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Abstract. This paper aims to introduce a novel bi-objective model for a Job Shop
Scheduling Problem (JSSP) in order to minimize makespan and maximum tardiness
simultaneously. Some realistic assumptions namely fuzzy processing times and due dates
involving triangular possibility distributions, transportation times, availability constraints,
modi�ed position-based learning e�ects on processing times, and sum-of-processing-times
based learning e�ects on duration of maintenance activities were considered to provide a
more general and practical model for the JSSP. Based on the learning e�ects, processing
times decrease as the machine performs an operation frequently and workers gain working
skill and experience. In this paper, based on DeJong's learning e�ect, a novel and modi�ed
formulation is proposed for this e�ect. According to the above-mentioned assumptions, a
novel Mixed-Integer Linear Programming (MILP) model for the JSSP is suggested. The
proposed model is �rst converted into an auxiliary crisp model, given that the model is
a possibilistic programming and is then solved by TH and "-constraint methods in the
case of small-sized instances. Finally, the results are compared. For medium- and large-
sized instances, �ve metaheuristic algorithms including Non-dominated Sorting Genetic
Algorithm (NSGA-III), Pareto Envelope-based Selection Algorithm (PESA-II), Strength
Pareto Evolutionary Algorithm (SPEA-II), NSGA-II, and Multi-Objective Evolutionary
Algorithm based on Decomposition (MOEA/D) are utilized, and the results are �nally
compared in terms of three performance metrics.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Owning to the theoretical challenges and many indus-
trial applications, the Job Shop Scheduling Problem
(JSSP) is undoubtedly worth further research and
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listed among the most important issues in the produc-
tion planning. Job shop scheduling is signi�cant as
it speci�es process maps and capabilities for most in-
dustries including painting, chemical, pharmaceutical,
textile, and automobile manufacturing. The present
paper seeks to de�ne a comprehensive version of JSSP
covering some of the practical assumptions including
fuzzy processing times and fuzzy due dates, prede-
termined multiple preventive maintenance activities,
learning e�ects on maintenance activities as well as
on processing times, and job-dependent transportation
times with the objectives of simultaneous minimization
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of makespan and maximum tardiness. Since the
model is original and only few benchmarks associated
with it exist, instances of three di�erent sizes are
generated randomly. For solving small-sized instances
to obtain optimal Pareto solutions, we utilize the
interactive method of Fuzzy Multi-Objective Decision-
Making (FMODM), called TH method, which was
proposed by Torabi and Hassini [1]. This method
managed to obtain an equivalent auxiliary single-
objective crisp model, which was then optimally solved
by GAMS. In addition, small instances are optimally
solved as well using the "-constraint method. Given the
complexity of the problem, �ve metaheuristics namely
Pareto Envelope-based Selection Algorithm (PESA-II),
Strength Pareto Evolutionary Algorithm (SPEA-II),
Non-dominated Sorting Genetic Algorithm (NSGA-
II and NSGA-III), and Multi-Objective Evolutionary
Algorithm based on Decomposition (MOEA/D) are
applied to tackling large- and medium-sized instances.
Three metrics including Space Metric (SM), Mean Ideal
point Distance (MID), and Quality Measure (QM) are
used to evaluate the Pareto solutions of the algorithms.
It is worth mentioning that despite the numerous
works performed on job shop scheduling, only two
studies have considered classic learning e�ects on JSSP.
This study provides a modi�ed formulation of learning
e�ects on this problem. Furthermore, to the best of our
knowledge, no study has investigated learning e�ects
on maintenance activities in scheduling problems; in
addition, no JSSP-related study has taken all the
mentioned assumptions into account.

2. Literature review

As a well-known scheduling problem, JSSP was in-
troduced by Muth and Thompson [2]. In standard
job shop systems, there must be m machines to
process n jobs, each of which is divided into di�er-
ent operations that are processed on a speci�c set
of machines based on a distinct routine. At most,
one job can be processed on each machine over a
�xed period of time. Most researchers have assumed
job processing times in classical scheduling problems
to be constant and known throughout the planning
horizon, while, in the vast majority of real situations,
they are reduced as a machine operates frequently,
or workers gain working skills and experiences. The
above phenomenon is called \learning e�ects". The
notion was �rst introduced to scheduling problems by
Biskup [3]. In a comprehensive review, Biskup [4]
classi�ed learning e�ects into two main types. In
the �rst type, achievement of learning depends on
how many jobs are processed; these are referred to as
position-based learning e�ects. This kind of learning
occurs in semi-automatic or fully-automatic operations.
In the second type, known as sum-of-processing-time

based learning e�ects, processing time is considered
for already-processed jobs, unlike in position-based
learning e�ects. If man is a signi�cant part of job
processing, this type of learning e�ects can be taken
into consideration. In a recent review paper, Azzouz
et al. [5] emphasized that despite the massive volume
of research conducted on di�erent types of schedul-
ing environments under the phenomenon of learning,
no study related to learning e�ects on JSSP exists.
However, recently, Mousavipour et al. [6] studied a
sequence-dependent setup time job shop scheduling
problem with availability constraints based on classic
position-based learning e�ects. They also provided an
Mixed-Integer Linear Programming (MILP) model for
JSSP based on learning e�ects and exible maintenance
activities [7]. Tayebi Iraqi et al. [8] considered the
classical position-based learning e�ects on the setup
times and the deterioration e�ects on the processing
times in exible job shop environments. They solved
the problem without presenting a mathematical model
in order to minimize the number of operations by
introducing a hybrid algorithm. Renna [9] studied ex-
ible job shop scheduling with learning and forgetting
e�ects. Okolowski and Gawiejnowicz [10] introduced a
novel learning curve in a parallel machine environment,
called DeJong's Learning Curve, and they proposed an
incompressibility index to make a distinction between
the manual and automatic parts of jobs. Lai and
Wu [11] proposed a new learning rate based on a
combination of machine-dependent and job-dependent
learning rates in a ow shop environment. They stated
that di�erent machines might exhibit di�erent learning
rates in practice. Vahedi Nouri et al. [12], Amirian and
Sahraean [13], Behnamian and Zandieh [14], Gao et
al. [15], and Mousavi et al. [16] addressed the learning
e�ects in the ow shop environment.

Another widely used assumption in classical JSSP
is that machines are always available. This is not the
case in the real world due to failure and maintenance
activities, which have been studied in the literature as
availability constraints. Schmit [17] and Ma and Chu
[18] conducted comprehensive reviews on scheduling
with availability constraints. Two main types of
deterministic availability constraints were considered.
The �rst one is �xed availability constraints in which
start time and duration of the maintenance activity
are already certain and �xed. In the second constraint,
start time of maintenance activity is exible and lies in
a speci�c time window. Machines may be unavailable
because of predetermined multiple preventive main-
tenance activities; thus, each machine is unavailable
once it has processed a given number of jobs. Hsu
et al. [19] studied this form of machine unavailability
in a single-machine scheduling problem. Xu et al. [20]
investigated it in the two-machine ow shop scheduling
problem. JSSP with consideration of predetermined



3420 S.H. Mousavipour et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 3418{3433

preventive maintenance activities was �rst considered
by Aggone [21] for a two-machine problem. It was
solved using the B&B algorithm based on disjunctive
graphs. Benttaleb et al. [22] provided two formulations
for a two-machine JSSP with availability constraint on
one machine. Tamssaouet et al. [23] addressed a JSSP
when machines were not always available due to �xed
periods of maintenance activities. They suggested a
mathematical model based on disjunctive graphs. A
sequence-dependent JSSP involving preventive main-
tenance for minimization of makespan was studied by
Naderi et al. [24], who proposed di�erent techniques
for integration of production scheduling with preven-
tive maintenance. Four metaheuristic methods were
proposed by them for solving the problems. Without
providing a mathematical model, they based their
models on simulated annealing and genetic algorithms.

In the current study, multiple �xed periods of
preventive maintenance on m machines are taken into
account. The innovation of this paper in terms of
availability constraints is that availability constraints
have been formulated based on the position-based
model of JSSP and under the phenomenon of learning
caused by repetition.

To the best of our knowledge, in previous stud-
ies where production scheduling and maintenance
operations were integrated, learning e�ects on the
maintenance operations were not taken into account.
Taraki et al. [25] investigated the learning e�ects on
maintenance outsourcing with the assumption that
an external contractor was responsible for performing
preventive maintenance activities. They assumed that
the contractor would learn through repetition and
prepare how to perform the preventive maintenance op-
erations more e�ciently. In this case, the maintenance
operational teams are assigned such that the learning
phenomenon occurs in order to reduce operation time
and, consequently, costs.

In the job shop environment, jobs are moving
between machines. Given the processing time, a job
may wait for processing once the operation before
it is completed. Magnitude depends merely on the
distance between the two consecutive machines for job-
independent transportation time, whereas this factor
depends on the distance and the job to be carried out
when transportation time is job dependent. Depending
on the transporter, there are two types of transporta-
tion system: single-transporter (limited) and multi-
transporter (unlimited) [26]. A generalized job shop
problem was considered by Hurink and Knust [27]
in which a single transport robot must transport the
jobs between the machines. The objective was to
specify a schedule with minimal makespan. Nouri et
al. [28] investigated a Job Shop scheduling Problem
with Transportation times and Many Robots (JSPT-
MR). For solving the problem, a hybrid metaheuristic

approach was proposed based on clustered holonic
multiagent model. The unlimited job-dependent trans-
portation times were considered.

Furthermore, recent research studies have increas-
ingly considered the inherent uncertainty in model
parameters, and uncertainty seems to be an insepa-
rable part of real-world problems. In this paper, the
assumption is that we have data of approximant values
of job processing times and due dates; consequently,
fuzzy parameters are applied. A large number of
papers have taken uncertainty into consideration as
fuzzy parameters in di�erent scheduling environments;
references [29{32] are only a few of them.

The remainder of this paper is organized as
follows. The mathematical formulation and validation
of the proposed model are provided in Section 3. The
applied exact and metaheuristic solution techniques are
detailed in Sections 4 and 5. Sections 6 and 7 provide
an evaluation and comparison of the results obtained
by the algorithms. Section 8 concludes the paper.

3. Model description

In the JSSP, there are m machines that are supposed to
process n jobs. Every job Jj contains L operations and
has a speci�c prede�ned sequence. Each machine mi
has k positions and is capable of processing only one
job at once, each of which can be processed by only
one machine at once. The jobs cannot be pre-empted,
that is, they must be processed without interruption.
The assumptions, decision variables, and notations in
our model are given below.

Assumptions
� The jobs cannot be pre-empted;
� Each machine can process a job once at most;
� At time zero, all of the jobs and all of the machines

are available;
� The due dates and processing times of the jobs are

assumed to be fuzzy parameters that have triangular
possibility functions; moreover, the processing times
are a�ected by DeJong's learning e�ect;

� R0 predetermined maintenance activities must be
applied to each machine, and their durations are
a�ected by the sum-of-processing-times-based learn-
ing e�ect;

� The processing times include the setup times;
� Transportation times between machines are consid-

ered to be job dependent;
� There is no limitation on transporter and mainte-

nance teams.

Notations
Indices
j Job index
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i Machine index
R Maintenance index
k Position index
l Operation index

Parameters and scalars
m Number of machines
n Number of jobs
R0 Number of maintenance activities on

each machine
V A large positive number
Pijk Processing time of job Jj on the kth

position of machine mi

Pij Normal processing time of job Jj on
machine mi

dj Due date of job Jj
�i Learning index of job processing on

machine Mi (�i � 0)
'j Learning index of job Jj ('j � 0)
�ij Learning index of job Jj on machine

mi

PmiR Rth maintenance activity on machine
mi

tiR Normal execution time of PmiR

tAiR Actual execution time of PmiR

yiRk A binary parameter that is 1 if the Rth
maintenance activity must be done
after processing the job on the kth
position of machine mi and 0 otherwise

rijl A binary parameter that is 1 if the lth
operation of the jth job is processed
on machine mi, and 0 otherwise

tpiji0 Time needed for transfer of job Jj from
machine mi to machine mi0

Decision variables
Cijk Completion time of job Jj if it is

scheduled in the kth position of
machine mi and 0 otherwise

Xijk A binary variable that is 1 if job Jj
is processed in the kth position of
machine mi and 0 otherwise

Cmax makespan
Lj Lateness of job Jj = fCj � djg
Tj Tardiness of job Jj = maxf0; Ljg
Tmax Maximum tardiness of jobs

3.1. Mathematical model
Wagner's [33] mathematical model is developed here
such that some practical assumptions like availability
constraints, learning e�ects, and transportation times
are taken into account. For modeling the learning

e�ects on the processing times of jobs, given that a
semi-automatic environment is assumed, an incom-
pressibility index (0 < M < 1) is applied for separating
the �xed machine time from the variable processing
time which is a�ected by learning from each other based
on DeJong's learning e�ect. Amirian and Sahraean [13]
de�ned each index separately for every job. In this
paper, the incompressibility index for each job is
de�ned on each machine, since a certain portion of
manual time may belong to each job on each machine.
Furthermore, the learning e�ect is considered as job-
and machine-dependent learning; for example, in [11],
the learning parameter was obtained from the sum
of the learning parameters for the machines and the
learning parameters for the jobs. Accordingly, the
modi�ed learning e�ect on processing times is de�ned
as follows:

pijk = pijk(Mij + (1�Mij)�K�ij );

�ij = ai + 'j : (1)

Here, �i < 0 and 'j < 0 are the learning indices of
machine mi and job Jj , respectively, �ij denotes the
job-machine-dependent learning index for job Jj on
machine mi, Mij is incompressibility index of job Jj
on machine mi, and k is the position of job in the
sequence.

Similar to the referenced works [12] and [13],
multiple �xed preventive maintenance activities on
each machine were considered such that at least
one maintenance activity on each machine must be
scheduled to minimize unexpected breakdowns and
improve lifespan with this di�erence that learning
e�ects have been considered on maintenance activities.
The runtime of outsourcing preventive maintenance
activities is assumed to be a�ected by learning e�ects
from repetition. Since maintenance operations are
usually manual ones that are subject to the operator's
intervention, the learning e�ects are considered, as in
the work of Yang and Kou [34], according to the sum
of processing times; the di�erence is that a separate
learning rate is assumed for each machine.

tAiR = tiR
�

1 +
XR0�1

R=1
tAiR

�!i
: (2)

Here, !i < 0 is the learning index of maintenance
operations on machine mi. Of note, in this study,
autonomous learning e�ects were assumed. In this type
of learning e�ects, training has no impact on learning
rate and this rate is subject to the repetition of jobs
and operator's experience. Other types of learning
e�ects called induced learning e�ects are a�ected by
training. In real situations, the values of these indices
are obtained experimentally via learning curves.

Furthermore, the due dates and processing times
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are assumed to be fuzzy numbers having the triangular
possibility distribution:

~pij = (ppij;
m
pij;

o
pij); (3)

~dj = (pdj;
m
dj;

o
dj); (4)

where
�
p p
pij dj

�
are the pessimistic values,

�
m m
pij; dj

�
the probable values, and

�
o o
pij; dj

�
the optimistic

values of processing time and due date, which are
determined by the decision-maker.

A novel bi-objective possibilistic mixed-integer
linear programming model is presented below based on
the assumptions stated above:

Min Z1 = Cmax; (5)

Min Z2 = Tmax; (6)

s.t.:X
k

Xijk = 1 8i = 1; :::;m ; j = 1; :::; n; (7)

X
j

Xijk = 1 8i = 1; :::;m ; k = 1; :::; n; (8)

X
j

Cijk +
X
j

Xijk+1 � ~pijk+1

+
R0X
R=1

yiRk � tAiR �
X
j

Cjjk+1

8i = 1; :::;m k = 1; :::; n� 1; (9)X
i

rijl � Cijk +
X
i0
ri0jl+1 �Xi0jk � ~p

i0jk

+
X
i

X
i0
rijl � ri0jl+1 � tpiji0

� V

 
1�X

i

rijl �Xijk

!
+ V

�
 

1�X
i0
ri0jl+1 �Xi0jk

!
+
X
i0
ri0jl+1

�Ci0Jk
8j = 1; :::; n; l = 1; :::;m� 1; k = 1; :::; n; (10)

Cijk � V �Xijk

8i = 1; :::;m; j = 1; :::; n; k = 1; :::n; (11)

Cj �X
k

C[last machine]jk 8j = 1; :::; n; (12)

X
k

C[1]jk �
X
k

X[1]jk � P[1]jk 8j = 1; :::; n; (13)

Cj � ~dj � Tj 8j = 1; :::; n; (14)

Cmax � Cj 8j = 1; :::; n; (15)

Tmax � Tj 8j = 1; :::; n; (16)

Cj ; Tj � 0 8j = 1; :::; n; (17)

Xij 2 f0; 1g 8i = 1; :::;m ; j = 1; :::; n: (18)

In this model, the �rst equation represents the �rst
objective function aimed at minimizing makespan.
The second equation represents the second objective,
consisting of minimizing maximum tardiness. It is
worth mentioning that even though Tmax and Cmax are
naturally similar, Cmax depends on the characteristics
of the last job on each machine and Tmax may be
obtained by a job other than the last job; consequently,
decreasing/increasing Cmax does not necessarily de-
crease/increase Tmax.

According to Constraints (7) and (8), each job
may be assigned to only one position on each machine,
and each position can involve only one job. The
completion times of a job on di�erent machines are
calculated by Constraint (9) based on their actual
processing times and the actual operation times of
maintenance activities. Constraint (10) is the prece-
dence constraint. It ensures that a job has all its
operations executed in the given order and considers
transportation times. Eq. (11) states the completion
time of job Jj if scheduled in the kth position on
machine mi, and it is 0 otherwise. The completion
times of di�erent jobs are computed by Constraints
(12) and (13). Constraints (14){(16) calculate Cmax
and Tmax; Constrains (17) and (18) de�ne positive and
binary variables.

3.2. Validity of model
This model is an original model; consequently, we have
no access to the benchmark instances. To verify this
model, a Gantt chart was applied, as shown in Figure 1.

A small problem comprises two jobs and three ma-
chines, and one predetermined preventive maintenance
activity for each machine is managed. For simplicity,
the same learning and incompressibility indices were
considered for all jobs and machines. Furthermore,
only makespan is minimized. The crisp processing
times of jobs a�ected by learning e�ects, sequence
of jobs processing generated randomly, durations of
maintenance activities, and transportation times are
shown in Table 1. Learning indices, incompressibility
index, and actual values of processing times are given
in Table 2.
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Table 1. Input data of validation sample problem.

Normal processing times: Sequence of jobs processing:
j1 j2

m1 60 85 j1 : (m1 �m2 �m3)
m2 50 45 j2 : (m2 �m1 �m3)
m3 30 25

Predetermined maintenance activities: Duration of maintenance activities
y111 = 1 t11 = 8
y211 = 1 t21 = 10
y311 = 1 t31 = 15

Transportation matrix m1 m2 m3

tpiji0

m1 � j1 0 6 10
m1 � j2 0 4 2
m2 � j1 5 0 8
m2 � j2 12 0 9
m3 � j1 11 3 0
m3 � j2 7 10 0

Table 2. Learning indices and actual jobs processing times of validation sample problem.

Learning indices: Actual processing times (pijk):
Position 1 Position 2

Learning index of machine mi ai = �0:15 m1 � j1 60 52.8
Learning index of job jj 'j = �0:10 m1 � j2 85 74.8

Incompressibility index Mij = 0:25

m2 � j1 50 44
m2 � j2 45 39.6
m3 � j1 30 26.4
m3 � j2 25 22

Figure 1. Gantt chart of validation sample problem.

According to the suggested model, the optimal
value of makespan is 185. There are 8 feasible solutions
to this problem. These solutions contain decision
variables with a value of 1 and the corresponding
makespan is as follows:

x111; x122 x221; x212 x311; x322 Cmax = 185
x111; x122 x221; x212 x321; x312 Cmax = 209:2
x121; x112 x211; x222 x321; x312 Cmax = 239:2
x111; x122 x211; x222 x311; x322 Cmax = 274:4
x121; x112 x211; x222 x311; x322 Cmax = 279:8
x121; x112 x221; x212 x321; x312 Cmax = 294:4
x111; x122 x211; x222 x321; x312 Cmax = 320:8
x121; x112 x221; x212 x311; x322 Cmax = 335

The solutions indicate that the optimal makespan
determined by the suggested model is 185 and this
value is approved by Gant chart. In consequence, Gant
chart con�rms the validity of the suggested model.

4. Solution methodology

To achieve the optimal Pareto front for small-sized
instances, the TH and "-constraint methods were
applied. The proposed model is �rst converted into
an auxiliary crisp model given that it is a possibilistic
programming model and is then solved by the TH
method. The "-constraint method is used further to
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solve the crisp bi-objective model, and a comparison
is made between the results. The fuzzy parameters
undergo defuzzi�cation using the weighted average
method based on which those on the left sides of
Constraints (9), (10), and (14) are converted into
crisp numbers, and the corresponding auxiliary crisp
constraints are given below:X

j

Cijk +
X
j

Xijk+1

��W1P pijk+1;� +W2Pmijk+1;� +W3P oijk+1;�

�
+

R0X
R=1

yiRk � tAiR �
X
j

Cijk+1

8i = 1; :::;m; k = 1; :::; n� 1; (19)X
i

rijl � Cijk +
X
i

rijl+1�Xijk

��W1P pijk;� +W2Pmijk;� +W3P oijk;�
�

+
X
i

X
i0
rijl�ri0jl+1 � tPiji0

� V
 

1�X
i

rijl �Xijk

!

+V

 
1�X

i0
ri0jl+1 �Xi0jk

!
+
X
i0
ri0jl+1 � Ci0jk

8j = 1; :::; n; l = 1; :::;m� 1; k = 1; :::; n; (20)

Cj � (W1dpj:� +W2dmj:� +W3doj:�) � Tj
8j = 1; :::; n: (21)

Decision-makers usually decide on the value of � as the
minimal acceptable possibility. It is worth mentioning
that events with a possibility equal to or greater than
� are acceptable. W1 is the most pessimistic, W2
the most possible, and W3 the most optimistic fuzzy
parameter. Lay and Huang [35] suggested the values
of these parameters as follows:

� = 0:5; W1 = 1=6; W2 = 4=6;W3 = 1=6: (22)

Based on these proposed values, the expression of
the auxiliary crisp Bi-Objective Mixed-Integer Linear
Programming (BOMILP) is as follows:

Min z = [Z1; Z2] : (23)

s.t.:
X 2 F (X); (24)

where X and F (X) represent the possible continuous
and binary variable solution vectors in the original
model and the possible area including crisp constraints,
respectively.

4.1. TH method
Based on [32], the stages of TH are listed below:

1. Developing a BOMILP for the problem by deter-
mining the triangular possibility distribution for
fuzzy due times and fuzzy processing times.

2. Obtaining the auxiliary crisp BOMILP model.
3. Calculating the Positive and Negative Ideal Solu-

tions (PIS and NIS, respectively) for each of the
objective functions as follows:

ZPIS1 = Min Cmax s.t.: X 2 F (X); (25)

NNIS
1 = Max Cmax s.t.: X 2 F (X); (26)

NPIS
2 = Min Tmax s.t.: X 2 F (X); (27)

NNIS
2 = Max Tmax s.t.: X 2 F (X): (28)

4. Assigning a linear membership function to each
objective function as follows:

�Z1 (X) =8><>:
1 Z1 < ZPIS1
ZNIS1 �Z1
ZNIS1 �ZPIS1

ZPIS1 � Z1 � ZNIS1

0 Z1 > ZNIS1

(29)

�Z2 (X) =8><>:
1 Z2 < ZPIS2
ZNIS2 �Z2
ZNIS2 �ZPIS2

ZPIS2 � Z2 � ZNIS2

0 Z2 > ZNIS2

(30)

5. Obtaining the equivalent crisp single-objective
model:

Max � (x) = �0 + (1� )
X

�h�zh ; (31)

s.t. �0 � �zh(X) h = 1; 2; (32)

X 2 F (X) ; (33)

�0;  2 [0; 1] : (34)

Here, �zh(x) indicates the degree of satisfaction of
the hth objective function, and �0 = min(�Zh(X))
is its minimum satisfaction degree. h represents
the importance degree of the hth objective func-
tion, determined by the decision-maker, but the



S.H. Mousavipour et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 3418{3433 3425

important point is that
P
h �h = 1 and �h > 0.

The decision-maker determines the values of �h
parameters linguistically. � is the compensation
coe�cient, which is a dynamic parameter lying at
the interval [0,1].

6. Determining the compensation coe�cient and the
signi�cance with the objectives and solving a single-
objective model. After solving this model, we will
stop if the decision-maker agrees on the solutions;
otherwise, we will return to the third step changing
the controllable values ; and �.

4.2. Epsilon constraint method
To solve multi-objective problems exactly, the epsilon
constraint method was applied, as well. In this method,
the problem is �rst solved considering every objective
function separately for obtaining the lower and upper
bounds of the Pareto frontier. Then, one of the
objective functions is considered as a constraint as
follows:

Min f(x); (35)

s.t.:

fi (x) � "i for all i = 1; 2; ::: (36)

The �rst and second objective functions are considered
as the main objective and a constraint, respectively.
" lies between two values of the second objective
function: the one when the �rst objective function is
optimized and the optimal one.

5. Metaheuristic algorithms

As mentioned before, �ve metaheuristic algorithms are
applied to solve instances of large and medium sizes.
These algorithms are briey investigated in the present
section. NSGA-II was introduced by Deb [36]. It
uses an elitism-based non-dominated sorting method to
rank and sort the individuals, preserving the diversity
between the Pareto optimal solutions that have been
obtained by applying a crowding distance approach
in the section operator. Evaluation is �rst applied
to the objective functions for each of the solutions,
and di�erent non-domination levels are formed as the
entire population is then sorted. The population

is sorted in ascending order in the second step of
non-dominated sorting, and the lowest and highest
values of each objective function are then chosen as its
boundary values, which are assigned an in�nite value
of crowding distance. Next, the normalized di�erence
in the value of the objective function is used as a basis
for calculation of the crowding distance between any
two neighboring solutions. In SPEA-II introduced by
Zitzler et al. [37], an external archive including the last
non-dominated solutions was updated following each
generation and the value of strength was calculated
for every solution. The �tness of each individual was
obtained based on these computed strength values.
Region-based selection was suggested in line with the
proposal of Corne et al. [38], i.e., PESA-II, in which se-
lection is made in terms of hyperboxes in the objective
space that are assigned selective �tness. The method
aims to reduce computational cost in Pareto ranking
[39]. NSGA-III is one of the most powerful techniques
among the present non-dominated solutions introduced
by Deb and Jain [40] for overcoming the shortcomings
of NSGA-II, including the lack of a lateral diversity-
preserving operator and uniform diversity. A multi-
objective evolutionary algorithm based on decomposi-
tion (MOEA/D) was proposed by Zhang and Li [41];
this method decomposes a multi-objective optimization
problem into sub-problems, optimizing it at the same
time.

5.1. Solution representation
JSSP is an NP-hard problem [42]. Exact methods
exhibit impractical computational times for medium
and large instances; therefore, it is inevitable to apply
proper and e�cient solution methods for solving these
types of problems. A string of decimal numbers is
applied to present the solution. The solution repre-
sentation should represent only one solution to the
problem. The string is as long as \the number of
machines" � \the number of jobs". Each string is
divided into machines, and each section is arranged in
ascending order. In each section, order of arranged
numbers determines the sequence of jobs that should
be processed by the corresponding machine. Figures 2
and 3 show this procedure.

An initial solution to the problem is generated via
a heuristic method which generates the �rst feasible

Figure 2. Solution representation.
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Figure 3. A feasible solution.

Figure 4. Generating an initial solution (sequence of jobs
processed on machine mi).

solution for each machine greedily. In this procedure,
random numbers between one and number of jobs
are generated for each machine; \ones" determine the
initial sequence of jobs being processed on machines,
as shown in Figure 4. Problem solutions should be
simulated for gaining the objective function values of
the problem; therefore, the value of competition time
of each job is computed with consideration of e�ects
of learning on processing times of jobs and duration
of maintenance activities besides transportation times.
The value of tardiness for each job is also computed
with regard to the due dates of jobs.

6. Comparison criteria

To make a comparison between multi-objective algo-
rithms, it is necessary to introduce certain criteria
that can evaluate the Pareto solutions. In this pa-
per, three criteria are used for evaluating the Pareto
solutions; in these criteria, n denotes Non-Dominated
Solutions (NDS) set size, and fki and fkj , I =
j = 1:::n, and k = 1; 2 indicate the values of the
kth objective function for the ith and jth solutions,
respectively.

6.1. Spacing Metric (SM)
Srinivas and Deb [43] applied this type of metric,
indicating the dispersion of the Pareto solutions. SM
is de�ned as follows:

SM =

vuut 1
n� 1

nX
i=1

�
di � �d

�2; (37)

di = min
j
fjf1i � f1j j+ jf2i � f2j jg ;

i; j = 1; 2; :::; n; i 6= j; (38)

d =
Pn
i=1 di
n

: (39)

In fact, lower values of SM are more suitable and
represent lower Pareto dispersion.

6.2. Mean Ideal point Distance (MID)
The distance from the ideal point (0, 0) to the obtained
Pareto solutions is indicated by MID. The de�nition of
the metric is shown below:

MID =
Pn
i=1 Ci
n

; (40)

Ci =
rXk

k=1
fki2: (41)

A Pareto front with a lower value of MID is more
appropriate.

6.3. Quality Measure (QM)
This criterion, proposed by Scha�er [44], considers
the number of �nal NDS determined by each of the
algorithms. Clearly, the algorithm that enjoys a greater
QM value exhibits higher performance.

7. Computational results

For testing and analyzing the e�ciency and validity
of the proposed mathematical model, several small-,
medium-, and large-sized instances are created ran-
domly. CPLEX solver of GAMS 24.8.5 is used for
solving the instances of small size exactly, and the
results of the TH and "-constraint methods are re-
ported. However, the optimal solutions to problems of
large and medium sizes cannot be found using GAMS
within a logical time span; here, the MOEA-D, PESA-
II, SPEA-II, NSGA-II, and NSGA-III algorithms are
used. A comparison is made between the results based
on the criteria to be introduced in the next sections.
MATLAB 2015 and a PC with a Core i5 2.5GHz CPU,
3MB cache, and 4GB RAM were used for coding these
algorithms.

7.1. Generation of mathematical instances
Due dates and processing times are assumed to be fuzzy
parameters, and the symmetric triangular possibility
distributions are shown below:

~Pij = (Pij � uij ; Pij ; Pij + uij ) ; (42)

~dj = (dj � uj ; dj ; dj + uj ) ; (43)

where Pij and dj are the probable due date and
processing time values, and uij and uj are the values of
extension of these fuzzy numbers. Table 3 briey shows
the data generation method for random instances.
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Table 3. Data generation for random instances and the TH method.

Notation Parameter Value
m Number of machines f3; :::; 18g
n Number of jobs f2; :::; 14g
Pij Normal processing time of job Jj on machine mi Uniform distribution (5, 200)
dj Due date of job Jj Uniform distribution (250, 750)
R0 Number of maintenance activities performed on each machine f1; :::; 6g
�i Learning index of machine mi Uniform distribution (�0:9;�0:1)
'j Learning index of job j Uniform distribution (�0:9;�0:1)
!i Learning index of pmi Uniform distribution (�0:9;�0:1)
tiR Normal maintenance execution time Uniform distribution (5, 50)
yiRk Maintenance position Uniform distribution f1; 2; :::; n� 1g
tpiji0 Transportation time Uniform distribution (5, 150)
Mij DeJong's parameter f0:25; 0:5g
 Coe�cient of compensation in the TH method f0; 0:1; :::; 1g
�h Importance level of the hth objective function in the TH method �1 = �2 = 0:5

uij , uj Extension values of these fuzzy numbers U [4; 10]

Table 4. Speci�cations of the small-sized instances.

Instance
no.

Representation No. of
constrains

No. of
decision variables

No. of
machines

No. of
jobs

No. of
maintenance

activities
for each
machine

1 3� 2� 1 57 34 3 2 1
2 3� 3� 2 125 67 3 3 2
3 3� 4� 2 235 112 3 4 2
4 4� 4� 2 326 144 4 4 2
5 3� 5� 2 399 169 3 5 2

Table 5. Positive and negative ideal solutions for the small-sized instances.

Instance no. Representation Z1PIS Z1NIS Z2PIS Z2NIS

1 3� 2� 1 284.64 284.64 242 242
2 3� 3� 2 164.597 193.349 18.752 44.597
3 3� 4� 2 233.52 240.89 62.89 71.26
4 4� 4� 2 271.43 324.5 171.18 178.83
5 3� 5� 2 278.74 315.53 130 133.74

Each instance is designed as \a:b:c", in which \a"
indicates the number of machines, \b" is the number of
jobs, and \c" is the number of maintenance activities.
Instances are divided into three groups: small-sized
instances with \a:b:c � 75", medium-sized instances
with \a:b:c � 150", and large-sized instances with
\a:b:c > 150". These ranges are determined based on
previous studies in the JSSP. Predetermined sequence
of each job on every machine is generated randomly,
as well. Of note, problems are handled by di�erent
learning e�ects, but for the sake of simplicity, the same
learning rates are considered for all machines and all
jobs in each problem.

7.2. Comparison of the exact methods
The results obtained for the instances of small sizes
are discussed. Five types of the small-sized sample
are taken into account with di�erent jobs, machines,
and maintenance activity combinations. A numerical
instance is generated randomly for each sample. The
speci�cations of each instance are presented in Table 4.

MILP model is solved separately for computation
of the values of positive and negative ideal solutions
(PIS and NIS, respectively) for each instance, as
illustrated in Table 5.

GAMS is used for solving the TH mathematical
model for each of the instances, given the positive
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Table 6. Results of the TH method for Instances 2 and 3.

3� 4� 2 3� 3� 2

� Z1 Z2 �1 �2 Z1 Z2 �1 �2

0 240.89 62.89 0 1 193.349 18.752 0 1

0.1 233.52 71.26 1 0 193.349 18.752 0 1

0.2 233.52 71.26 1 0 186.954 27.212 0.222 0.673

0.3 233.52 71.26 1 0 186.954 27.212 0.222 0.673

0.4 235.81 69.89 0.689 0.164 186.954 27.212 0.222 0.673

0.5 235.81 69.89 0.689 0.164 186.954 27.212 0.222 0.673

0.6 235.81 69.89 0.689 0.164 186.954 27.212 0.222 0.673

0.7 235.81 69.89 0.689 0.164 186.954 27.212 0.222 0.673

0.8 235.81 69.89 0.689 0.164 186.954 27.212 0.222 0.673

0.9 235.81 69.89 0.689 0.164 186.954 27.212 0.222 0.673

1 235.81 69.89 0.689 0.164 186.954 38.848 0.222 0.222

Figure 5. TH optimal Pareto frontier for Instance 3.

and negative ideal solution values obtained for every
objective function. The TH optimal Pareto solutions to
Instances 2 and 3 are presented in Table 6. In addition,
Figures 5 and 6 depict these points.

Given the results obtained by the TH method,
when the importance levels are equal, it can be
observed that the values obtained for the objective
functions are the same in many cases, i.e., the so-
lutions obtained based on TH are almost balanced
and compromised. It should be noted that two or
three Pareto fronts can be obtained upon making
changes to the controllable parameters, such as \"
and \�". The "-constraint method is also used for
solving the BOMILP model. Comparison is made
between the results of these two exact methods in
terms of three performance metrics. According to the

Figure 6. TH optimal Pareto frontier for Instance 2.

�ndings, "-constraint provides decision-makers with
another Pareto front that has produced more solutions
in terms of diversity, enjoying higher quality. Table 7
shows these results for Instances 2 and 3. Figures 7 and
8 depict these points. For indicating the learning e�ects
on the objective functions, Table 8 illustrates their
values for Instances 2 and 3 without regard to learning
e�ects. The compared objective function values with
respect to the learning e�ects (Table 7) and regardless
of learning e�ects (Table 8) indicate the e�ects of
learning on improvement of the objective functions.

The results of these two methods are compared
through the application of comparison metrics. As
can be seen from Table 9, in spite of the higher
diversity of the results of "-constraint, it exhibits better
performance for MID and QM metrics.
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Table 7. Results of "-constraint for Instances 2 and 3
given learning e�ects.

3� 3� 2 3� 4� 2

Z1 Z2 Z1 Z2

193.349 18.752 240.89 62.89

193.349 21.624 240.89 63.820

193.349 24.469 240.89 64. 750

193.349 27.367 240.89 65.680

186.954 27.367 240.89 66.610

186.954 30.239 240.89 67.540

186.954 33.111 240.89 68.470

186.954 35.982 240.89 69.400

186.954 38.854 235.81 70.330

164.597 44.579 233.52 71.260

Figure 7. "-constraint optimal Pareto frontier for
Instance 2.

7.3. Comparison of metaheuristic methods
The exact methods are inapplicable solution techniques
since the large-scale instances are highly complex.
Consequently, �ve metaheuristic methods are applied
to tackle the instances of large and medium sizes. For
validation of the metaheuristic methods for the large-
scale problems, the results of the exact and meta-
heuristic methods for the instances of small size are
compared. As shown in Table 10, these methods can
�nd optimal Pareto solutions to small-sized problems.

On the other hand, �ve instances of medium size
and �ve instances of large size are generated randomly.
Five metaheuristic algorithms are used for solving
them, and the comparison of metric calculation results
is reported. Table 11 illustrates these results. As can
be seen from Figure 9, with regard to Quality Measure,

Table 8. Results of "-constraint for Instances 2 and 3
regardless of learning e�ects.

3� 3� 2 3� 4� 2
Z1 Z2 Z1 Z2

222.36 49.5 277 85.50
222.36 52.567 277 89.333
222.36 58.035 277 93.167
222.36 62.434 277 97
222.36 66.986 277 100.833
222.36 70.033 277 104.667
222.36 73.564 277 108.5
222.36 75.162 277 112.333
222.36 80.350 277 116.167
204.435 85.423 277 120

Figure 8. "-constraint optimal Pareto frontier for
Instance 3.

Figure 9. Quality measure of metaheuristic algorithms.

NSGA-II obtains higher NDS, followed by NSGA-III,
MOEA/D, SPEA-II, and PESA-II. As for Spacing
Metric, Figure 10 clari�es that NSGA-III exhibits the
best uniformity in the spread of the points, followed by
PESA-II, SPEA-II, and NSGA-II, orderly. MOEA/D
was ranked last. Figure 11 reveals that the lowest MID
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Table 9. Comparison of the TH and "-constraint methods.

"-constraint method TH method

Representation SM MD QM SM MD QM

3� 2� 1 7.8 518.77 1 7.8 518.77 1

3� 3� 2 9.72 184.61 0.75 3.2 191.58 0.75

3� 4� 2 3.689 246.48 0.75 4.28 246.33 0.75

4� 4� 2 3.65 341.09 1 0 358.5 0.75

3� 5� 2 1.868 319.66 1 0 330.17 0.75

Mean 5.34 322.13 0.9 3.05 329.07 0.8

Table 10. Comparison of the metaheuristic algorithms for the instances of small sizes (the metaheuristics values are the
best values in 10 runs).

NSGA-II NSGA-III SPEA-II PESA-II MOEA/D

Instance Representation SM MID QM SM MID QM SM MID QM SM MID QM SM MID QM

1 3� 2� 1 7.8 518.77 1 7.8 518.77 1 7.8 518.77 1 7.8 518.77 1 7.8 518.77 1

2 3� 3� 2 9.72 184.61 1 9.72 184.61 1 9.72 184.61 1 9.72 184.61 1 9.72 184.61 1

3 3� 4� 2 3.68 246.55 0.75 2.54 247.45 0.75 3.68 246.55 0.75 3.68 246.55 0.75 2.72 247.46 0.33

4 4� 4� 2 3.65 341.09 1 3.65 341.09 1 3.65 341.09 1 3.65 341.09 1 3.65 341.09 1

5 3� 5� 2 1.87 319.66 1 1.87 319.66 1 1.87 319.66 1 1.87 319.66 1 1.87 319.66 1

Mean 5.344 322.13 0.95 5.15 322.19 0.95 5.37 322.13 0.95 5.37 322.13 0.95 5.18 322.31 0.86

Figure 10. Spacing metric of metaheuristic algorithms.

belongs to NSGA-III and then, NSGA-II, MOEA/D,
SPEA-II, and PESA-II are characterized by high to low
performance. According to this relationship, NSGA-II,
NSGA-III, and MOEA/D exhibit better performance
and obtain higher NDS for the medium- and large-sized
instances. It is necessary to mention that parameters
of algorithms have been tuned through trial and error.

8. Conclusion

The present paper proposed a new bi-objective model
for the job shop scheduling problem given fuzzy due
dates and processing times, modi�ed DeJong's learning
e�ect on job processing times, the sum-of-processing-

Figure 11. Mean ideal point distance of metaheuristic
algorithms.

time learning e�ect on execution times of mainte-
nance activities, machine availability constraints, and
transportation times. With these assumptions, the
Job Shop Scheduling Problem (JSSP) seemed more
practical in real-world applications. The objective
was to minimize makespan and maximum tardiness
simultaneously. The original model was converted into
one of the auxiliary single-objective crisp types through
the application of the TH method, with optimal Pareto
solutions obtained for the small-sized problems. On
the other hand, the "-constraint method was used
for solving the bi-objective crisp model and this type
of problem exactly. Based on the comparison of
the results of these two methods in terms of three
performance metrics, the results of the "-constraint
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Table 11. Comparison of the metaheuristic algorithms for the instances of large and medium sizes.

NSGA-II NSGA-III SPEA-II PESA-II MOEA/D

Instance Representation SM MID QM SM MID QM SM MID QM SM MID QM SM MID QM

6 5� 6� 3 6.6 522.07 0.83 6.6 522.07 0.83 4 522.27 0.33 22 526.27 0.16 4 522.27 0.33

7 6� 6� 3 4.2 717.75 0.5 2.18 718.19 0.5 0.15 735.9 0 0.15 769.31 0 0.15 722.1 0.25

8 7� 7� 3 0.3 1071.07 0.75 0 1102.3 0.33 22 1194.93 0 3.82 1259.96 0 1 1208.39 0

9 8� 6� 3 3.5 827 0.25 0.5 825 0.5 4.8 1004.82 0.125 3.5 967 0.25 4 904 0.25

10 8� 9� 3 29 2552.08 0.25 0 2469.81 0.25 23.5 2503.69 0 0 2672.33 0 7.1 2390 0.5

11 10� 9� 3 31.78 2259.98 0.75 7.6 2472.43 0 1.4 2573 0 0 2594.6 0 0 2269.17 0.25

12 12� 10� 5 20 7253.8 0 0 7290.42 0 0 6714.4 1 0 7494.5 0 0 7076 0

13 14� 8� 6 6.5 4752.48 0.28 15.5 4692.38 0.28 24 4624.53 0.14 30 4662.96 0.14 29.4 4673.61 0.14

14 16� 12� 6 9.5 8124.08 0.66 0 8277.24 0.33 18 8513.43 0 44 8779 0 88.5 8759.79 0

15 18� 14� 6 0 4107 0.33 0 3862 0.33 0 4702 0 0 4137.5 0.33 0 4170.3 0

Mean 11.13 3218.73 0.46 3.23 3223.18 0.33 10.87 3308.94 0.15 10.34 3510.24 0.08 15.03 3269 0.17

method provided the decision-maker with an additional
Pareto front, which produced more solutions in terms of
diversity and enjoyed higher quality. Considering two
small instances with and without learning e�ects shows
the e�ects of learning on improvement of objective
functions. Five di�erent metaheuristics were applied
to the problems of large and medium sizes. The
validity of the metaheuristic methods for the large-
scale problems was veri�ed by comparing the results of
solving small-sized instances using these methods with
those of the exact methods. On the other hand, the
results obtained for the large and medium problems
compared in terms of the three metrics indicated that
although these algorithms were ranked as NSGA-III
(Non-dominated Sorting Genetic Algorithm), PESA-II
(Pareto Envelope-based Selection Algorithm), SPEA-
II (Strength Pareto Evolutionary Algorithm), NSGA-
II, and MOEA/D (Multi-Objective Evolutionary Al-
gorithm based on Decomposition) in terms of Spacing
Metric (SM), they were sorted as NSGA-II, NSGA-
III, MOEA/D, SPEA-II, and PESA-II based on the
other two metrics (i.e., QM and MID), thus showing
the performance of the algorithms. It is suggested
for future works that similar models be de�ned in
the environment of a multi-objective exible job shop
or open shop or to consider constraints like exible
maintenance activities and sequence-dependent setup
times.
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