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Abstract. In this paper, single-product single-machine systems under Markovian
deterioration of machine condition throughout a speci�ed �nite planning horizon are
studied. It is assumed that a machine is subject to random failures and that any
maintenance activities applied to it in a period reduce the system's potential production
capacity during that period. Furthermore, it is assumed that the machine is minimally
repaired upon failure, and PM is carried out, after inspection, to restore the machine to
the `as-good-as-new' status. The objective of the study is to �nd the optimal intervals for
inspection and Preventive Maintenance (PM) activities in Condition-Based Maintenance
(CBM) planning with a discrete monitoring framework subject to minimize the sum of
inspection, PM, minimal repair, and backlog costs. To this end, a stochastic dynamic
programming model that enumerates demand is presented, called the demand-driven CBM
model. The numerical results show that this model signi�cantly decreases the total cost
which depends on the demand and the unit backlog cost, which is an increasing and concave
function in the unit backlog cost regardless of the initial machine state.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

In recent decades, the approach to Just In Time
(JIT) in production and operation management as
well as the production procedures has transformed
and JIT roles have become more prominent. Machine
deterioration is one of the main reasons for production
capacity loss and consequences of delay in customer
requests in many manufacturing industries. Promotion
of machine health through preventive maintenance is a
policy that aims to restore production capacity which,
in turn, enhances the timely delivery of customer
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demands [1]. However, preventive maintenance reduces
machine unavailability and, thus, increases the poten-
tial production capacity of the machine for processing
customer demands. Therefore, adopting a preventive
maintenance strategy that can keep the machine well
enough to meet customer demands is necessary [2].

Generally, in literature, there are two strategies
for Preventive Maintenance (PM), namely Time-Based
Maintenance (TBM) and Condition-Based Mainte-
nance (CBM). Traditionally, PM is carried out in the
form of system overhaul or unit replacement based on
the elapsed time, which is often mentioned as time-
based maintenance. TBM policies are usually approved
based on a probabilistic model of system failure. In
TBM, the machine age is the basis of the planning and
the maintenance is carried out after a speci�c period of
time regardless of the health status of a physical asset
and customer demand. In this approach, employing
a suitable policy to determine PM durations and the
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frequencies is very important because an over frequent
policy leads to additional cost and an over duration
policy leads to unexpected failures [3,4].

In recent years, to reduce the number of un-
necessary scheduled preventive maintenance operations
and eliminate the risks associated with them, more
e�cient maintenance approaches such as condition-
based maintenance have emerged [5]. Unlike TBM
policies built on historical failure data, CBM is a
maintenance approach that emphasizes the information
collected through condition monitoring.

This policy consists of two stages. In the �rst
stage, the system status is evaluated and the ma-
chine state is identi�ed. This stage can be either a
continuous monitoring (inspection) or a discrete one.
In continuous monitoring, which may be costly in
some industries, some sensors continuously control the
system status. Through continuous monitoring, one
continuously monitors (usually by mounted sensors) a
machine and triggers a warning alarm whenever some-
thing goes wrong. Continuous monitoring is subject
to two limitations. Firstly, it is often expensive and
secondly, it produces inaccurate diagnostic information
due to the monitoring of raw signals with noise, con-
tinuously [6]. In discrete monitoring, some machine's
signi�cant covariates will be measured within a speci�c
period of time. Although this approach is more
economical than the continuous one, there is always
the risk of missing some alert between two inspections.
In this type of monitoring, if the inspection is over
frequent, the inspection cost will increase; in contrast,
the cost of unnecessary PM operation is reduced. In
contrast, if the inspection frequency decreases, the
total cost of PM operation and unexpected failure
will increase despite the decrease in inspection cost.
Accordingly, there are di�erent approaches to deter-
mining the duration and frequency of inspections in the
discrete monitoring approach. The �rst one is to do it
at a �xed interval. However, in the second approach,
the duration is constant, but frequency is achieved
by running a model considering di�erent economic
measures. In the third approach, the duration is not
constant and the frequency is not prede�ned; in fact, it
extracts an optimal plan using a suitable model [7{10].
Furthermore, in [11], all possible inspection schemes
were incorporated to prevent local optimum solutions
and avoid unnecessary combinations. In [12], the possi-
bility to moderate or reduce the number of inspections
undertaken was considered. As such, a proportional
hazard model was used for the risk of failure and a
Markovian process was employed to model the system
covariates. In the second stage, based on the collected
information from the �rst stage, the PM execution
interval is determined. In CBM, the PM operations
are executed if the machine's signi�cant covariates are
more than prede�ned values called threshold. The

main challenge in CBM is to identify the optimum
threshold policy for PM execution. In [13,14], a
maintenance policy for a degrading system with age-
and state-dependent operating costs was proposed in
which cost increased with the aging of the system and
degradation levels. Authors in [15] proposed a partially
observable Markov decision process structure in which
optimal inspection and maintenance strategies must be
adopted to maximize both the system availability and
the expected value of pro�t.

In the optimization procedure of the previous
models, customer requirements is neglected and the
modeling is implemented based on the hazard rate
function of the machine. In the following, some
models are investigated in which production and PM
planning are integrated. In [16,17], simultaneity pro-
duction and maintenance planning for a multi-product
single-machine construction system were modeled as a
Markov decision process in which the machine deteri-
orated. The objective was to determine the machine
maintenance plan and the production amount simulta-
neously so that the sum of expected production, backo-
rder, and holding costs could be minimized. In [18,19],
a semi-Markov decision process model for a single-stage
production system with multiple products and multiple
maintenance actions was presented. In [2,20,21], other
factors such as the backlog cost were added to previous
factors to run the optimization model for threshold.
None of these models have considered inspection as a
decision variable and the cost of inspection, although
they assumed other decisions involved in production
planning such as production, inventory, and backorder
quantity.

To the best of our knowledge, there has been no
model that has determined inspection and preventive
maintenance planning simultaneously in the presence of
the Markovian deterioration of machine condition and
customer's demand. However, in practice, demand mo-
tivates running the machine. For example, consider a
situation in which the optimum time for PM execution
coincides with the customer order reparation and deliv-
ery. This coincidence leads to a delay in order delivery
and, accordingly, customer dissatisfaction. Therefore,
delay in PM operations results in unexpected failure
which translates into undesired e�ect on the backlog
cost and customer's satisfaction.

The key contributions of this paper are as follows:

1. Presenting a new model for condition-based main-
tenance with discrete monitoring whose objective is
to �nd inspection and PM interval in the presence
of the Markovian deterioration of machine condition
and customer's demand;

2. The ability of the presented model to consider
unexpected failures;

3. Demonstrating that the total cost would be reduced
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signi�cantly by enumerating customer demand in
the CBM model. Although the direct CBM costs
counting inspection, preventive maintenance and,
minimal repair might increase by using this model,
the total cost would reduce.

To this end, by employing stochastic dynamic pro-
gramming, a model for condition-based maintenance
planning at a tactical level in a �nite time horizon
is presented. The model consider discrete inspections
whose frequencies are neither prede�ned nor �xed,
but they are decision variables. Moreover, based on
the result of the inspection, the optimum interval
for PM, which depends on the state variable whose
value emerges during the inspection stage, will be
determined. In this model, demand is certain, while
the machine status is not certain. This uncertainty is
de�ned by considering the machine status as a state
variable, and the related decision variables are calcu-
lated such that the sum of inspection, PM, minimal
repair, and backlog costs is minimized. This model is
run for all possible inspection plans (2K possibilities,
where k equals the number of periods). The results are
compared and the optimal combination of inspection
and PM time is found. Furthermore, to analyze the
e�ect of enumerating customer demand on total cost,
an illustrative example is designed and investigated.

This paper is structured as follows. Section 2
explains the problem and its corresponding assump-
tions in general. Section 3 describes our modeling
framework including appropriate mathematical repre-
sentation. Section 4 gives a solution algorithm. Sec-
tion 5 describes numerical study and its computational
sequences. Finally, Section 6 concludes this paper.

2. Problem statement

In this research, a single-product system is considered
and condition-based maintenance planning is achieved
in a �nite-time horizon with K equal intervals with
a length of T . It is assumed that � consisting of K
elements is the demand in the planning horizon. Its
elements show the demand in di�erent periods at the
beginning of the planning horizon. The demand for
every period must be satis�ed within the same period;
otherwise, for every unit of the unsatis�ed demand,
a value represented by h will be lost. For simplicity,
the whole production system is considered as a single
machine that deteriorates during its operation time
because of production. A variety of levels are de�ned
for the machine deterioration, called state, and the set
of machine states is shown by S = f0; 1; 2; � � � ; Ng.
The deterioration is assumed to be a Markov stochastic
process, i.e., if X = (Xt : t 2 [0;1)) is the machine
deterioration process and assuming that X is a homo-
geneous continuous-time Markov process with discrete

state space S, then the deteriorating machine can be in
one of N operational states 0; 1; 2; � � � ; N�1 or a failure
state N . The machine has the best performance in the
state 0 and is out of service in the state N . In other
states, a larger number shows a lower performance;
hence, r(s) is an absolutely decreasing function while
r(s) is the machine performance in the state s.

As mentioned before, a model is proposed in the
stochastic dynamic programming form for overcoming
this problem. This model consists of two stages: The
�rst stage is related to inspections, while the second one
includes decision-making about appropriate intervals
for PM activities.

In the �rst stage, it is assumed that the ma-
chine state is observable in the inspections, i.e., its
speci�cation is error-free (in contrast with the hidden
state). Moreover, it is assumed that at the beginning
of the planning horizon, the inspection must be exe-
cuted. The successive inspection is carried out only
at the beginning of each period while conducting the
inspections depends on our decision. The inspection
processing time and cost are constant parameters and
are denoted by cins and tins, respectively.

In the second stage, it is assumed that the ma-
chine state becomes zero, i.e., `as-good-as-new' status,
merely following the execution of PM operation. PM
cost and processing time, which depend on machine
state (s), are absolutely increasing functions in s.
These parameters are denoted by cpm(s) and tpm(s),
respectively. Moreover, we assume that cpm(0) and
tpm(0) are equal to zero. Furthermore, within a period,
if the machine reaches the failure state, then it is
assumed to be minimally repaired and restored to N�1
state, i.e., `as-bad-as-old' status, immediately. Minimal
repair cost and its processing time are constant param-
eters and are denoted by cmr and tmr, respectively.

The inspection plan identi�es the inspection fre-
quency and, therefore, has a direct impact on inspec-
tion cost. However, it has an indirect impact on
other costs because other procedures will be carried
out after inspection execution and they depend on
the inspection plan. In addition to the inspection
cost, there are three types of other costs. The �rst
type is the PM cost; the second type is the minimal
repair cost; and the third type is the backlog cost due
to machine unavailability during the inspection, PM,
or minimal repair operations. To consider this cost,
besides creating a dependency between production rate
and machine state, the time elapsed for inspection,
PM, and minimal repair operations is also taken into
account. This cost is proportional to the di�erence
between actual production capacity and the demand
in each period. The objective is to �nd the optimal
intervals for inspection and PM activities in CBM
planning with a discrete monitoring framework over
a �nite time horizon to satisfy the demand. Here,
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the appropriate PM interval must be based on the
inspection results so that the total cost in the planning
horizon, including inspection, PM, minimal repair, and
backlog cost, is minimized.

3. The mathematical model

This section describes a basic model of stochastic
dynamic programming in the �nite time horizon to
develop our model and, then, presents the proposed
model along with a detailed modeling framework.

3.1. Basic model of stochastic dynamic
programming with �nite time horizon

Here, stochastic dynamic programming with �nite-time
horizon method is used for modeling the problem. In
this method, deriving the optimality equation as a
backward recursive equation is the most important part
of the modeling. The components of this equation
include stage (n), state variable (s), action (a), transi-
tion probability matrix (P (a)), and current stage cost
(C(s; a)) when the system state is s and action a is
decided. Eq. (1) shows the optimality equation in the
general form:

Vn(s) = min
a2A

(
C(s; a) +

X
s02S

Pss0(a)Vn�1(s0)
)

(8 n � 1); (1)

where S and A are state and action spaces, respectively,
and Vn(s) shows the expected total cost while the
system state is s and there are n stages to the end
of the planning horizon. Moreover, it is assumed that
V0(s) = 0 (8 s 2 S) [22].

3.2. Proposed model with customer demand
In this section, the problem is modeled under a stochas-
tic dynamic programming framework with emphasis
on the customer demand. For this purpose, �rst, the
optimality equation components are de�ned and, then,
the optimality equation is established.

3.2.1. Components of the proposed model
I. The �rst component (stage)
Each point of decision about the inspection is de�ned
as a stage. The model structure needs to be given
number of the remaining periods to the end of the
planning horizon in each stage. The beginning of each
period is an option for the inspection; therefore, the
inspection in each period is considered as a binary
decision variable. Each feasible solution is an array
that consists of 0 and 1s which is shown by I = (ik)Kk=0
and referred to as inspection plan. It is assumed
that an inspection is performed at the beginning of the
�rst period. Moreover, for simplicity, we assume that
the last element of each sequence is 1. That is, each
sequence starts and ends with 1, where 1 at the end of

the sequence is not a real inspection and is only for the
simplicity of modeling, i.e.:

I = (i0; i1; � � � ; iK) = (ik)Kk=0; i0 = iK = 1;

where K is the number of periods included in the
planning horizon and the set of feasible solutions is
shown by I. Therefore, the number of I elements is
equal to 2K�1.

Assume that sequence I = (ik)Kk=0 is an arbitrary
inspection plan and henceforth constant, and assume
that �I is a subsequence of I that consists of its 1s, i.e.:

�I =
��ik0 ;�ik1 ; � � � ;�ikm(I)

�
= (�iki)

m(I)
i=0 ;

such that:

�iki = 1 8 i 2 f0; 1; � � � ;m(I)g;
and:

ik = 0 8 k =2 fk0; k1; � � � ; km(I)g:
Now, the sequence J(I) = (j(I)n)m(I)

n=0 is de�ned as
follows:

J(I) =(j(I)0; j(I)1; � � � ; j(I)m(I))

=(K�km(I);K�km(I)�1; � � � ;K�k1;K�k0):

The sequence J(I) indirectly identi�es the stages called
stages sequence. The number of sentences in this
sequence determines the number of stages.

Example 1. Assume that I = (1; 0; 0; 1; 0; 1; 1) is an
inspection plan for a problem with six periods. As
shown in Figure 1, in the inspection plan, inspections
are carried out at the beginning of the �rst, fourth, and
sixth periods.

According to the de�nition, the last sentence
in the sequence I is always considered 1; therefore,
it is shown di�erently from the rest. Consider the
subsequence �I = (1; 1; 1; 1) that consists of ones in the
sequence I and sequence k = (0; 3; 5; 6) that contains
the index of these ones.

The sequence of the stages corresponding to I is
obtained by:

J(I) = (6� 6; 6� 5; 6� 3; 6� 0) = (0; 1; 3; 6):

This sequence shows that for the inspection plan I =
(1; 0; 0; 1; 0; 1; 1), the stochastic dynamic programming
model includes four stages: the �rst, second, third, and
fourth stages show times when zero, one, three, and

Figure 1. Inspection scheme for Example 1.
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six time periods remain until the end of the planning
horizon, respectively.

II. The second component (state variable)
The machine status is de�ned as the state variable of
the model and the indexes s and s0 are considered for
it, such that s; s0 2 S.

III. The third component (decision variable)
In our problem, there are two types of decision vari-
ables. The �rst one speci�es the periods in which
the machine should be inspected, while the second
one speci�es the period selected for the PM execution
according to the state (machine status) of the current
stage at each stage until the next inspection time (the
next stage). Note that there is a possibility that the
PM would not be executed in a period. Each inspection
plan is a �nite sequence of the �rst type of decision
variables. Assume that I = (ik)Kk=0 is an arbitrary
inspection plan and henceforth constant, and J(I) =
(j(I)n)m(I)

n=0 is the sequence of its corresponding stages
in the dynamic stochastic programming model. In the
stage n, the second-type decisions space corresponding
to this inspection plan is A = f0; 1; � � � ; lI;ng, such
that lI;n = j(I)n � j(I)n�1. In this space, decision 0
means that after the implementation of the inspection,
the decision to perform preventive maintenance is
not made, and decision a means that the preventive
maintenance will be implemented during the ath period
between the current and the next inspections (1 � a �
lI;n).

IV. Fourth component (transition probability
matrix) We assume that the machine deterioration
process is a homogeneous continuous-time Markov
process with a discrete state space S = f0; 1; � � � ; Ng
shown by X = (Xt : t 2 [0;1)). Having the
transition rate matrix is enough to obtain the transition
probability matrix of the process. The transition rate
matrix Q is de�ned as follows:

Q = [qss0 ](N+1)�(N+1);

qss0= lim
t!0

Pr (Xt=s0jX0 =s)
t

; s; s02S; s 6=s0;

qss = �X
s0 6=s

qss0 :

Furthermore, we assume that the following conditions
hold for the matrix Q:

Condition 1: Without implementing PM, the ma-
chine status deteriorates because of production, i.e.:

qss0 = 0; 8 s0 < s: (2)

Condition 2: The rate of transition to inferior states

increments as a result of machine deterioration. In
other words, we have:X
s0�u

qss0<
X
s0�u

q(s+1)s0 ; 8 u2S; u�(s+2): (3)

Now, the transition probability matrix of the
process is obtained using the Chapman-Kolmogorov
equation [23]. Assume that P0 and P1 are these
matrices after a time interval elapsing with length
T when PM is or is not carried out, respectively.
Therefore, we have:

P0 = eQT ; (4)

P1 = R� P0 = R� eQT ; (5)

where R is de�ned as follows:
R = [rss0 ](N+1)�(N+1);

rss0 = Pr(X0+ = s0jX0 = s; a = 1):

As assumed above, the machine is restored to the as-
good-as-new status following PM application:

R =

2641 0 � � � 0
... 0 � � � 0
1 0 � � � 0

375 :
V. Fifth component (total cost between two suc-
cessive inspections). Assume that CZn;l(s; a) is the
total cost between the current inspection and the next
one (two successive inspections) in which Z, n, s, l, and
a are demand vector, current inspection index in an
inspection plan, machine status in the inspection, the
number of time periods between the current inspection
and the next one, and a member of decision space
A = f0; 1; � � � ; lg, respectively. CZn;l(s; a) includes one
inspection cost, one PM cost at most for all the periods
between these two successive inspections, the expected
value of the minimal repair cost, and the backlog cost in
each period between these two successive inspections.
It is calculated using Eqs. (6){(8):

CZn;l(s; 0) = cins + cmr

TZ
T1(s;0)

�N�1dt+ h[z(n)

� TA1(s; 0)r(s; 0)]+

+ �1(l)
l�1X
w=1

�w
NX
s0=0

(Pw0 )s;s0

(
cmr

TZ
T1(s0;0)

qN�1dt

+ h [z(n+ w)� TA2 (s0; 0) r (s0; 0)]+
)

(n2f1; � � � ;Kg; l2f1; � � � ;K�n+1g; s2S); (6)
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CZn;l(s; 1) = cins + cpm(s) + cmr

TZ
T1(s;1)

�N�1dt

+ h[z(n)� TA1(s; 1)r(s; 1)]+

+ �1(l)
l�1X
w=1

�w
NX
s0=0

(P1Pw�1
0 )s;s0

(
cmr

TZ
T1(s0;0)

qN�1dt+ h
�
z(n+ w)

� TA2 (s0; 0) r (s0; 0)
�+)

n2f1; � � � ;Kg; l2f1; � � � ;K�n+1g; s2S; (7)

CZn;l(s; a) = cins + cmr

TZ
T1(s;0)

�N�1dt+ h(z(n)

� TA1(s; 0)r(s; 0))+ + �2(a)
a�2X
w=1

�w
NX
s0=0

(Pw0 )s;s0

(
cmr

TZ
T1(s0;0)

qN�1dt+ h
�
z(n+ w)

� TA2 (s0; 0) r (s0; 0)
�+)+ �a�1

NX
s0=0

(P a�1
0 )s;s0

(
cpm (s0) + cmr

TZ
T1(s0;1)

�N�1dt

+ h [z(n+ a� 1)� TA2 (s0; 1) r (s0; 1)]+
)

+ �a(l)
l�1X
w=a

�w
NX
k=0

(P a�1
0 P1Pw�a0 )s;s0

(
cmr

TZ
T1(s0;0)

qN�1dt+ h
�
z(n+ w)

� TA2 (s0; 0) r (s0; 0)
�+)

a 2 f2; � � � ;Kg; n 2 f1; � � � ;Kg;

l 2 fa; � � � ;K � n+ 1g; s 2 S: (8)

Eq. (6) calculates the cost between two successive
inspections in a situation where the current inspection
index, machine status in the inspection, and the
number of periods until the next inspection are n,
s, l, respectively, and PM action is not implemented
between these two inspections. Eq. (7) calculates this
cost in similar conditions with the di�erence that PM
action is implemented in the �rst period between those
two inspections. If the number of periods between two
successive inspections is greater than one, then Eq. (8)
is used for calculating CZn;l(s; a) in the case of PM
action within the ath period of time.

In these equations, � is a discount factor and
z(w) is the demand in the period w. TA1(s; b) and
TA2(s; b) are actual times for production operations in
one period in the case of performing and not performing
the inspection, respectively, such that the machine is
in the state s at the beginning of the time period and
action b is decided for PM execution. These expressions
are calculated as follows:

TA1(s; b) = T � tins � btpm(s)� tmr
TZ

T1(s;b)

�N�1dt;

b 2 f0; 1g;

TA2(s; b) = T � btpm(s)� tmr
TZ

T1(s;b)

�N�1dt;

b 2 f0; 1g:
At the above phrases, integral expression calculates the
expected value of the number of failures within interval
[T1(s; b); T ].

From the �rst failure to the end of period, the
process is changed into a homogenous Poisson process
with state space S0 = fN � 1; Ng, because we assumed
the machine to be repaired minimally in case of
unexpected failures. Therefore, the machine failure
time has an exponential distribution with parameter
�N�1 = �qN�1;N�1 [24]. Hence, the expected value
of the number of failures within interval [T1(s; b); T ] is
calculated as follows:

TZ
T1(s;b)

�N�1dt;

where:

T1(s; b) = minf�N ((1� b)s); Tg:
In addition, �N ((1 � b)s) is the expected value of the
hitting time to failure state (N) from state (1 � b)s
(i.e., the state 0 if PM is executed and the state s



666 R. Noori et al./Scientia Iranica, Transactions E: Industrial Engineering 30 (2023) 660{673

otherwise) calculated by solving the following equation
system [25]:8<:�N (s) = 0; s 2 fNgP

s0
qss0�N (s0) = �1; s 2 SnfNg

The r(s; b) is the machine production rate in one period
such that the machine state is s at the beginning of the
time period and action b is decided for PM execution:

r(s; b) =

(
r(s) b = 0
r(0) b = 1

�h is an indicator function such that:

�h : fh; � � � ;Kg ! f0; 1g;

�h(l) =

(
0 l = h
1 l � h+ 1

3.2.2. Optimality equation of the proposed model
In this section, by considering the de�nition of the
optimality equation components provided in the pre-
vious section, an optimality equation is constructed
for each inspection plan. For this purpose, suppose
that I = (ik)Kk=0 is an arbitrary inspection plan and
henceforth constant, and J(I) = (j(I)n)m(I)

n=0 is its
corresponding stage sequence. Then, Eq. (9) shows the
optimality equation of the proposed model:

Vj(I)n(s) = min
a2f0;1;��� ;lI;ng

(
CZ�jn;lI;n(s; a)

+ �lI;n
NX
s0=0

(P(a))s;s0Vj(I)n�1(s0)
)

n 2 f1; � � � ;m(I)g; (9)

where:

�jn = K � j(I)n + 1; lI;n = j(I)n � j(I)n�1;

Vj(I)0(s) = 0 s 2 S;

P (a) =

(
P lI;n0 a = 0
P a�1

0 P1P
lI;n�a
0 a 2 f1; 2; L; lI;ng

4. Solution method

To solve the presented models, the following four-step
algorithm is employed.

Step 1: For each element of I as I = (ik)Kk=0 (i.e.,
an arbitrary inspection plan and henceforth constant)
execute Steps 2 and 3;

Step 2: Make the stage sequence J(I) = (j(I)n)m(I)
n=0

corresponding to the inspection plan I = (ik)Kk=0;

Step 3: For each state s; the optimality equation,
i.e., a backward recursive equation, is used to cal-
culate the optimal value and �nd the corresponding
optimal decision and, then, name them V �j(I)m(I)

(s)
and a�I(s), respectively. In other words, a�I(s) is
the optimal decision on the time of executing PM
actions at the interval between the �rst and second
inspections when the inspection plan is I and the
system state at the beginning of time horizon is s;

Step 4: For each state s, select the inspection plan
with the minimum value V �j(I)m(I)

(s) as the optimal
inspection plan corresponding to s in the planning
horizon and name it I� = (i�k)Kk=0;

Step 5: For each state of s and for the optimal
inspection plan I� corresponding to s, select a�I�(s)
as an optimal decision for PM execution between the
�rst and second inspections.

5. Numerical study

In this section, an illustrative example is designed to
analyze the strategy of the proposed model and to
investigate the e�ect of taking demand into account
in the model.

Designing an illustrative example to analyze the
strategy of the proposed model is explained in this
section while the e�ect of demand is investigated
simultaneously.

5.1. Detailed example
Suppose that the planning horizon consists of 6 periods,
each of which is 30 days long, the machine states
space is S = f0; 1; 2; 3; 4g, and the discount factor
is one. Other parameters are listed in Tables 1-
3. Relation (10) shows the transition rate matrix
that applies to Relations (2) and (3) to satisfy the
Conditions 1 and 2. The one-step transition matrices

Table 1. Backlog, inspection, and minimal repair
parameters.

h ($) cins ($) tins (day) cmr ($) tmr (day)

5 400 1 640 1

Table 2. Test problems demand.

Demand Period, time no.

1 2 3 4 5 6

Low 100 150 200 180 300 250
Medium 300 360 432 475 523 575
High 1200 1300 1100 1500 1000 1200
Nominal 600 600 600 600 600 600
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Table 3. PM and production rate parameters depending
on machine state.

s cpm(s) tpm(s) r(s)

0 0 0 20

1 300 1 16

2 500 2 10

3 900 3 2

4 1500 4 0

are calculated in the absence and presence of PM
execution via Eqs. (4) and (5), respectively, and shown
in Eqs. (11) and (12):

Q=

266664
�0:100 0:040 0:020 0:030 0:010
0:000 �0:107 0:041 0:031 0:035
0:000 0:000 �0:107 0:032 0:075
0:000 0:000 0:000 �0:094 0:094
0:000 0:000 0:000 0:000 0:000

377775 ;(10)

P0 =

266664
0:050 0:054 0:059 0:101 0:736
0:000 0:041 0:050 0:072 0:837
0:000 0:000 0:040 0:047 0:913
0:000 0:000 0:000 0:059 0:941
0:000 0:000 0:000 0:000 1:000

377775 ; (11)

P1 =

266664
0:050 0:054 0:059 0:101 0:736
0:050 0:054 0:059 0:101 0:736
0:050 0:054 0:059 0:101 0:736
0:050 0:054 0:059 0:101 0:736
0:050 0:054 0:059 0:101 0:736

377775 : (12)

5.2. Results analysis
In this section, the e�ectiveness of demand counting
in the performance of the proposed model is consid-
ered. For this purpose, the solution algorithm was
implemented by MATLAB software �rst. Then, the
numerical example was designed under two situations.
In the �rst situation, the demand was eliminated from
the model by replacing zero instead of the unit backlog
cost (h). Consequently, in this situation, we deal with
a pure CBM model. Instead of the second one,
the unit backlog cost was substituted by 5 (h = 5)
and demand was considered. This model was run by
four di�erent demand vectors, namely low, medium,
high, and nominal demands, separately. The model
under this situation is named demand-driven CBM.
Table 4 shows the optimal inspection plans for the �rst
and second situations.

These results indicate that the inspection plan
I1, which is the optimal solution of the pure CBM
model for all states, is not optimal for all states in the
demand-driven CBM model and instead, I16 or I32 is
the optimal inspection plan depending on the machine
status at the beginning of the planning horizon and

the demand vector. In addition, in the demand-driven
CBM model, higher demand or worse machine status
increases the number of inspections.

Tables 5 shows the optimal solution to execute
the PM based on the state of the system at the
inspection time corresponding to the �rst and second
situations. For example, in the pure CBM model,
�rst, the inspection plan of I1 is optimal; second, in
the �rst inspection, if the system state is 2, 3, or
4, the �rst period is the best for the PM execution;
otherwise, PM should not be executed. In the demand-
driven CBM model, the optimal interval of the PM
depends on the demand vector. For instance, in the
medium demand case and in the �rst inspection, if the
system state is 2, �rst, the inspection plan of I16 is
optimal. Second, the optimal decision for preventive
maintenance is a = 2, meaning that the PM must be
carried out in the second period of the ones between
the �rst and second inspection periods (period 2).

Then, in other inspections, depending on the
machine state, PM must be carried out in the same
inspection period (a = 1) or must not be executed
(a = 0). Moreover, these solutions indicate that if
the machine state is worsened or the demand rises,
the number of inspections increases and the preventive
maintenance should be executed at the same time or
earlier.

Table 6 shows the optimal inspection plan and
the optimal total cost for the demand-driven CBM
model and the optimal CBM cost for the pure CBM
model depending on the machine state at the beginning
of the planning horizon (initial machine state). The
inspection plans were found optimal in at least one of
the models while other inspection plans were discarded.
Besides, the optimal costs were shown in bold. These
results show that:

1. Toward the aforementioned parameters, the inspec-
tion plan I1 is optimal for the pure CBM model
independent of the initial machine state;

2. The optimal inspection plan I1 is not necessarily
optimal for the demand-driven CBM model;

3. The optimum inspection plan obtained by the
demand-driven CBM model leads to the reduction
of the total cost in comparison to the optimum
inspection plan obtained by the pure CBM model.
The amount of this reduction depends on the
demand vector and the initial machine state. This
reduction is called the total improvement value
displayed in percentage in Table 2. For example,
if the initial state is 2 and the demand vector is
medium, then the improvement value is 30.3%;

4. As a managerial insight, if the demand vector com-
ponents are the nearby nominal capacity (600 =
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Table 4. Optimal inspection plans.

Demand vector s Optimal inspection plan Inspection scheme

P
u
re

C
B

M
m

od
el

Without demand

0
1
2
3
4

I1 = (1; 0; 0; 0; 0; 0; 1)

D
em

an
d
-d

ri
ve

n
C

B
M

m
od

el

Low
(100; 150; 200; 180; 300; 250)

0
1
2
3
4

I16 = (1; 0; 1; 1; 1; 1; 1)

Medium
(300; 360; 432; 475; 523; 575)

0
1
2

I16 = (1; 0; 1; 1; 1; 1; 1)

3
4

I32 = (1; 1; 1; 1; 1; 1; 1)

High
(1200; 1300; 1100; 1500; 1000; 1100)

0 I16 = (1; 0; 1; 1; 1; 1; 1)

1
2
3
4

I32 = (1; 1; 1; 1; 1; 1; 1)

Nominal
(600; 600; 600; 600; 600; 600)

0 I16 = (1; 0; 1; 1; 1; 1; 1)

1
2
3
4

I32 = (1; 1; 1; 1; 1; 1; 1)

30 � 20), then the demand-driven CBM model is
more e�cient.

Consequently, enumerating demand in a CBM model
leads to a signi�cant reduction in the total costs. Fur-
thermore, this model can provide operational managers
with a roadmap to overcome the trade-o� between
CBM costs and backlog cost, which is an inescapable
part of production costs.

5.3. Sensitivity analysis and discussion
The sensitivity of the total improvement value to the
unit backlog cost is analyzed in this section after
running more than 100 di�erent unit backlog costs.

The objective is to �nd out which demand-driven
CBM model conditions would yield better revenue.
Accordingly, for each initial machine state and demand
vector, the pure and demand-driven CBM models were
solved for di�erent values of the unit backlog cost (h).
Then, the total improvement value corresponding to
each of them was calculated. Figures 2 to 6 show that:

1. The total improvement value is an increasing and
concave function in unit backlog cost (h) regard-
less of the initial machine state and the demand
vector. The positivity trait of the function shows
that considering demand in the modeling leads to
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Table 5. Optimal PM execution interval corresponding to each of the situations.

Pure CBM
model-without demand

Demand-driven CBM
model-low demand

a�I1=(1;0;1;1;1;1;1)(s)

Period no.

a�I16=(1;1;1;1;1;1;1)(s)

Period no.

s 1 2 3 4 5 6 s 1 2 3 4 5 6

0 0 | | | | | 0 2 | 0 0 0 0
1 0 | | | | | 1 2 | 1 1 1 0
2 1 | | | | | 2 2 | 1 1 1 0
3 1 | | | | | 3 2 | 1 1 1 1
4 1 | | | | | 4 2 | 1 1 1 1

Demand-driven CBM model-medium demand

a�I16=(1;0;1;1;1;1;1)(s)

Period no.

a�I32=(1;1;1;1;1;1;1)(s)

Period no.

s 1 2 3 4 5 6 s 1 2 3 4 5 6

0 2 | 0 0 0 0 0 0 0 0 0
1 2 | 1 1 1 1 1 1 1 1 1
2 2 | 1 1 1 1 1 1 1 1 1

| 1 1 1 1 3 1 1 1 1 1 1
| 1 1 1 1 4 1 1 1 1 1 1

Demand-driven CBM model-high demand

a�I16=(1;0;1;1;1;1;1)(s)

Period no.

a�I32=(1;1;1;1;1;1;1)(s)

Period no.

s 1 2 3 4 5 6 s 1 2 3 4 5 6

0 2 | 0 0 0 0 0 0 0 0 0
| 1 1 1 1 1 1 1 1 1 1 1
| 1 1 1 1 2 1 1 1 1 1 1
| 1 1 1 1 3 1 1 1 1 1 1
| 1 1 1 1 4 1 1 1 1 1 1

Demand-driven CBM model-nominal demand

a�I16=(1;0;1;1;1;1;1)(s)

Period no.

a�I32=(1;1;1;1;1;1;1)(s)

Period no.

s 1 2 3 4 5 6 s 1 2 3 4 5 6

0 2 | 0 0 0 0 0 0 0 0 0
| 1 1 1 1 1 1 1 1 1 1 1
| 1 1 1 1 2 1 1 1 1 1 1
| 1 1 1 1 3 1 1 1 1 1 1
| 1 1 1 1 4 1 1 1 1 1 1

adopting a more optimized CBM policy rather than
ignoring the demand. Meanwhile, it is shown that
a greater increase in the unit backlog cost leads
to greater improvement by employing the proposed
CBM policy;

2. Comparison of an arbitrary demand vector with
di�erent initial states illustrates that improvement
sensibility is negligible. Moreover, comparing an ar-

bitrary initial state with di�erent demands implies
adopting a CBM policy with a sensible improve-
ment. Therefore, the operational managers need
to consider demand rather than the machine initial
state. In other words, demand has more impact
on the improvement of total cost than the initial
machine state.

3. When the unit backlog cost (h) is greater than a
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Table 6. Optimal inspection plan and cost for pure CBM and demand-driven CBM models.

Initial
machine
state (s)

Optimal
inspection

plan

Pure
CBM
cost

Demand-driven CBM cost
Low

demand
Medium
demand

High
demand

Nominal
demand

0
I1 = (1; 0; 0; 0; 0; 0; 1) 9608 13309 18429 40168 21668

I16 = (1; 0; 1; 1; 1; 1; 1) 11208 12209 12820 33561 15061

Total improvement value 8.3% 30.4% 16.4% 30.5%

1

I1 = (1; 0; 0; 0; 0; 0; 1) 9908 13740 18942 41332 22982

I16 = (1; 0; 1; 1; 1; 1; 1) 11508 12576 13186 34546 16046

I32 = (1; 1; 1; 1; 1; 1; 1) 11905 12909 13520 34461 15961

Total improvement value 8.5% 30.4% 16.6% 30.6%

2

I1 = (1; 0; 0; 0; 0; 0; 1) 10094 13921 19303 42416 23916

I16 = (1; 0; 1; 1; 1; 1; 1) 11694 12716 13453 35535 17035

I32 = (1; 1; 1; 1; 1; 1; 1) 12094 13109 13720 34761 16261

Total improvement value 8.7% 30.3% 18.0% 32.0%

3

I1 = (1; 0; 0; 0; 0; 0; 1) 10249 14332 20615 43725 25225

I16 = (1; 0; 1; 1; 1; 1; 1) 11849 13106 14716 36804 18304

I32 = (1; 1; 1; 1; 1; 1; 1) 12249 13506 14120 35261 16761

Total improvement value 8.6% 31.5% 19.4% 33.6%

4

I1 = (1; 0; 0; 0; 0; 0; 1) 10929 15303 21585 44695 26195

I16 = (1; 0; 1; 1; 1; 1; 1) 12529 14054 15664 37552 19052

I32 = (1; 1; 1; 1; 1; 1; 1) 12929 14109 14720 35961 17461

Total improvement value 8.2% 31.8% 19.5% 33.3%

Figure 2. The total improvement value as a function of
the unit backlog in state 0.

certain amount, the total improvement value does
not grow considerably. It is implied that by increas-
ing the unit backlog cost, the improvement of the
total cost increases slowly and, therefore, knowing
the real unit backlog cost plays an important role

Figure 3. The total improvement value as a function of
the unit backlog in state 1.

in the structure of this model. Therefore, by
considering the low demand, the total improvement
value is highly dependent on the unit backlog cost.
However, in case of high or medium demand, this
dependence will not be too considerable. In general,
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Figure 4. The total improvement value as a function of
the unit backlog in state 2.

Figure 5. The total improvement value as a function of
the unit backlog in state 3.

Figure 6. The total improvement value as a function of
the unit backlog in state 4.

estimating the real demand and unit backlog cost is
very important in adopting a suitable CBM policy.

6. Conclusion

In this research, CBM decisions consisting of the
determination of suitable periods for inspection and
PM execution in single-product single-machine systems
were dependent on customer demand, while the ma-
chine deterioration process was modeled by applying
a continuous-time Markov chain. These decisions were
adopted to minimize the sum of inspection, PM, repair,
and backlog costs in which it is assumed that the
machine was minimally repaired upon failure and PM
was conducted to restore it to the `as-good-as-new'
status. The stochastic dynamic process framework was
employed to achieve this purpose.

The main contribution of this research is that in-
spection and PM decisions were dependent on customer
demand. This dependency initially prevented unneces-

sary inspection and PM operations, which were costly
and caused customer dissatisfaction due to delays in or-
ders. Secondly, it provided a basis for the integration of
production and condition-based maintenance planning.
Moreover, managers, generally limited in maintenance
budgets, would save considerable costs.

To solve the problem, all of the inspection schemes
were generated, for each of which the optimality equa-
tion of the model was solved via a back-ward recursive
algorithm. Finally, an optimal combination of the
inspection period and PM period was selected.

To analyze the e�ect of demand on the total cost,
the proposed model was solved in two situations. In
the �rst situation, by replacing zero instead of the unit
backlog cost, a pure CBM model was run. Instead,
in the second one, i.e., demand-driven CBM model,
the unit backlog cost was considered and demand was
taken into account. This model was run by four
di�erent demand vectors, namely low, medium, high,
and nominal demands, separately. The numerical
results illustrated that regardless of the initial machine
state, taking the demand into account by the CBM
model would reduce the total costs. Of course, this
reduction depends on the demand vector and the lost
production unit cost. This demand-driven CBM model
could be employed for each data collection and any
lifetime distribution. In the end, for future research,
it is recommended that other decisions of aggregation
production planning be incorporated into the proposed
models of this research. Moreover, establishing suf-
�cient conditions that guarantee the monotonicity in
both machine status and demand for the problem with
a similar situation in an in�nite time horizon can be
interesting.
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