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Abstract. The value of this ingenious study is to be a pioneer in providing a combination
of Fast Fourier Transform (FFT) and p-version of �nite element method for the electro-
thermo-elastic analysis of a thick hollow cylinder under asymmetric thermal loadings. In
shells of revolution, the proposed FFT-pFE method is accompanied by a signi�cant decrease
in computational costs. Due to the problem periodicity of these types of structures, the
FFT technique is used to discretize the governing equations into a set of harmonics. Each
harmonic is then partitioned using higher-order �nite elements. Hierarchical �nite elements
based on Legendre polynomial interpolation functions are utilized to discretize 2D governing
equations of a Functionally Graded Piezoelectric (FGP) cylinder. 3D governing equations
of an FGP hollow cylinder are then discretized by using the higher-order Lagrangian �nite
elements. The e�ects of FFT grid-size and the order of the interpolation functions on
the convergence behavior of the proposed mixed FFT-pFE method are investigated. The
material properties, except the Poisson's ratio, are considered to vary along the radius of the
cylinder. The governing equations are derived using the principle of virtual displacements.
For a 3D FGP hollow cylinder, the inuence of axially and circumferentially non-symmetric
thermal loadings is presented in contour plots.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Over the recent years, modern industrial productions
are concerned with the layered piezoelectric structures
produced in the form of a thick cylinder. They can be
used as smart devices, e.g. in engineering applications
with active control. In this class of piezoelectric struc-
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tures, material properties suddenly change passing
through the cylinder thickness from a layer to the other.
So, the interface between two dissimilar materials is
often accompanied by stress concentration and huge
thermal stresses [1]. Consequently, an advanced class of
heterogeneous composite materials has been developed
to overcome these issues in which the mechanical prop-
erties continuously and gradually vary from one point
to the other [1{4]. Therefore, the electro-thermo-elastic
analysis of the Functionally Graded Piezoelectric Ma-
terials (FGPMs) seems to be attractive. Indeed, there
are several numerical and analytical studies concerned
with these problems, as briey reviewed in the sequel.
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Ootao et al. [5] has presented an analytical
approach for transient thermo-electro-elastic analysis
of Functionally Graded Piezoelectric (FGP) hollow
cylinder. A three-dimensional exact solution of FGP
shells under cylindrical bending has been performed
by Wu and Syu [6] using the perturbation method.
The e�ect of thermo-electro-mechanical loading on
a Functionally Graded (FG) shell in the form of a
thick sphere bonded with piezoelectric layers is in-
vestigated by Alashti et al. [7]. Due to their ability
in withstanding high-pressure loadings with respect
to their weight, shells of revolution have received
more attention in numerous applications of structural
engineering. Recently, the authors have derived a set
of �eld equations for a FGP shell of revolution with
arbitrary curvature and variable thickness using tensor
analysis in curvilinear coordinate systems [8]. Nejad
et al. [9] have developed a general formulation for
thermo-elastic analysis of a FG thick shell of revolution
with arbitrary curvature and variable thickness by
using higher-order shear deformation theory. A semi-
analytical method has been frequently used by Santos
and his co-workers [10{14] for the three-dimensional
analysis of axisymmetric shells of revolution. These
articles especially emphasized the coupling between the
symmetric and anti-symmetric terms in the truncated
Fourier expansion of the dependent variables and the
loading. It was also demonstrated that the material
properties have a signi�cant e�ect when comparing
coupled and uncoupled results. The analysis of shells
of revolution is often accompanied by a Fourier rep-
resentation of unknown variables and the boundary
conditions along the circumferential direction. For
example, Noor and Peters [15] used this ability to
perform bending and free vibration analysis of layered
anisotropic shells of revolution. The coupling e�ect
between symmetric and anti-symmetric modes for com-
posite laminated shells of revolution was investigated
by using the aforementioned semi-analytical method
[16]. Sivadas and Ganesan [17] used double Fourier se-
ries approximation and Finite Element Method (FEM)
to study the coupling e�ect of symmetric and asym-
metric vibration modes of laminated composite shells
of revolution. Fourier series is used by Loghman et
al. [18] for thermo-elastic analysis of a FG cylinder
under asymmetric thermal and mechanical loadings
subjected to a uniform magnetic �eld. In the 3D
investigation of the FGP cylindrical shells, Chen et al.
[19] analyzed the dynamic response of an FGP hollow
cylinder that encompasses a compressible uid. Liang
et al. [20] introduced a semi-analytical method using
Laplace transform and the Di�erential Quadrature
(DQ) method to study the dynamic behavior of FGP
cylindrical panels under di�erent boundary conditions.
Propagating the waves in reinforced FG porous plates
was investigated by Gao et al. [21] using Classical Plate

Theory (CPT), First-order Shear Deformation Theory
(FSDT), and Higher-order Shear Deformation Theory
(HSDT).

Each numerical method may be inherently ac-
companied by some de�ciencies regarding the modeling
of geometry, the discretization, and the satisfaction
of boundary conditions. Semi-analytical and mixed
methods are considered to be appropriate to overcome
these shortcomings. In this regard, the Fourier spec-
tral method can provide an appropriate base through
de�ning the trial and test functions [22]. Dehghan
and Baradaran [23] and Malekzadeh and Karami [24]
combined the FEM and DQ technique to gain the
ability of mixed method in modeling the complex
geometry and boundary conditions as well as the
fast convergence. The time-dependency in a nonlinear
thermal problem was removed by an e�ective combi-
nation of the Laplace transform and FEM by Lin and
Chen [25]. Recently, the Laplace transform technique
and multi-scale FEM were combined to solve coupled
partial di�erential equations of the ow in a dual-
permeability system by Liu et al. [26]. Entezari et al.
[27] used the capability of Carrera Uni�ed Formulation
to thermo-elastic wave propagation analysis of FG
disks. Through this method, one-dimensional �nite
elements are used to interpolate the displacement and
temperature �eld variables to discretize the control
equations. A layerwise di�erential quadrature method
(LW-DQM) was combined with a Non-Uniform Ra-
tional B-Spline (NURBS) multi-step time integration
scheme by Heydarpour et al. [28]. They investigated
thermal shock wave e�ects in FG panels bonded with
piezoelectric layers. An ingenious e�ort, using the
Rayleigh-Ritz method, has been made by Qin et al.
[29{31] for analyzing the plates and shells reinforced
by Carbon Nano-Tubes (CNT) and graphene platelets
(GPLs). Nowadays, the application of porous mate-
rials and nanocomposites (CNT-�lled polyethylene) is
increasing, especially in the o�shore industries. So
far, some measures have been taken to investigate
these materials [32,33]. A vast review of the literature
reveals that the electro-thermo-elastic analysis of FGP
shells of the revolution by mixed numerical FFT-pFE
method is scarce. So far, the transient thermo-elastic
analysis of the disk brake has been studied by Fast
Fourier Transform (FFT) and FEM [34{36]. Recently,
Jin et al. [37] have developed a modi�ed Fourier
series solution for vibration analysis of the shells of
revolution. Mohazzab and Dozio [38,39] employed
the spectral collocation method for the prediction of
natural frequencies of laminated curved panels and
skew plates, respectively. In this regard, Xie et al. [40]
employed the spectral collocation method for free
vibration analysis of the composite shell supported by
the elastic foundation.

Here, the FFT and the p-version of the FEM are



M. Dehghan et al./Scientia Iranica, Transactions B: Mechanical Engineering 28 (2021) 2229{2249 2231

combined to gain more advantages in the analysis of
shells of revolution. The size and shape of the elements
and the approximation properties of the solution space
have signi�cant e�ects on the quality of the �nite
element solution. The desirable precision in the �nite
element procedure is obtained by using h- and p-
version techniques. In the p-version technique, this
can be achieved by increasing the order of shape
functions. Shape functions for a one-dimensional hier-
archic element are produced by integrating Legendre
polynomials [41]. A major property of these shape
functions is favorable orthogonality that leads to sparse
and well-conditioned sti�ness matrices [42]. Yu et
al. [43] used hierarchical �nite beam elements for
static and dynamic analysis. The rate of convergence
in the Timoshenko beam was improved by Tai and
Chan [44] by considering Legendre-based hierarchic
shape functions. Green's-function-based �nite element
formulation (HSF-FEM) is utilized by Wang and Qin
[45] for simulating bioheat transfer in the human eye
and by Cao et al. [46] for analyzing three-dimensional
elastic problems with body forces.

The FFT-pFE method proposed in this paper can
be appropriately recognized as a semi-analytical tech-
nique since it attains higher precision and has less com-
putational cost in comparison with 3D traditional FE
computer programs. In fact, by simplifying the three-
dimensional governing equation to the two-dimensional
governing equation, the calculation workload can be
reduced. In addition, the proposed mixed method
bene�ts from the advantages of the FFT algorithm.
The discrete transform can be computed using matrix-
vector multiplication with the 2N2 operations. The
FFT technique which is successfully implemented in
this paper has an operation count with a leading term
(5/2)N log2N . From a numerical point of view, it is
accompanied by considerable computational time sav-
ings. The computational routines for FFT and iFFT
are available in the software package called `FFTW3'.
It is a `C' subroutine library for computing the discrete
Fourier transform in one or more dimensions. In
general, restrictions of the present mixed-method can
be explained from two points of view:

1. The grid size of the FFT method should be uniform
along the circumferential direction;

2. Periodicity of the geometry (which is automatically
satis�ed for the periodic domains, such as the
cylinder).

In this paper, the following steps are considered. First,
the 2D heat conduction and electro-thermo-elastic
Partial Di�erential Governing Equations (PDGEs) of
the FGP hollow cylinder with plane strain assumption
are discretized using the proposed FFT-pFE method.
The discrete Fourier Transform technique is used to

project the PDGEs from real space into the Fourier
space and vice versa. Hierarchical �nite elements are
introduced here for discretizing the meridian section
of the cylinder. In the next step, we deal with
3D thermo-electro-elastic analysis of an FGP hollow
cylinder. The meridian section of the cylinder is
divided into subdomains called the second-order 2D
�nite elements of the Lagrange family. According to
the existing algorithm, numerical results related to
the temperature �eld are imported as input data for
the electro-thermoelastic analysis of the FGP shell.
Finally, the inverse Fast Fourier Transform (FFT)
technique is used to invert the obtained results into
real space.

2. Problem formulation in 2D space using
hierarchic elements

2.1. The heat conduction problem
In a thermo-elastic analysis, the primary step is to
extract the distribution of temperature �eld within
the physical domain of the problem, to which is
imposed appropriate boundary conditions. Therefore,
the steady-state heat conduction equation is presented
here for an FGP hollow cylinder in the absence of heat
generation. This equation can be readily derived from
the energy conservation law along with the Fourier heat
conduction law. For an FG cylinder, this equation in
radial and circumferential directions reads [8].

�r
@2T
@r2 +

1
r
�r
@T
@r

+ �r
1
r2
@2T
@�2 +

d�r
dr

@T
@r

= 0;

a � r � b; 0 <� � 2�: (1)

In this work, the following Dirichlet boundary condi-
tions are assumed:

T (r = a; �) = Ti(�);

T (r = b; �) = To(�); (2)

in which T is the temperature �eld, and �r = �r (r) is
the radially-variable thermal conductivity coe�cient.
Ti and To are temperature distributions at inner and
outer surfaces of the cylinder whereas a and b indicate
inner and outer radii of the cylinder, respectively.
Here, the thermal conductivity coe�cient, �r (r), is
considered to be graded according to a power function
of the form

�r = �r0�rm; �r =
r
rb
; (3)

where �r0 is some material constant regarding thermal
conductivity. m is the power-law index of the material.
As mentioned earlier, it can be considered that the
temperature �eld is periodic in the circumferential
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Figure 1. Discretized geometry of an in�nitely long
Functionally Graded Piezoelectric (FGP) cylinder in the
presence of �nite element grids and Fast Fourier
Transform (FFT) harmonics.

direction, so periodic boundary condition is applied
in this direction. At �rst, Fourier transform is used
for solving this partial di�erential equation. For this
purpose, the temperature �eld in Eq. (1) is replaced by
the approximation function, including discrete Fourier
coe�cients. As shown in Figure 1, the temperature �eld
is de�ned at discrete points �k with k = 0; 2; � � � ; N �
1. In Fourier space, the integer parameter k is the
wavenumber in the circumferential direction. The
selected approximation function is de�ned as:

T (r; �j) = Tj �
N
2X

k=�N2
T̂ k(r)eik�j :

j = 0; :::; N � 1: (4)

By substituting this ansatz into Eq. (1), the heat
equation and its related boundary conditions in radial
direction become:

�r
d2T̂ k

dr2 +
�r
r
dT̂ k

dr
+ �r 0

dT̂ k

dr
� �r k

2

r2 T̂
k = 0;

for k = 0; :::; N � 1; (5)

T̂ k(r = a; �k) = T̂i(�k); T̂ k(r = b; �k) = T̂o(�k);
(6)

where (:::)0 denotes the �rst derivative of any arbitrary
function with respect to the variable r.

The method of weighted residuals provides a
framework for solving partial di�erential equations ap-
proximately. The general form of the partial di�erential
equation to be solved is typically written as:

~�
�
T̂ k(r)

�� f = R: (7)

In general, an approximate solution, say T̂ k, does not
exactly satisfy Eq. (5). Thus, the weighted residual
method is utilized to �nd a solution such that the

residual R is minimized in the sense of a weighted
integral:Z


e
wRd� = 0; (8)

where, w is a vector of weighting functions and,

d� = rdr:

Substituting Eq. (7) into Eq. (8) yields:Z

e
wq

"
1
r
d
dr

 
r
dT̂ k

dr

!
+
�r 0
�r

dT̂ k

dr
� k2

r2 T̂
k

#
rdr = 0;

for k = 0; :::; N � 1; q = 1; 2; :::; Nr: (9)

By assuming wq to be su�ciently di�erentiable weight
functions, the original equation can be easily trans-
formed into the weak form using the integration by
parts technique. In the �nite element context and
based on the Bubnov-Galerkin method, the weight
functions wi are the same as the interpolant polynomi-
als. In each hierarchical element, it is presumed that
the temperature variable T̂ k(r) is approximated as a
series function containing the product of basis functions
�ej and nodal values:

T̂ k(r) =
NrX
j=1

 j(r)T̂ kj ; (10)

where T̂ kj are the nodal values regarding the tem-
perature �eld in the complex domain. Higher-order
Legendre polynomials are considered as the basis func-
tions  j in a hierarchical element. More details of
these basis functions and hierarchical elements will be
introduced in the next section. Now, the sti�ness
matrix can be obtained using the Gauss-Legendre
quadrature technique and is arranged in matrix form
as:h

K̂
in

T̂ k
o

=
n
Q̂
o
; (11)

where
h
K̂
i

and
n
Q̂
o

are sti�ness matrix and temper-
ature gradient vector which can be written as follows:

K̂ij =
Z

e

�
r
d ei
dr

d ej
dr

+
k2

r
 ei 

e
j � r�r

0
�r
 ei
d ej
dr

�
dr;

Q̂i =
I
�e

 ei qnds;

qn =

 
�r
dT̂k
dr

nr

!
:

Solving this set of equations yields the nodal values of
the temperature �eld for each wavenumber.
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2.2. The electro-thermo-elastic problem
2.2.1. FFT-pFE analysis
In this section, the mixed FFT-pFE method is used to
perform electro-thermoelastic analysis of a hollow FGP
cylinder. For this purpose, a hollow cylinder, which
its stress is negligible at the reference temperature,
operates in a thermal environment. Thermal loading
together with mechanical and electrical constraints
causes thermal stresses in the shell. PDGEs of the FGP
hollow cylinder and related boundary conditions are
derived using Hamilton's principle. It should be noted
that the Fourier spectral method acts upon strong form
and the FEM needs to be executed on the weak form of
the PDGEs. So, Hamilton's principle can appropriately
provide these conditions, simultaneously. A special
case of Hamilton's principle that deals with elastic
mediums is known as the principle of minimum total
potential energy. For an FGP cylinder, it takes the
following form [8]:

�� = � (V +H) = 0; (12)

where � is the variation symbol and � is called the
total potential energy of the elastic body. The electric
enthalpy H and the energy of the applied loads V can
be expressed as:

H =
1
2

y
v

hf�gT f"g � fDgT fEgidv;

V = �x
�

ur fr�rrnr + �r�n�g ds

�x
�

u� fr�r�nr + ���n�g ds: (13)

The kinematic relationships between strain compo-
nents and displacement �eld are de�ned as:

"rr =
@ur
@r

; "�� =
1
r

�
ur +

@u�
@�

�
;

"r� =
1
2

�
1
r
@ur
@�

+
@u�
@r
� u�

r

�
;

"zz = "rz = "�z = 0;

8><>:Er = �@'@r
E� = � 1

r
@'
@�

Ez = 0
(14)

where "ij (i; j = r; �; z) are the strain components in
the cylindrical coordinate system. ur and u� are
displacement components in radial and circumferential
directions, respectively. Moreover, Ei (i = r; �; z)
represents the electric �eld corresponding to the electric
potential '. The plane-strain electro-thermo-elastic
constitutive relations for an isotropic FGP hollow
cylinder can be written as:

8>><>>:
�rr
���
�zz
�r�

9>>=>>; =

2664C11 C12 C13 0
C21 C22 C23 0
C31 C32 C33 0
0 0 0 C44

3775
8>><>>:
"rr � �rT
"�� � ��T��zT

2"r�

9>>=>>;
�
2664e11 0
e21 0
e31 0
0 e42

3775�ErE�� ;
�
Dr
D�

�
=
�
e11 e21 0
0 0 e42

�8<: "rr
"��
2"r�

9=;
+
�
�11 0
0 �22

��
Er
E�

�
+
�

P1
P2

�
T; (15)

where �ij (i; j = r; �; z) and Di (i = r; �) represent
stress components and electric displacements. � is the
coe�cient of thermal expansion. eij , �ij and Pi denote
the piezoelectric, dielectric and pyroelectric constants,
respectively. In this work, the material properties are
considered to be graded along the r-direction as:(

Cij = C0
ij�rl; eij = e0

ij�rl; �ij = �0
ij�rl

�i = �0
i �rb; Pi = P0

i �rl+b;
(16)

where l is a power-law index of the elastic constants, the
piezoelectric coe�cient, and the dielectric constants.
b indicates a power-law index for the coe�cient of
thermal expansion. Both l and b inhomogeneous
parameters are considered to be applied in the pyro-
electric constants. Substituting Eqs. (13){(15) into Eq.
(12) yields the following integral form:x ��

C11

�
@ur
@r

�
+C12

�
ur
r

+
1
r
@u�
@�

�
�e11

�
�@'
@r

�
��1T

�
@w1

@r
+
�
C12

�
@ur
@r

�
+C22

�
ur
r

+
1
r
@u�
@�

�
�e21

�
�@'
@r

�
� �2T

��
w1

r
+

1
r
@w2

@�

�
+
�
C44

�
1
r
@ur
@�

+
@u�
@r
� u�

r

�
� e42

�
�1
r
@'
@�

��
+
�

1
r
@w1

@�
+
@w2

@r
� w2

r

�
�
�
e11

�
@ur
@r

�
+e21

�
ur
r

+
1
r
@u�
@�

�
+ �11

�
�@'
@r

�
+ P1T

�
�
�@w3

@r

�
�
�
e42

�
1
r
@ur
@�

+
@u�
@r
� u�

r

�
+�22

�
�1
r
@'
@�

�
+ P2T

��
�1
r
@w3

@�

��
rdrd� = 0;

(17)
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where:

w1 = �ur; w2 = �u�; w3 = �'(
�1 = C11�r + C12�� + C13�z
�2 = C12�r + C22�� + C23�z:

(18)

Now, the Fourier transform method can be used to
discretize governing equations of an FGP cylinder into
a set of harmonics in the circumferential direction. For
this purpose, according to the FFT method, the ap-
proximation functions are considered for displacement
components and the electric potential of the cylinder:8>>>>>>><>>>>>>>:

ur(r; �) =
NP
k=1

NrP
j=1

 j(r)(ûr)kj eik�;

u�(r; �) =
NP
k=1

NrP
j=1

 j(r)(û�)kj eik�;

'(r; �) =
NP
k=1

NrP
j=1

 j(r)('̂)kj eik�;

(19)

where (ûr)
k
j , (û�)

k
j and ('̂)kj are nodal values of

displacement components and electric potential in the
Fourier space. Using the integration by parts technique
with respect to the circumferential variable �, we can
transform a part of the governing equations into a
strong form. By substituting approximation functions
of Eq. (19) into Eq. (17), for each harmonic k with
k = 1; � � � ; N , we have:

(�ûr)
k
i : C11

NrX
j=1

Dij(ûr)kj

+C12

0@NrX
j=1

Aij (ûr)
k
j +

NrX
j=1

Gij
�
(ûr)

k
j +ik (û�)

k
j

�1A
+C22

NrX
j=1

Bij
�

(ûr)
k
j + ik (û�)

k
j

�
+C44

� NrX
j=1

Bij
�
k2 (ûr)

k
j + ik (û�)

k
j

�
�ik

NrX
j=1

Aij (û�)
k
j

�
� e42k2

NrX
j=1

Bij'̂kj ; (20)

(�û�)
k
i : �ikC12

NrX
j=1

Aij(ûr)kj � C22

NrX
j=1

Bij

�
ik(ûr)kj � k2 (û�)

k
j

�
� C44

� NrX
j=1

Bij

�
ik (ûr)

k
j � (û�)

k
j

�
+

NrX
j=1

Aij (û�)
k
j �

NrX
j=1

Gij
�
ik (ûr)

k
j � (û�)

k
j

�� NrX
j=1

Dij (û�)
k
j

�
�ike21

NrX
j=1

Aij'̂kj � ike42

NrX
j=1

(Bij �Gij) '̂kj

+ik�2

NrX
j=1

Eij T̂ kj = 0; (21)

�'̂ki :

e11

NrX
j=1

Dij (ûr)
k
j +e21

NrX
j=1

Gij
�

(ûr)
k
j + ik (û�)

k
j

�
��11

NrX
j=1

Dij'̂kj � �22k2
NrX
j=1

Bij'̂kj + e42

�
k2

NrX
j=1

Bij (̂ur)
k
j +ik

NrX
j=1

Bij (̂u�)
k
j�ik

NrX
j=1

Aij (̂ur)
k
j

�
+P1

NrX
j=1

Fij T̂ kj � ikP2

NrX
j=1

Eij T̂ kj = 0; (22)

where:

Aij =
Z
 i
�
d j
dr

�
dr; Bij =

Z �
1
r

�
 i jdr;

Dij =
Z �

d i
dr

��
d j
dr

�
rdr; Eij =

Z
 i jdr;

Fij =
Z �

d i
dr

�
 jrdr; Gij =

Z �
d i
dr

�
 jdr:

(23)

As mentioned previously, the electro-thermo-elastic
governing equations of the FGP cylinder, for each
harmonic k, can now be discretized using FEM. This
procedure is shown in the owchart depicted in Fig-
ure 2, and it is explained in the sequel.

2.2.2. Hierarchical discretization
The main idea of this section is to introduce a set of
hierarchic p-order shape functions so that they can be
used in a hierarchic �nite element. In an auxiliary index
space < (
) with 
 := f�j � 1 � � � 1g, two shape
functions associated to element sides at � = �1 are
de�ned as [47]:
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Figure 2. FFT-pFE analysis owchart.

 ̂1 (�) =
1� �

2
;  ̂2 (�) =

1 + �
2

; � 2 
; (24)

and the other shape functions associated with element
region at interval �1 < � < 1 are:

 ̂p+1 =
Z
Np (�) d�; � 2 
; p > 1; (25)

where:

Np (�) =
1

(p� 1)!
1

2p�1
dp

d�p
h�
�2 � 1

�pi ; (26)

in which Np (�) shows the Legendre polynomial in
which subscript p indicates the degree of the related
polynomials. Now, unknown variables of the problem
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are approximated using the aforementioned shape func-
tions:8<:ûkrûk�'̂k

9=;
e

=

26664
h
 ̂1 : : :  ̂p+1

i
0 0

0
h
 ̂1 : : :  ̂p+1

i
0

0 0
h
 ̂1 : : :  ̂p+1

i
37775

8<:fûrgfû�gf'̂g

9=;
e

; (27)

where:

fûrge =
h �

ûkr
�e

1

�
ûkr
�e

2 (a�)e1 : : : (a�)ep�1

iT
;

fû�ge =
h �

ûk�
�e

1

�
ûk�
�e

2 (b�)e1 : : : (b�)ep�1

iT
;

f'̂ge =
h �

'̂k
�e

1

�
'̂k
�e

2 (d�)e1 : : : (d�)ep�1

iT
:

(28)

The coe�cients (a�)ei , (b�)ei and (d�)ei , i = 1; : : : ; p� 1
are auxiliary parameters of a hierarchical �nite element
that can be eliminated using the Element Condensation
(EC) technique. Substituting approximation functions
of Eq. (27) into the governing Eqs. (20){(22), gives the
following set of equations in the matrix form:2664

h
K̂e

11

i h
K̂e

12

i
h
K̂e

21

i h
K̂e

22

i
3775
8><>:
n
Û
oe

fD�ge

9>=>; =

8>><>>:
n
F̂ e1
o

n
F̂ e2
o
9>>=>>; ; (29)

where:8>><>>:
n
F̂ e1
o

n
F̂ e2
o
9>>=>>;=

8>><>>:
n
f̂e1
o

n
f̂e2
o
9>>=>>;�

2664
h
Ĝe11

i h
Ĝe12

i
h
Ĝe21

i h
Ĝe22

i
3775
8>><>>:
n
T̂
o

n
T̂
o
9>>=>>; ; (30)

and:n
Û
oe

=
��
ûkr
�e

1

�
ûkr
�e

2

�
ûk�
�e

1

�
ûk�
�e

2

�
'̂k
�e

1

�
'̂k
�e

2

�T
;

fD�ge=
�
(a�)e1 : : : (a�)ep�1 (b�)e1 : : :
(b�)ep�1 (d�)e1 : : : (d�)ep�1

�T
: (31)

Using the EC technique in the absence of auxiliary
parameters, the assembly procedure is performed to ob-
tain the imaginary unknown variables in the frequency
space. So, we have:h

K̂�
in

Û
o

=
n
F̂ �
o
; (32)

where:

h
K̂�
i

=
�h
K̂11

i� hK̂12

i h
K̂22

i�1 h
K̂21

i�
;n

F̂ �
o

=
�n

F̂1

o� hK̂12

i h
K̂22

i�1 n
F̂2

o�
: (33)

Since the results obtained from this section are in
frequency space, it is necessary to invert them into the
physical space. The inverse FFT technique can be ef-
fectively used for this aim. In the present investigation,
the FFTW3 library is used for the required FFT and
inverse FFT.

3. 3D discretization of the FGP hollow
cylinder using higher-order elements

3.1. 3D heat conduction problem
In this section, the ability of the proposed FFT-
FE method to analyze the three-dimensional heat
conduction of a thick hollow cylinder (Figure 3) under
asymmetric thermal excitation is investigated. A
review of the literature over the past few decades
shows that there are few �nite element solutions to
the heat conduction problem in cylindrical or spherical
coordinate systems [48]. In this study, both the
geometry and the governing equations are discretized
in the cylindrical coordinate system using FFT-pFE
method. For this purpose, three-dimensional heat
equation in cylindrical coordinate and in the absence
of heat generation is considered as follows [8]:

�r
@2T
@r2 +

1
r
�r
@T
@r

+ �r
1
r2
@2T
@�2 +

d�r
dr

@T
@r

+ �r
@2T
@z2 = 0;

a � r � b; 0 < � � 2�; 0 � z � h; (34)

Figure 3. Variation of the temperature �eld along the
cylinder axis.
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Figure 4. Circumferential distribution of the temperature
�eld.

where �r is de�ned as Eq. (3). As shown in Figure 4,
the relevant thermal boundary conditions of the inner
and outer surfaces of the cylinder are considered to
have the following form:

T (r = a; z; �) = Ti (z; �) ; T (r = b; z; �) = 0;

qn (r; z = 0; �) = 0; qn (r; z = h; �) = 0; (35)

where qn is heat input (or output) into (or from) the
two ends of the cylinder, T is the temperature �eld
relative to the reference temperature and Ti is the
distribution of the temperature across the inner surface
of the cylinder.

Now, using the weighted residual method, the
weak form of the above heat equation can be expressed
as:Z


e

�
@w
@r

�
�r
@T
@r

�
+
@w
@z

�
�r
@T
@z

�
� w
r2
@2T
@�2

�
rdrdzd� �

Z
�e

wqnds = 0; (36)

where:

qn =
�
�r
@T
@r

nr + �z
@T
@z

nz + ��
1
r
@T
@�

n�
�
; (37)

in which, w is a vector of weight functions from
the Lagrange family used for interpolating the �eld
variable, T , and heat ux, qn. Mutually, the discrete
Fourier transform technique is well used to discretize
heat equation in the circumferential direction. A set of
approximate functions, including Fourier coe�cients of
the �eld variable, are substituted in the above equation.

As mentioned previously, the �eld variable is de�ned
at discrete points �K , k = 1; 2; :::; N , where k is known
as the wave number. The following relation is then
introduced for interpolating the temperature variable:

T (r; �; z) =
NX
k=1

T̂k(r; z)eik�: (38)

By substituting this relation into the Eq. (36), the
residual heat equation in terms of the radial and axial
variables becomes:Z


e

"
@w
@r

 
�r
@T̂k
@r

!
+
@w
@z

 
�r
@T̂k
@z

!
+

wk2

r2 T̂k

#
rdrdz = 0 for k = 1; :::; N: (39)

Related boundary conditions are as follows:8>>><>>>:
T̂ (r = a; z; �k) = T̂i (z; �k) ;
T̂ (r = b; z; �k) = 0;
q̂ (r; z = 0; �k) = 0;
q̂ (r; z = h; �k) = 0:

For k = 1; :::; N
(40)

It should be noted that in the above equation, the
strong form of the spatial derivative with respect
to the circumferential variable should be retained.
Now, the meridian cross-section of the cylinder can be
discretized using �nite elements, including Nr nodes
in each harmonic. 2D rectangular linear and higher-
order elements from the Lagrange family are used to
discretize the geometry and for the heat equation,
respectively.

In each element, T̂k(r; z) is approximated by the
interpolation functions, �ej , so we have:

T̂ ek (r; z) =
NrX
j=1

�ej(r; z)(T̂
e
k )j ; (41)

where (T̂ ek )j are nodal values corresponding to the
temperature �eld in the Fourier space. According to
the Galerkin method, the weight functions, wi, are
considered to be the same as the interpolation func-
tions. In the computation of the weighted integrals, a
local coordinate system (�; �) is de�ned for the sake of
simplicity. For this, we need to make a proper mapping
between the parametric space and the physical space.
r, z variables in terms of the local coordinate parame-
ters (�; �) as well as the transformation Jacobian matrix
can be de�ned as:�

r
z

�
=

8>><>>:
mP
j=1

rej�ej(�)
mP
j=1

zej�ej(�)

9>>=>>;
=
�
r1 r2 : : : rm
z1 z2 : : : zm

� �
�1 �2 ::: �m

�T ;
(42)
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Figure 5. Discretized model of the cylinder.8<:@T
@�

@T
@�

9=; =

24 @r@� @z
@�

@r
@�

@z
@�

358<:@T
@r

@T
@z

9=; : (43)

Using this geometrical approximation, we can solve the
governing equation of the problem. As we considered
in the previous section, the Gauss-Legendre method is
used for numerical computing of the sti�ness matrix.
Discretized model of the thick hollow cylinder is shown
in Figure 5. Discretized heat conduction equation in
the matrix form yields,h

K̂
in

T̂k
o

=
n
Q̂
o
: (44)

3.2. Thermo-electro-elastic demonstration
In this section, the previous FFT-pFE methodology is
considered for three-dimensional thermo-electro-elastic
analysis of an FGP hollow cylinder. In spite of the
previous 2D discretization, the classical second-order
�nite elements with Lagrangian interpolation functions
are used in the 3D discretization. Accordingly, we deal
with a FG hollow cylinder (Figure 3), and the kine-
matic relationship between its strain and displacement
components (in cylindrical coordinates) are as follows:

"rr =
@ur
@r

; "�� =
1
r

�
ur +

@u�
@�

�
; "zz =

@uz
@z

;

"r� =
1
2

�
@ur
r@�

+
@u�
@r
� u�

r

�
;

"�z =
1
2

�
@u�
@z

+
@uz
r@�

�
;

"zr =
1
2

�
@uz
@r

+
@ur
@z

�
;

Er = �@'
@r
; E� = � @'

r@�
; Ez = �@'

@z
: (45)

The generalized constitutive relations of orthotrop-
icpiezoelectric materials polarized in the axial direction
are considered as below [19]:

�rr = C11"rr + C12"�� + C13"zz � �1T � e31Ez;

��z = 2C44"�z � e24E�;

��� = C12"rr + C22"�� + C23"zz � �2T � e32Ez;

�rz = 2C55"rz � e15Er;

�zz = C13"rr + C23"�� + C33"zz � �3T � e33Ez;

�r� = 2C66"r�;

Dr = 2e15"rz + �11Er + P1T;

D� = 2e24"�z + �22E� + P2T;

Dz = 2(e31"rr + e32"�� + e33"zz) + �33Ez + P3T;
(46)

where:8><>:�1 = C11�r + C12�� + C13�z;
�2 = C12�r + C22�� + C23�z;
�3 = C13�r + C23�� + C33�z:

(47)

Similarly, Hamilton's principle of Eq. (12) is used to
derive the governing equations of the FGP hollow
cylinder. Considering these approximation functions
for the �eld variables of the thermo-electro-elastic
problem:

ur(r; �; z) =
NX
k=1

NrX
j=1

�j (r; z) (ûr)
k
j e
ik�;

u�(r; �; z) =
NX
k=1

NrX
j=1

�j (r; z) (û�)
k
j e
ik�;
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uz(r; �; z) =
NX
k=1

NrX
j=1

�j (r; z) (ûz)
k
j e
ik�;

'(r; �; z) =
NX
k=1

NrX
j=1

�j (r; z) ('̂)kj e
ik�; (48)

and substituting kinematic and constitutive relations
of Eqs. (45) and (46) into the prescribed energy
method, the following four sets of discretized governing
equations at each harmonic k with k = 1; :::; N yields:

(�ûr)
k
i :

NrX
j=1

�Dij
11 (ûr)

k
j +

NrX
j=1

�Aij12 (ûr)
k
j

+
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�Gij12
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(ûr)
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j + ik (û�)
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55 (ûr)

k
j +
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j=1

�Lij55 (ûz)
k
j

+ k2
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j � ik0@ NrX
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NrX
j=1

~J ij32'̂
k
j
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�Eij2 T̂
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j = 0: (49)
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k
j +

NrX
j=1

�Gij66

�
ik (ûr)
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where:
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e
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@�j
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Rewriting these governing equations in the matrix form
for k = 1; :::; N yields:26666664
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: (54)

In the following, we can solve this linear system of
equations, formed in the harmonic space, using the FE
approach to obtain the results in compliance with the
nodal degrees of freedom within the hollow cylinder.
Mutually, using the iFFT technique, the harmonic
numerical results can be inverted into the real space.

4. Numerical results

4.1. 2D FFT-pFE results (by hierarchical
elements)

4.1.1. Convergence study
This section aims to illustrate the convergence, accu-
racy, and e�ectiveness of the suggested method for
the electro-thermo-elastic analysis of an FGP hollow
cylinder. Indeed, the solution of the heat conduction
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Figure 6. Logarithmic representation of relative error
versus the number of �nite elements in the h-version
Finite Element Method (FEM).

equation at the uniform boundary temperature of the
inner surface (Ti) and outer surface (To) of the cylinder
is considered here. In this regard, the following formula
can be used for computing the relative error of the
obtained results:

Relative error=
kPresent solution�Exact solutionk

kExact solutionk ;
(55)

with kk being an appropriate norm.
Results extracted from the proposed hybrid

method are compared with the results of reference [49].
The convergence rate obtained by linear elements is
shown in Figure 6. It is observed that increasing
the number of elements in the radial direction is
accompanied by a linear convergence behavior of the
results. This is known as the h-version �nite element
approach in which the density of linear elements is
raised until the desired precision is achieved. On the
other hand, convergence is gained in the p-version
approach using higher-order shape functions. Figure 7
shows a super algebraic convergence behavior of the
FFT-pFE method while increasing the order of the
hierarchical shape function. Furthermore, the e�ect of
element density on the distribution of various elements
is also presented.

In Figure 8, the convergence behavior of the
Fourier spectral method is shown for some periodic
functions. These functions are assumed to be boundary
conditions of the inner surface of the cylinder. As
shown in this �gure, the rate of convergence varies with
the complexity of the periodic functions. As expected,
for T (�) = sin �, the desired method can appropriately
attain machine precision in �nite harmonics. It is
obvious from the �gure that the FFT technique has an

Figure 7. Variation of the relative error versus Legendre
polynomial degree.

Figure 8. Logarithmic representation of the relative error
versus the number of wavenumbers in the Fast Fourier
Transform (FFT) technique.

exponentially varying convergence behavior. A com-
prehensive review revealed that FFT is more vigorous
and accurate than FEM for analyzing the problems
with a periodic domain.

4.1.2. Asymmetric demonstration
In this section, at �rst, the results of the FGP cylinder
under thermal loading are veri�ed using existing lit-
erature [5]. For this purpose, the axisymmetric exact
solution of an FGP cylinder is extracted. To obtain the
results, the properties of the cadmium selenide as an
FGP material are used, as given below [5]:

�0
r = 2:458� 10�6 1=K;

�0
� = 4:396� 10�6 1=K; C0

11 = 83:6 GPa;

C0
12 = 39:3 GPa; C0

22 = 74:1 GPa;

e0
1 = 0:347 C=m2; e0

2 = �0:16 C=m2;
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�0
11 = 9:03� 10�11 C2=Nm2;

P 0
11 = �2:94� 10�6 C=m2K;

�r0 = 12:9 W=mK: (56)

For convenience, some dimensionless values are de�ned
as below:8>>>>><>>>>>:
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; ��ij = �ij

�0Y0T0
;

�"ij = "ij
�0T0

; �ur = ur
�0T0rb ;

�C0
ij = C0

ij
Y0
;

��0
i = �0

i
�0

�e0
i = e0i

Y0jd0j ; ��0
ij = �0

ij

Y0jd0j2 ;
�P 0
ij = P 0

ij
�0Y0jd0j ; �� = �jd0j

�0T0rb

(57)

where the typical parameters of material properties
used to normalize the numerical results are considered:

�0 =�0
�; Y0 =42:8 GPa; d0 =�3:92�10�12 C=N:

(58)

Here, two sets of thermo-electro-elastic governing equa-
tions of a hollow thick cylinder in the dimensionless
form are presented [5]:

�C0
11�rm

@2�ur
@�r2 + (m+ 1) �C0

11�rm�1 @�ur
@�r

+ �rm�2 �m �C0
12 � �C0

22
�

�ur + �e0
1�rm

@2 ��
@�r2

+ �rm�1 ��e0
1 (1 +m)� �e0

2
� @ ��
@�r

� �(1 +m+ n) ��0
1 � ��0

2
�

�rm+n�1 �T

� ��0
1 �rm+n @ �T

@�r
= 0; (59)

�e0
1�rm

@2�ur
@�r2 +

�
(1 +m) �e0

1 + �e0
2
�

�rm�1 @�ur
@�r

+m�e0
2�rm�2�ur � ��0

11�rm
@2 ��
@�r2

� (1+m)��0
11�rm�1 @ ��

@�r
(1+m+n)

�P0
11�rm+n�1 �T + �P0

11�rm+n @ �T
@�r

= 0; (60)

where:8><>:
��0
1 = �C0

11 ��0
2 + �C0

12 ��0
3

��0
2 = �C0

21 ��0
2 + �C0

22 ��0
3

(61)

In the sequel, the solution is assumed to be in the
following form:

8><>:�ur = �urc + �urp

�� = ��c + ��p

(62)

The �rst term on the right-hand side of the above
relation with subscript c indicates the homogenous
solution and the other one gives the particular solution.
In the �rst step, the particular solution can be written
as:8><>:�urp (�r) = X1�rn�k+1 + X2�rn+1

��p(�r) = X3�rn�k+1 + X4�rn+1
(63)

By substituting Eq. (63) into Eqs. (59) and (60), the
unknown coe�cients Xi (i = 1; 2; 3; 4) can be extracted.
Utilizing the change of variable �r = es, the homoge-
neous expression of governing equations can be shown
as [5]:� �D2 +m �D � �� �urc +

� �D2 + (m� �) �D
� ��c = 0;

(64)� �D2 + (m+ �) �D + �m
�

�urc �  � �D2 +m �D
� ��c = 0;

(65)

where �D = d/ds,

� =
�C0

22 � �C0
12

�C0
11

; � =
�e0
2

�e0
1
;  =

�C0
11��0

11

(�e0
1)2 ;

��c =
�e0
1

�C0
11

��c: (66)

From homogeneous Eqs. (64) and (65), the following
equation can be obtained:�

( + 1)
� �D3 + 2m �D2�

� ��2 + � �m2 ( + 1)�m��
�D �m ��2 � �m+ �

��
�urc = 0: (67)

Considering the general solution �urc = e(�s) leads to
the characteristic equation:

�3 + a1�2 + a2�+ a3 = 0; (68)

where:8><>:a1 = 2m; a2 = � 1
1+

�
�2 + � �m2 (1 + )�m��

a3 = � m
1+

�
�2 �m� + �

� (69)

According to the material properties selected in this
example, we will obtain three distinct real roots and
the general solutions of depending variables are as
follows [5]:
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�urc =
3X
j=1

Uj�r�j ; (70)

��c =
3X
j=1

MjUj�r�j +M4U4; (71)

where:8>><>>:
Mj =

�C0
11

�e01�

h
( + 1)�j +m +m+ � + m���

�j

i
;

j = 1; 2; 3
M4 =

�C0
11

�e01
(72)

Assuming that the inner and outer surfaces of the
cylinder are traction-free, the electro-elastic boundary
conditions could be expressed as follows:(

�rr (�r = 0:7) = 0; �rr (�r = 1) = 0
' (�r = 0:7) = 0; ' (�r = 1) = 0

(73)

Moreover, the boundary conditions corresponding to
the heat conduction equation are considered to be:(

T (�r = 0:7) = 0
T (�r = 1:0) = T0

(74)

The inhomogeneous parameters l = 0:01 and b = 0:01
are considered for the numerical calculations. The
variations of temperature, radial displacement and
the electric potential of an FGP cylinder along the
thickness direction are depicted in Figures 9{11 in
terms of several inhomogeneous parameters m. It
can be observed that the obtained results from the
proposed combined FFT-pFE method have a good
agreement with the exact solution.

Figure 9. Temperature distribution along the thickness
of cylinder (p = 7, Nel = 80).

Figure 10. Distribution of radial displacement along the
thickness of cylinder (p = 7, Nel = 80).

Figure 11. Distribution of electric potential along the
thickness of cylinder (p = 7, Nel = 80).

As the veri�cation process has been completed,
the results of electro-thermo-elastic analysis of an FGP
hollow cylinder under asymmetric thermal loadings are
presented. The power index of material properties and
the temperature boundary condition in the outer radii
of the hollow cylinder are considered to be as follows:

m = 2; d = 0:01; l = 0:01;

�T (�r = 1; �) = sin 2�: (75)

Figure 12 shows the asymmetric two-dimensional
distribution of the temperature �eld on the cylinder
section. In this analysis, Nel = 60 hierarchic elements
along the thickness direction and N = 80 grid points
along the circumferential direction are considered to
obtain the results. Harmonic variation of the unknown
variables, including the radial and circumferential dis-
placements and electric potential are shown in Fig-
ures 13{15. Post-processing is then accomplished and
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Figure 12. Two-dimensional asymmetric distribution of
temperature.

Figure 13. Two-dimensional asymmetric distribution of
radial displacement.

Figure 14. Two-dimensional asymmetric distribution of
circumferential displacement.

Figure 15. Two-dimensional asymmetric distribution of
electric potential.

Figure 16. Two-dimensional asymmetric distribution of
radial stresses.

the distribution of radial and hoop stresses are depicted
in Figures 16 and 17.

4.2. 3D FFT-pFE results (by quadratic
Lagrange elements)

4.2.1. Heat conduction of an FGP cylinder
As mentioned previously, the main idea of the present
mixed method is to reduce the computational e�orts by
eliminating one of the spatial dimensions (i.e. circum-
ferential). This feature is considered to be prominent
in 3D analysis in which there exist a large number of
computations. To verify the proposed mixed FFT-pFE
method for 3D thermal analysis, a thick hollow cylinder
under thermal excitations is modeled in the ABAQUS
software. Thermal boundary condition relevant to the
inner radii of the hollow cylinder is T (r = 0:6; z; �) =
T0
�
z2� esin 2�. The boundary temperature of the outer

surface of the cylinder is considered to be unchanged at
T = 0 (r = 1:0). Mutually, heat uxes through the two
ends of the cylinder (z = 0; 4) are assumed to vanish.
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Figure 17. Two-dimensional asymmetric distribution of
hoop stresses.

Figure 18. Distribution of the temperature �eld in the
middle surface of the cylinder (z = 4, r = 0:8).

For the case of simplicity, we used ABAQUS ability
in modeling asymmetric loading employing Analytical
Field subroutine. Considering the above boundary
conditions, the temperature �eld variable can be ex-
tracted for all nodal points across the cylinder section.
For better demonstration, paths including nodal points
(e.g. r = 0:8 path of the z = 4 cross-section)
are selected and the corresponding temperature nodal
values are compared to those extracted from the FFT-
pFE method (Figure 18).

4.2.2. Thermo-electro-elastic responses
After solving the heat conduction equation of an FGP
hollow cylinder, the desired temperature �eld is used
in the thermo-electro-elastic analysis. To obtain the
results, the properties of the PZT-4 as a well-known
piezoelectric material [50] are considered here. As an
arbitrary boundary condition, in this study, we con-

Figure 19. Convergence study of the FFT-pFE method
for thermo-electro-elastic analyzing.

Figure 20. Contour plot of the radial component of
displacement �eld across the N = 1 surface.

strained the axial component of the displacement �eld
at both ends of the FGP hollow cylinder. Electrical
conditions at the inner and outer cylindrical surfaces
are considered to be open circuits. So, we have:

�rr = �rz = Dr = 0; at r = a; b: (76)

To illustrate the convergence behavior and computa-
tional e�ciency of the FFT-pFE method in the 3D
thermo-electro-elastic analysis, Figure 19 is presented.
Radial displacement at the middle surface of the FGP
hollow cylinder is considered to estimate the relative
error. nr � nz, labeled at the horizontal axis of Fig-
ure 19, indicates mesh density in the meridian section
of the FGP cylinder. As shown in Figures 20 and 21,
the contour plot of the non-dimensional components of
the displacement �eld in the radial and circumferential
directions are depicted. Consequently, 2D distribution
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Figure 21. Contour plot of the circumferential
component of displacement �eld across the N = 1 surface.

Figure 22. 2D distribution of the radial displacement
across the middle surface of the Functionally Graded
Piezoelectric (FGP) cylinder.

of the displacement components and electric potential
of the FGP cylinder are shown in Figures 22{25.

5. Conclusions

A combination of the Fast Fourier Transform (FFT)
technique and p-version of the Finite Element Method
(FEM) was performed in this paper for the electro-
thermo-elastic analysis of a hollow Functionally Graded
Piezoelectric (FGP) cylinder. By considering the
geometric feature of the shells of revolution, the in-
tegral transform technique is appropriately used in
the circumferential direction. Therefore, the governing
equations can be divided into a set of harmonics. Af-
terwards, pertinent individual equations are discretized
using higher-order FEM. This procedure decreases one
dimension of the related governing equations. Thus,
a signi�cant reduction in computational cost can be
achieved. In this regard, the e�ects of the FFT
grid-size and the higher-order interpolation functions
are indicated. As expected, as the FFT grid size

Figure 23. 2D distribution of the circumferential
displacement across the middle surface of the Functionally
Graded Piezoelectric (FGP) cylinder.

Figure 24. 2D distribution of the axial displacement
across the middle surface of the Functionally Graded
Piezoelectric (FGP) cylinder.

Figure 25. 2D distribution of the electric potential across
the middle surface of the FGP cylinder.

increases, the trigonometric Fourier functions show the
highest convergence rate. It can be concluded from
the convergence study that the FFT technique has
an exponentially varying convergence behavior whereas
the hierarchic FEM shows an algebraic behavior. Nev-
ertheless, it is apparent from the results that the rate of
convergence of the hierarchic elements is much higher
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than that of the linear �nite elements. Since the
FFT technique needs to be implemented on the strong
form and the FEM deals with the weak formulation,
Hamilton's principle can be used to gather both the
strong and weak form of the governing equations,
simultaneously. The FFT technique helps us to employ
asymmetric thermal loadings. The results showed that
the proposed method is in good agreement with the
exact analytical solutions from the literature. The
proposed FFT-pFE method not only has the ability
of FEM in modeling complex geometric modeling but
also has the simplicity and accuracy of FFT. As a
future extension of this work, the proposed method can
be extended to the three-dimensional electro-thermo-
elastic analysis of homogeneous, composite, and FG
thick shells of revolution.

Nomenclature

Cij Material properties coe�cients
Di Electric displacements
eij Piezoelectric constants
Ei Components of electric �eld

K̂ij Components of sti�ness matrix
Np (�) Legendre polynomial of degree p

Q̂i Components of temperature gradient
vector

T̂ k Temperature variable of kth harmonic
in Fourier space

(ûi)
k
j Nodal values of displacement

components in kth harmonic
w Vector of weighting functions
�i Coe�cients of thermal expansion
�r Thermal conductivity coe�cient
 j Basis functions
�ij Dielectric constants
�ij Components of stress tensor
"ij Components of strain tensor
Pi Pyroelectric constants
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