su�ers high
computational costs derived from the tuning of several
parameters. To overcome the mentioned stability
issue of the prior class, a novel composite learning
technique was suggested [17] which used the online
recorded data together with instantaneous data to
generate prediction error. In [18,19], a new Model
Reference Adaptive Control (MRAC) framework with a
modi�ed reference model was proposed to improve the
transient response, which was originated from possible
uncertainties in the system dynamic. In addition, the
stability issue was solved based on a leakage term in
the adaption law to ensure the convergence.

MPC is an advanced and well-known control tech-
nique that is widely used for process control in many
industrial applications [20]. This strategy implements
the explicit model of the desired process to determine
the control signal and predict the control variables over
a certain time horizon and through the minimization of
an objective function [21,22]. This controlling approach
has been utilized in di�erent applications of EHAs [23{
26]. In recent years, Generalized Predictive Control
(GPC), which is considered as a special case of MPC
with its own superiority, has gained extensive interest
in various industries [27]. Through the use of this
method, an equilibrium between computational cost
and disturbance rejection could be ensured [28]. The
problem that is mostly encountered in real applications
is the presence of disturbances and model uncertainties.
According to Gao [29], the term disturbance incor-
porates both disturbances from external environments
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and uncertainties in the un-modelled dynamics. To
resolve this issue, Adaptive Predictive Control (APC)
has been proposed as an e�cient approach [30]. The
adaptation law can be implemented by updating the
parameter estimations [31]. The use of APC in di�erent
problems has yielded satisfying results [32,33]. Wang
and Wang [34] o�ered the use of ultra-local MPC,
which was considered a straight-forward model-free
MPC procedure. The MPC was applied to the updated
linear model of the system, and the requirement for the
extensive dataset for training was obviated.

Upon obtaining the online model of the system
through the data gathered from the experimental tests,
this study used the GPC process for controlling the
actuation system. The highlights of this study can be
summarized as follows:

� Proposition of an e�cient approach to simultaneous
identi�cation and control of a test rig with unknown
parameters;

� Provision of adaptability as well as robustness to
external disturbances and uncertain and changing
dynamics;

� Reduction of computational cost with the help of
parameterized identi�cation with the least unknown
parameters and predetermination of the system
structure;

� The use of parameterized control sequence calcula-
tions by piece-wise linear functions that pass the
de�ned points over a time horizon to reduce the
controller computational cost;

� Achievement of high-accuracy tracking performance
in unstable conditions.

The rest of the paper is organized as follows. in
Section 2, the proposed approach to the identi�cation
and control of the electro-hydraulically driven actua-
tion system is detailed. Section 3 is dedicated to the
demonstration of experimental setup which is supposed
to be controlled. After that, the obtained results are
presented and discussed in Section 4. Finally, the chief
�ndings of this study are provided in the conclusion
section.

2. Problem de�nition

In this study, Adaptive Generalized Predictive Control
(AGPC) is used for controlling the actuation system.
As mentioned, automatic tuning of controller param-
eters is of great signi�cance in industrial applications.
In this scheme, updating the model parameters and
regulating the coe�cients are performed by an auto-
matic tuner [35]. The optimization problem is solved
at each step considering the system model and current
information to �nd the optimum control signal. Then,

the �rst element of the obtained signal is applied to
the system and the mentioned optimization problem
is solved again using the new information [27]. The
procedure is de�ned as in the following.

Consider an unknown system whose function may
change over time and that only the input-output data
are available for this system. The studied system in this
paper is a Single-Input Single-Output (SISO) system
that can be described by a Controller Auto Regression
Integrated Moving Average (CARIMA) model as fol-
lows:

A(z�1)y(k) = B(z�1)u(k) + C(z�1)
�(k)
�

; (1)

where y(k); u(k) 2 R represent the output and input
of the system, respectively. The integer k = 0; 1; :::
is the discrete time sample and z�1 denotes the one-
step backward operator; therefore, we de�ne z�ix(k) =
x(k � i) and z�iu(k) = u(k � i). In addition, �(k) is
an uncorrelated random noise with zero mean which is
added to the model by the operator � = 1�z�1 , which
is a di�erence operator. In Eq. (1), A(z�1), B(z�1),
and C(z�1) are the polynomials with the respective
degrees of na; nb, and nc de�ned as:

A(z�1) = anaz�na+:::+ a1z�1+1 =1+
Xna

1
aiz�i;

B(z�1) = bnbz�nb + :::+ b1z�1 + b0 =
Xnb

1
biz�i;

C(z�1) = cncz�nc + :::+ c1z�1 + c0 =
Xnc

1
ciz�i:

(2)

For the sake of simplicity, if white noise is considered,
C(z�1) = 1. Thus, we have:

A(z�1)y(k) = B(z�1)u(k) +
�(k)
�

: (3)

Here, Diophantine equation is used for deriving the
past and future dynamics, which can be used for pre-
diction purposes. In order to predict output y(k+ jjk)
at time step k + j based on available information at
time k, Diophantine equation is introduced as follows:

1 = Ej(z�1)�A(z�1) + z�jFj(z�1)(
Ej(z�1) =

Pj�1
i=0 ej;iz

�1

Fj(z�1) =
Pj�1
i=0 fj;iz

�1 (4)

In the above equation, Ej(z�1) and Fj(z�1) are the
polynomial expressions. By the use of the abovemen-
tioned de�nitions and some simpli�cations, y(k + jjk)
can be obtained as follows:
y(k + jjk) =Ej(z�1)B(z�1)�u(k + j � 1jk)

+ Fj(z�1)y(k): (5)

The optimization problem is de�ned by considering a
quadratic cost function as:
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J =
XP

j=1
(y(k + jjk)�Wdes(k + jjk))2

+
XV

j=1
�(j) (�u(k + j � 1jk))2; (6)

where P and V are the prediction and control horizons,
respectively, Wdes represents the desired reference for
the system, and �(j) is the control weighting coef-
�cient, which is considered as a constant value for
simplicity. An attempt is made to minimize the J index
subjected to existing constraints; therefore, we have:

@J(t)
@u(t)

= 0: (7)

The control signal increment can be obtained from:

�U =
�
GTG+ �I

��1GT (W � f) : (8)

In the above equation, f is a vector which consists
of past inputs, past outputs, and current output. In
addition, G denotes the step response elements. The
matrices G and f are de�ned as follows:

G =

26664
gp gp�1 : : : gp�v+1
gp+1 gp : : : gp�v+2

...
...

. . .
...

gv gv�1 � � � gv�p+1

37775 ; gj = 0; 8j � 0;

f =
�
f1(k) f1(k) : : : fP (k)

�
: (9)

According to the receding horizon theory, only the �rst
element of the obtained sequence is applied to the
plant, u(t) = u(t � 1) + �u(1), but the equation is
solved over the entire horizon of time. This would
lead to increased computational cost, which may not
be fast enough to be implemented in real-time control
applications, especially in the case of long-term horizon
or high inputs. To this end, it is proposed that
the dimensions of the search space be reduced by
parameterizing the control sequence [36]. The idea is
analogous to the curve �tting so that instead of using
many discrete points, the sequence is parameterized by
piece-wise linear functions that pass the de�ned points.
With the use of this procedure, the implementation
time is shortened signi�cantly.

The possible uncertainties in the plant dynamic
as well as the external or internal disturbances may
a�ect the plant representation, i.e., the polynomials of
A(z�1) and B(z�1). The explanation represented in
Eq. (3) can be rewritten as follows:

A(z�1)�y(k) = B(z�1)�u(k) + �(k): (10)

In the above equation, we have some known values
including �y(k) and �u(k) and unknown values in-
cluding coe�cients of A(z�1) and B(z�1) polynomials.

The vectors of unknown parameters (�) and the vectors
of known values (�(k)) are:

� =
�
a1 : : : ana b1 : : : bnb

�
;

�(k) =
�
�y(k � 1) : : : �y(k � na)
�u(k � 1) : : : �u(k � nb)

�
: (11)

Regarding the above-mentioned de�nitions, Eq. (10)
can be written as follows:

�y(k) = �T (k)� + �(k): (12)

Hence, in order to adapt to the new conditions, parame-
ters should be identi�ed and updated online. The iden-
ti�cation procedure can be applied through di�erent
procedures. Recursive Least Square (RLS) estimation
is among the most common procedures proposed for
online identi�cation of the plants. The control scheme,
which requires online adjustment of system parameters,
is often called adaptive control. Another point to note
is the order of the considered model. The order of
the system can be chosen based on the evaluation of
performance besides computational cost of the di�erent
systems. This requires a multi-objective optimization,
which increases the computational cost of the whole
procedure if it is done in each iteration. In this
research, the selection of the model was performed
on the basis of Parsimony principle. This principle
states the priority of selecting a model with fewer
parameters and acceptable accuracy among the models
with di�erent orders [37]. The selection of a model with
fewer parameters would lead to lower computational
cost as well as a simpler design of the controller [38].

Accordingly, the order of the system is de�ned
prior to the initiation of adaptive identi�cation process
and it is considered as a known parameter in the
algorithm. The proposed algorithm is represented in
Figure 1. The estimation of the parameter for the time
step k, which is represented by b�(k), is de�ned by the
following algorithm, which is known as RLS algorithm.
For more detail about this algorithm, refer to [39]:b�(k) = �(k + 1) + L(k)

�
y(k)� �T (k)�(k � 1)

�
;

L(k) =
p(k � 1)�(k)

�(k) + �T (k)p(k � 1)�(k)
;

p(k) =
1

�(k)�
p(k � 1)� p(k � 1)�(k)�T (k)p(k � 1)

�(k) + �T (k)p(k � 1)�(k)

�
:
(13)

3. Experimental set-up

In this paper, the torque applying system, which is
an electro-hydraulically-driven system, is investigated.
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Figure 1. The proposed Adaptive Generalized Predictive Control (AGPC) algorithm for the control of Electro Hydraulic
Actuator (EHA) in the actuation system of the high-powered test rig.

Figure 2. Schematic of the designed test rig for the high-powered test rigs.

This torque applying system is used in a closed-loop
test rig, which is designed for testing high-powered
gearboxes of helicopters. The mentioned test rig
was designed and fabricated in Sharif University of
Technology, Branch of Academic Centre of Education,
Culture and Research (ACECR). Low energy loss and
provision of various torques and speeds are among
the superior characteristics of the mentioned test rig.
According to Figure 2, the energy in this system
circulates in a closed-loop manner and the embedded
motor is used for the compensation of energy loss
as well as provision of initial power for the system
start. A view of the fabricated test rig is depicted in
Figure 3. To apply the required torque in the test rig
to simulate di�erent operational conditions, EHA along

with planetary gearboxes is used. The linear motion of
EHA is applied to the pins, as depicted in Figure 4,
in which the motion is transmitted to the rotation of
the ring and the required torque is generated for the
rotation of testing components. Hence, the evaluation
of performance besides fault detection could be possible
by studying the system under di�erent conditions. The
characteristics of the system are provided in Table 1.

4. Results and discussions

4.1. Obtaining the order of the model
In order to reduce the computational cost, the order
of the model should be identi�ed prior to the control
scheme. Therefore, the model order would be a given
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Table 1. The characteristics of the test rig and the torque applying system.

Speci�cation Value

Test rig
Type Mechanically closed loop
Max loading capacity 489 HP
Max rotational speed 3000 rpm

Torque applying system

Type Hydraulically driven
Max hydraulic actuator course 60 mm
Max required force 10 KN
Force applying arm 175 mm
Servo valve MOOG G763004
Max rotation 20 deg

Sensor Displacement sensor Opkon Lpc-LM 75

Figure 3. A view of the fabricated test rig for the
high-powered gearboxes at Academic Centre of Education,
Culture and Research (ACECR).

parameter in AGPC algorithm, while other parameters
should be identi�ed using the algorithm. To determine
the appropriate order of the model, the linearized
models with di�erent orders were tested and compared
in terms of accuracy and computational cost. In
order to collect the required data for modeling, the
input signals (voltage to the EHA) were applied to the
hydraulic actuation system and the resultant outputs
(displacement of EHA rod) were measured by the
MOOG G763004 sensor. The applied excitation signal
is illustrated as follows:

Sexc=
lX
i=1

si cos!its=s1 cos!1ts+s2 cos!2ts+� � �
(14)

In the above equation, Sexc represents the input signal,
l is the number of sine signals to be combined, and ts

Figure 4. Real status and schematic of the torque
applying system for actuation of the high-powered test rig.

denotes the sampling time. Moreover, the amplitude
and frequency of the excitation signal are represented
by si and !i, respectively. The implemented system
for gathering the data is depicted in Figure 5, while
the input-output data measured from real experiments
on EHA are represented in Figure 6. In the following,
the modeling of the plant is discussed.

In this section, structures with di�erent orders
are used to identify the system. The relationship
between the inputs and outputs of the system for n-
order structure can be de�ned as follows:

y(t) =
a1xz�1 + a2xz�2 + :::+ anxz�n

1� b1xz�1 � b2xz�2 � :::� bnxz�nu(t); (15)

where y(t) and u(t) are the outputs and inputs of
the system, respectively, which are collected from the
measurement sensors. In addition, z�n represents the
order of the system. Moreover, aix and bix are the
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Figure 5. Data-acquisition procedure for gathering the
data of the torque applying system.

unknown parameters that should be identi�ed. The
structure can be de�ned as follows:by(tj�) = �T (t):�: (16)

In this de�nition, by(tj�) is the estimated value; �T (t)
and � are the regressor vectors and unknown parame-
ters vectors, respectively, which are de�ned as follows:

� =
�
a1x a2x � � � anx b1x b2x � � � bnx

�
;
(17)

�(t)=
�
y(t� 1) � � � y(t� k) u(t� 1) � � � u(t� k)

�
;

(18)

This paper investigated �rst-order, second-order, and
third-order structures. According to the results of

Figure 6. The gathered input-output data from the
excitation of the torque applying system.

Root Mean Square Error (RMSE) for di�erent orders
of the model provided in Table 2 and outputs of the
system represented in Figure 7, it can be inferred
that the third-order structure provides the best results.
However, regarding the computational cost as another
inuential parameter, the second-order structure was
selected. In other words, it can be stated that
the model order was selected so that an acceptable
compromise between the accuracy and computational
cost could be established. The considered model is
represented as follows:

Table 2. The considered models and corresponding parameters and regression vectors.

Model Parameters vector RSME

y1 - order(t) = a1xq�1

1�b1xq�1 u(t)
� =

h
a1x b1x

i
0.095Repressors vector

�(t) =
h
y(t� 1) u(t� 1)

i

y2 - order(t) = a1xq�1+a2xq�2

1�b1xq�1�b2xq�2 u(t)

Parameters vector

0.0253
� =

"
a1x a2x

b1x b2x

#
Repressors vector

�(t) =

"
y(t� 1) u(t� 1)
y(t� 2) u(t� 2)

#

y3 - order(t) = a1xq�1+a2xq�2+a3xq�3

1�b1xq�1�b2xq�2�b3xq�3 u(t)

Parameters vector

0.0178
� =

"
a1x a2x a3x

b1x b2x b3x

#
Repressors vector

�(t) =

2664y(t� 1) u(t� 1)
y(t� 2) u(t� 2)
y(t� 3) u(t� 3)

3775
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Figure 7. The comparison of the structures with di�erent
orders for predicting the system output.

yARX2(t) =
a1xz�1 + a2xz�2

1 + b1xz�1 + b2xz�2u(t): (19)

After selecting the model order and de�ning it as a
known parameter in the algorithm, the controller is de-
signed and its performance under di�erent operational
conditions is investigated in the following section.

4.2. Tuning the parameters of AGPC
Tuning the AGPC parameters is of great signi�cance
considering its inuence on the obtained responses.
The parameters to be tuned are the lower and upper
limits of the prediction horizon, the control horizon,
sampling time, and weighting factor, �. Several inuen-
tial factors in determining these parameters should be
considered. For example, to determine the prediction
horizon, a slower response to the transient condition in
the case of selecting the lower limit should be noted.
Moreover, the control horizon implies the freedom
degree of the controller and its value should not exceed
the prediction horizon. Sampling time is also very im-
portant which a�ects the accuracy and computational
cost. This value is mostly restricted due to hardware
limitations. The weighting parameter, �, a�ects the
stability, performance, and accuracy of the results.
Hence, regarding these points, the considered parame-
ters for the predictive control are provided in Table 3.

Table 3. The Adaptive Generalized Predictive Control
(AGPC) parameters.

AGPC parameter Value
Prediction horizon-upper limit 1
Prediction horizon-lower limit 5
Control horizon 4
Sampling time 0.001 s
� 0.1

4.3. AGPC in normal conditions
For evaluating the performance of the designed con-
troller under normal conditions, the output of the
system in response to varying step references is studied
and the results are depicted in Figures 8 and 9.

According to Figure 8, the output of the system
tracks the desired reference after about 0.6 second,
without steady state error. Moreover, upon changing
the reference, approximately 0.2 second is required
for the controller to track a new reference. Hence,
the superior performance of the system in normal
conditions (without considering any disturbance and
uncertainty) can be concluded. The increment in the
control e�ort as well as the control e�ort for following
the desired reference are depicted in Figure 9.

Figure 8. The performance of the proposed controller in
the case of varying references (blue line is the reference
and the green line represents the Generalized Predictive
Control (GPC) output) in normal conditions along with
the tracking error.

Figure 9. The increment of control e�ort and control
e�ort of the proposed controller in the case of varying
references (upper diagram represents the increment of the
control e�ort and the lower diagram indicates the control
e�ort) in normal conditions.
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4.4. AGPC in the presence of disturbance
The performance of the designed controller is also
evaluated in the presence of external disturbances. For
this purpose, a determined disturbance is applied to
the system between 6th and 7th seconds as follows:

dist =0:9� [(t > 6)(t <= 6:5)]

� 0:6� [(t > 6:5)(t <= 7)] : (20)

The performance of the actuation system in the pres-
ence of this disturbance is depicted in Figures 10
and 11. According to the results depicted in Figure 10,
the controller damps the disturbance completely after
0.5 second. Moreover, the increment in control e�ort
and control e�ort for damping the e�ect of disturbance
is presented in Figure 11.

Figure 10. The performance of the proposed controller in
the case of varying references (blue line is the reference
and the green line represents the system output) in the
presence of disturbance along with the tacking error.

Figure 11. Increment in control e�ort and control e�ort
of the proposed controller in the case of varying references
(upper diagram represents the increment in the control
e�ort and the lower diagram indicates the control e�ort)
in the presence of disturbance.

4.5. AGPC in the presence of parametric
uncertainties

In this section, the performance of the system in
the presence of parametric uncertainties is studied to
evaluate the robustness of the proposed controller. To
evaluate the e�ect of uncertainties on the controller
performance, a set of tests at di�erent levels of un-
certainties in di�erent parameters of the plant was
conducted. The considered levels of uncertainties in
the parameters of the system were 10%, 15%, and
30% for parameters of the plant transfer function,
a1; a2; b1, and b2. The corresponding results for
a1; a2; b1, and b2 are provided in Figures 12, 13, 14,
and 15, respectively. Figure 16 represents simultaneous
uncertainties associated with all the parameters.

According to the obtained results, the designed
controller is capable of dealing with uncertainties in an
acceptable manner. The most inuential parameter in
terms of uncertainty, as can be seen in these �gures,
is b1 according to Figure 14. b1 is the parameter that
determines the dominant pole of the system. Then, b2
is the second inuential parameter. a1 and a2 have the
least inuence on the model behavior. The designed
controller compensates the existing uncertainties in the
�rst moments of performance. According to Figure
15, up to 30% uncertainties in all parameters can be
handled well using the adaptive controlling algorithm;
however, the performance of the system was deterio-
rated with higher uncertainties in the parameters.

To ensure a better evaluation of the controller
performance as well as comparison of the e�ects of un-

Figure 12. The performance of the proposed controller in
the case of varying references and in the presence of
uncertainties in a1 parameter (dashed line is the reference,
black line is normal condition, green line represents 10%
uncertainty, blue line indicates 15% uncertainty, and red
line shows 30% uncertainty).
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Figure 13. The performance of the proposed controller in
the case of varying references and in the presence of
uncertainties in a2 parameter (dashed line is the reference,
black line is normal condition, green line represents 10%
uncertainty, blue line indicates 15% uncertainty, and red
line shows 30% uncertainty).

Figure 14. The performance of the proposed controller in
the case of varying references and in the presence of
uncertainties in b1 parameter (dashed line is the reference,
black line is normal condition, green line represents 10%
uncertainty, blue line indicates 15% uncertainty, and red
line shows 30% uncertainty).

certainty in di�erent parameters, error-based indexes
including RMSE, Mean Absolute Error (MAE), error
mean, and Standard Deviation (Std) are evaluated.
These criteria are de�ned in the following and the
results are provided in Table 4.

Figure 15. The performance of the proposed controller in
the case of varying reference and in the presence of
uncertainties in b2 parameter (dashed line is the reference,
black line is normal condition, green line represents 10%
uncertainty, blue line indicates 15% uncertainty, and red
line shows 30% uncertainty).

Figure 16. The performance of the proposed controller in
the case of varying references and in the presence of
uncertainties in all parameters (dashed line is the
reference, black line is normal condition, green line
represents 10% uncertainty, blue line indicates 15%
uncertainty, and red line shows 30% uncertainty).

RMSE =

vuut ndataX
k=1

jj(y(k)� ŷ(k))2jj2
!
=nd;

MAE =
1

ndata

Xndata

k=1
jy(k)� ŷ(k)j;
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Table 4. The performance comparison in terms of the
uncertainties in di�erent parameters.

Uncertainty

Parameters Index 0%
(normal)

10% 15% 30%

a1

RMSE 0.1578 0.1583 0.1606 0.1663
Mean 0.2510 0.2598 0.2701 0.2827
Std 0.1554 0.1565 0.1587 0.1640

MAE 0.2610 0.2640 0.2720 0.3130

a2

RMSE 0.1578 0.1617 0.1631 0.17129
Mean 0.2510 0.2793 0.2998 0.0310
Std 0.1554 0.1591 0.1608 0.1688

MAE 0.2610 0.2790 0.3001 0.312

b1

RMSE 0.1578 0.1694 0.1767 0.1803
Mean 0.2510 0.2808 0.0300 0.0311
Std 0.1554 0.1679 0.1746 0.1781

MAE 0.2610 0.2890 0.3380 0.0366

b2

RMSE 0.1578 0.1607 0.1618 0.1715
Mean 0.2510 0.0270 0.0278 0.2924
Std 0.1554 0.1588 0.1588 0.1592

MAE 0.2610 0.2780 0.2810 0.2930

Emean =
1

ndata

Xndata

k=1
(y(k)� ŷ(k));

Std =
1

ndata

qX
(y(k)� Emean)2: (21)

In the above formulations, y(k) and ŷ(k) are the real
and estimated values of the output. In addition, ndata
is data size. According to Table 4, as mentioned before,
b1 is the most inuential parameter in uncertainty
investigation. The increase in RMSE, mean, Std, and
MAE of this parameter is equal to 14.1, 21, 14.8, and
24.1% for 30% uncertainty compared to the normal
condition.

5. Conclusion

In this paper, an adaptive case of Model Predic-
tive Control (MPC) algorithm known as Adaptive
Generalized Predictive Control (AGPC) was used for
controlling the actuation system of high-powered test
rigs for gearboxes. The model of the system was
obtained through online system identi�cation accord-
ing the data gathered from the experimental tests.
Precise control of the actuation system is of great
importance considering the inuence on the health
evaluation of the gearbox. Through e�cient control of

the actuation system, provision of di�erent conditions
becomes possible. Furthermore, in order to reduce
the computational cost, two schemes were utilized:
(a) parametric identi�cation with known order and
(b) parametric calculation of the control sequence
instead of calculating the control increment over the
whole horizon. Di�erent conditions were considered
to evaluate the performance of the proposed control
scheme including the presence of external disturbance
and parametric uncertainties. According to the ob-
tained results, in normal conditions, the controller
output tracked the reference in 0.6 s without steady
state error. Moreover, approximately 0.2 second was
required for the controller after changing the reference
for tracking. In case of the presence of the determined
disturbance, the controller could damp the disturbance
after 0.1 s completely. Furthermore, the performance
of the controller in the presence of di�erent magnitudes
of uncertainties (10%, 25%, and 30%) for di�erent
parameters of the transfer functions (a1; a2; b1, and
b2) was also investigated. As demonstrated by the
results, the e�ect of parameter was the most inuential
parameter among the studied parameters. However,
the system can overcome the uncertainty even in case
of 30% uncertainty. Hence, the adaptability and
robustness for the performance of the proposed control
scheme were con�rmed.

Nomenclature

A;B;C System polynomials
E(j); F (j) Polynomials of Diophantine equation
J Cost function
Sexc Excitation signal
TF Transfer Function
Wdes Desired reference
k Discrete time sample
l Number of sine signal
n System order
na; nb; nc Degrees of polynomials A, B, C
P Prediction horizon
Si Amplitude of excitation signals
ts Sampling time
u(k) System input
V Control horizon
y(k) System output

Z�1 One-step backward operator
!i Frequency of excitation signals
�(t) Regression vector
�(j) Control weighting coe�cient
�(k) Uncorrelated random noise with zero

mean
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� Vector of unknown parameters
� Di�erence operator
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