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Abstract. In this paper, a new algorithm for solving bi-level optimization problems is
presented. This algorithm can obtain an optimal or near-optimal solution for any bi-level
optimization problem. The decision variables of the �rst- and second-level models can
be both integers and continuous. In this method, by solving a certain number of the bi-
objective programming models and, then, solving the corresponding second-level model, a
bi-level feasible solution that is either optimal or near-optimal is identi�ed. To evaluate the
e�ciency of the algorithm, the value of the objective function and its computation time
in di�erent instances are compared with those associated with exact methods as well as
evolution-based methods. The numerical results con�rm the high e�ciency of the proposed
algorithm.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

The bi-level programming is a problem that involves
two decision-makers. The �rst decision-maker is called
`leader' and the second decision-maker is called `fol-
lower'. Some of the variables are identi�ed by the
leader and, then, the others are identi�ed by the
follower. The objective function and the leader's
constraints may include the decision variables of the
follower, and vice versa. In the bi-level programming
process, the leader �rst determines the values of its de-
cision variables. Then, the follower determines the val-
ues of its decision variables by solving a mathematical
model considering the leader's decisions. The process
of implementing the bi-level optimization problems is
as follows:
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Step 1: The leader considers values for �rst-level
decision variables;

Step 2: The follower receives the values of the
leader's variables and inserts them as parameters into
the second-level model;

Step 3: The follower solves the second-level mathe-
matical model and determines the optimal values for
the second-level decision variables;

Step 4: The leader receives the values of the
follower's variables;

Step 5: The leader calculates the value of the �rst-
level objective function;

Step 6: The leader will check whether the �rst-level
constraints are in place;

Step 7: The leader wants to determine the values of
the �rst-level decision variables in such a way that due
to the follower's reaction, the �rst-level constraints
are satis�ed and the �rst-level objective function is
optimized.
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The bi-level optimization problems are expressed in
general terms using mathematical and vector symbols
in the following form:

max
X

: f1(X;Y ); (1)

s.t.:

g1(X;Y ) � 0; (2)

max
Y

: f2(X;Y ); (3)

s.t.:

g2(X;Y ) � 0: (4)

The following de�nitions are used in the above equa-
tions:
X Vector of decision variables for the

leader
Y Vector of decision variables for the

follower
f1(X;Y ) Leader objective function
g1(X;Y ) � 0 Leader constraints set
f2(X;Y ) Follower objective function
g2(X;Y ) � 0 Follower constraints set

Bi-level programming problems can be converted
into an MIP problem. The problems simply involve
linear mathematical models for the leader and the
follower and their decision variables are continuous.
In this case, using the Karush-Kuhn-Tucker (KKT)
conditions, we can transform the follower model into
a series of constraints. Then, by placing them into
the constraints of the leader, a nonlinear model is
created. This non-linearity is due to the constraints
of the complementary slackness. By using binary
variables, these terms can be linearized to create a
(Mixed Integer Programming) MIP model. However,
this model can only be solved in small sizes, and as
the number of variables and constraints of followers
increases, the number of binary variables will increase,
too. Computational experience has indicated the need
for longer computational time.

In a state where possible values of the leader's
decision variables are discrete and the number of
possible states for them is not high, we can identify
an optimal solution using the complete enumeration
method. If the number of possible solutions is high
for the leader, then the computational time of this
method will be very long and time-consuming. How to
utilize the complete enumeration method and KKT and
MIP method is described in the section of the general
formulation.

Given that there has not been an exact method
that can identify the optimal solution for a variety of

bi-level optimization problems in an acceptable time,
designing a method that can identify optimal or near-
optimal solutions in a short time is crucial. In this
paper, using fuzzy normalization, goal programming,
and concepts of bi-level optimization, we introduce
an algorithm that can �nd optimal or near-optimal
solutions to a variety of bi-level optimization problems.
In these problems, models of leader and follower can
be solved using the following methods: LP (Linear
Programming), NLP (Non-Linear Programming), MIP
(Mixed Integer Programming), and MINLP (Mixed
Integer Non-Linear Programming) in a relatively short
time. Considering the mechanism of this method,
we named it GPBLO (Goal Programming for Bi-level
Optimization).

The rest of this paper is organized as follows.
Section 2 discusses an overview of the published papers
on various applications of bi-level programming, as
well as the various methods raised for solving them.
Section 3 presents a general formulation of bi-level
optimization problems and the method of using the
KKT conditions as well as the complete enumeration
for the applicable cases. Section 4 introduces the
proposed solution method, which is a mat-heuristic
algorithm. Section 5 analyzes computational experi-
ments conducted on 20 sample problems in di�erent
sizes that can be solved using the KKT method
and, also, on 20 sample problems that are solved by
complete enumeration method. These problems are
also solved using the proposed method, and the results
are compared in terms of the objective function and
calculation time. The �nal section provides conclusions
and future research directions.

2. Related literature

Many researchers have studied the application of bi-
level programming to solve problems related to indus-
tries, services, transportation, military operations, and
so on. The following can be mentioned:

1. Facility location problems [1-3];
2. Supply chain management [4-6];
3. Missile defense design [7];
4. Environmental pollution control policies [8];
5. Energy sources planning [9];
6. Operations scheduling [10];
7. Transportation systems [11];
8. Physical human-robot interaction [12];
9. Tomographic reconstruction [13].

Solving the bi-level optimization problems, even in its
simplest form, is strongly NP-hard according to the
methods known so far. Even the study of whether a
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given solution is optimal or not is also NP-hard [14].
For this reason, many researchers have tried to provide
suitable procedures for such problems in an acceptable
time using evolutionary algorithms. In [14], classical
and evolutionary approaches proposed to solve bi-
level programming problems by 2018 are under review
and some uses for bi-level programming problems are
raised. Several studies have been done to solve linear
and nonlinear bi-level optimization problems using
evolutionary methods such as Genetic Algorithm (GA)
and Particle Swarm Optimization (PSO) [15{21]. The
use of evolutionary methods for solving single-level
and bi-level programming problems may o�er optimal
or near-optimal solutions. However, the application
of these methods to solve bi-level problems requires,
unlike the single-level problems, heavy and prolonged
computations.

Several studies have also been carried out to solve
linear and nonlinear bi-level optimization problems
using such methods as branch and bound, branch and
cut, Benders decomposition, and KKT conditions [22{
26]. These methods are also commonly developed for
speci�c models and cannot be used for solving a variety
of bi-level problems, or they require a long computation
time.

Considering the wide range of bi-level program-
ming applications and that an algorithm is not able
to achieve an optimal or near-optimal solution in an
acceptable time, identi�cation of heuristic and mat-
heuristic methods that can bring us closer to this
request is crucial. This study presents a fast and
exible mat-heuristic method that can obtain optimal
or near-optimal solutions to various types of bi-level
optimization problems in a relatively short time.

3. The general formulation

All bi-level optimization problems are expressed using
vector symbols by Eqs. (1)-(4). If the mathematical
relations in the problem are linear, the general formu-
lation of the problem in the form of a matrix can be
stated as follows:

max
X

: f1 = C1X +D1Y; (5)

A1X +B1Y � G1; (6)

X � 0; (7)

max
Y

: f2 = C2X +D2Y; (8)

A2X +B2Y � G2; (9)

Y � 0: (10)

Moreover, the bi-level linear programming problems in

general and in algebraic form can be demonstrated as
follows:

max :
X

f1 =
X
j1

C1(j1)X(j1)+
X
j2

D1(j2)Y (j2): (11)

s.t.:X
j1

A1(i1; j1)X(j1) +
X
j2

B1(i1; j2)Y (j2)

� G1(i1) 8i1; (12)

X(j1) � 0 8j1; (13)

max
Y

: f2 =
X
j1

C2(j1)X(j1) +
X
j2

D2(j2)Y (j2); (14)

s.t.:X
j1

A2(i2; j1)X(j1) +
X
j2

B2(i2; j2)Y (j2)

� G2(i2) 8i2; (15)

Y (j2) � 0 8j2: (16)

3.1. Using the KKT
In linear bi-level programming problems, the second-
level mathematical model is a convex programming
model, because decision variables are continuous and
all terms in the objective function, as well as con-
straints, are all linear. Therefore, by using the KKT
conditions, it can be converted into a series of the
following constraints:

D2(j2) =
X
i2

[�(i2)B2(i2; j2)]� �(j2) 8j2; (17)

X
j1

A2(i2; j1)X(j1) +
X
j2

B2(i2; j2)Y (j2)

+ S(i2) = G2(i2) 8i2; (18)

�(i2)S(i2) = 0 8i2; (19)

�(j2)Y (j2) = 0 8j2; (20)

Y (j2) � 0 8j2; (21)

�(i2) � 0 8i2; (22)

�(j2) � 0 8j2; (23)

S(i2) � 0 8i2: (24)

Replacing these constraints, rather than the second-
level model, turns the problem into a single-level model.
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Of course, Eqs. (19) and (20) are non-linear and the
problem is of NLP type. However, we can linearize
them using the following method by adding binary
variables P (i2) and Q(j2) and using a large enough
numerical coe�cient called Mbig:

�(i2) �MbigP (i2) 8i2; (25)

S(i2) �Mbig [1� P (i2)] 8i2; (26)

�(j2) �MbigQ(j2) 8j2; (27)

Y (j2) �Mbig [1�Q(j2)] 8j2: (28)

Therefore, any bi-level linear programming problem
can be converted into an MIP problem as follows:

max
X

: f1 =
X
j1

C1(j1)X(j1) +
X
j2

D1(j2)Y (j2); (29)

s.t.:X
j1

A1(i1; j1)X(j1) +
X
j2

B1(i1; j2)Y (j2)

� G1(i1) 8i1; (30)

X(j1) � 0 8j1; (31)

D2(j2) =
X
i2

[�(i2)B2(i2; j2)]� �(j2) 8j2; (32)

X
j1

A2(i2; j1)X(j1) +
X
j2

B2(i2; j2)Y (j2)

+ S(i2) = G2(i2) 8i2; (33)

�(i2) �MbigP (i2) 8i2; (34)

S(i2) �Mbig [1� P (i2)] 8i2; (35)

�(j2) �MbigQ(j2) 8j2; (36)

Y (j2) �Mbig [1�Q(j2)] 8j2; (37)

Y (j2) � 0 8j2; (38)

�(i2) � 0 8i2; (39)

�(j2) � 0 8j2; (40)

S(i2) � 0 8i2; (41)

P (i2) 2 f0; 1g 8i2; (42)

Q(j2) 2 f0; 1g 8j2: (43)

The above problem can be solved using MIP solvers

such as CPLEX. Of course, computational experiments
done using this model indicate that if the number
of binary variables in the model increases, the com-
putation time is prolonged, as well. The number
of binary variables required to linearize the resulting
single-level model is equal to the number of limitations
plus the number of variables in the second-level model.
Therefore, this method can only be used for those
bi-level models whose second-level model is linear
programming, with the smaller number of variables and
constraints. The steps needed to apply this procedure
for solving Bi-Level Linear Programming (BLLP) are
as follows:

Step 1: Convert the second-level model into a series
of constraints using the KKT conditions;

Step 2: Linearize nonlinear terms arising from KKT
conditions;

Step 3: Solve the resulting single-level model using
MIP solvers such as CPLEX.

3.2. Using the complete enumeration
If the decision variables of the �rst-level model are
discrete and the number of di�erent states for them is
not too large, we can utilize the Complete Enumeration
(CE) method to obtain an optimal solution to the
problem. In this method, for each of the possible
solutions for the vector of �rst-level decision variables,
the second-level mathematical model is solved and the
value of the leader's objective function is calculated.
Then, among all the solutions, the solution is the
optimal one for which the value of the leader's objective
function is the best. In this method, if the number of
possible solutions for the leader is high, the calculation
time will be very long. If the �rst-level model contains
only binary variables and the number of these variables
is n, then the number of possible solutions is 2n.
If there are only 30 binary variables, more than 1
billion possible solutions should be considered. For each
of these solutions, the second-level model should be
solved, which will be very time consuming. Table 1
shows the number of possible solutions for the �rst-
level model in terms of the number of binary variables.

The steps needed for solving Bi-Level Integer
Programming (BLIP) by Complete Enumeration (CE)
are given as follows:

Step 1: Consider negative in�nity for the initial
candidate value of the �rst-level objective function;

Step 2: Identify a feasible solution for the �rst-level
decision variables;

Step 3: Set the values for the �rst-level variables as
parameters in the second-level model;

Step 4: Solve the second-level model;
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Table 1. The number of possible solutions based on the
number of binary variables.

n Number of
solutions

n Number of
solutions

n Number of
solutions

1 2 11 2,048 21 2,097,152
2 4 12 4,096 22 4,194,304
3 8 13 8,192 23 8,388,608
4 16 14 16,384 24 16,777,216
5 32 15 32,768 25 33,554,432
6 64 16 65,536 26 67,108,864
7 128 17 131,072 27 134,217,728
8 256 18 262,144 28 268,435,456
9 512 19 524,288 29 536,870,912
10 1,024 20 1,048,576 30 1,073,741,824

Step 5: If the optimal solution for the second-level
model is obtained, calculate the value of the �rst-level
objective function;
Step 6: If the value obtained for the �rst-level
objective function is better than the candidate's
value, it should be replaced with the previous one.
Then, save the values of the �rst- and second-level
variables;
Step 7: Repeat Steps 1 to 6 for all feasible solutions
for the �rst-level model;
Step 8: The candidate's values are identi�ed as the
optimal solution to the bi-level problem.

The complete enumeration method can only be used
for models whose binary variables in the �rst-level
model are approximately not more than 20 variables
in number.

4. GPBLO algorithm

Because the computational time for bi-level optimiza-
tion problems is very long, even for cases in which KKT
conditions can be used or the complete enumeration
method is applied, a faster approach to solving such
problems is needed. Therefore, a method that can
identify an optimal or near-optimal solution to bi-level
problems in a relatively short time is proposed. The re-
sult of this method can be used as a candidate solution
for applying exact methods such as branch and bound,
or branch and cut, to reduce their computational time
signi�cantly.

To solve a variety of bi-level models, an algorithm
that can identify either the optimal solution or the
near-optimal solution is presented by solving a limited
number of single-level mathematical models. In this
method, several goal programming problems are solved
to �nd an appropriate solution to the bi-level optimiza-
tion, which is called GPBLO. In this method, �rst, the

leader and follower objective functions are normalized
by identifying the best and worst possible logical values
for them according to fuzzy normalization. Then,
by considering the importance coe�cient of w for
the leader's objective function and the importance
coe�cient (1�w) for the follower's objective function,
they are aggregated into a single form.

f=(w)
f1�f1min

f1max � f1min
+(1�w)

f2�f2min

f2max�f2min
: (44)

To identify the best possible value for f1, the bi-
level model from the objective function of the follower
is released. Then, by solving a resulting single-level
model, we obtain an upper bound for f1, which we call
f1max. With the values obtained for variables X and
Y , we calculate the value of f2. This value is the lower
bound value for f2, which we call f2min.

To identify the upper bound value for f2, we
release the bi-level model from the leader's objective
function. Then, by solving a single-level model, we
obtain an upper bound for f2, called f2max. With the
values obtained for variables X and Y , we calculate
the value of f1. This is the lower bound value for f1,
which we call f1min. The coe�cient w is a parameter
whose value changes from 0 to 1. The increment in the
value of this parameter can be any arbitrary number
between 0 and 1. With smaller values for w, the
better solutions may be detected, but the amount and
time of calculations will increase. According to the
computational experiments indicated in this paper, we
consider this step to be 0.1. In this case, we need
to solve 11 bi-objective models, for each of which the
second-level model should be solved by �xing the values
of the �rst-level variables. Moreover, two mathematical
models must be solved to identify the best and worst
rational values for f1 and f2. Therefore, in this
case, we need to solve only 24 mathematical models.
If the �rst- and second-level models are linear and
the decision variables are also continuous, the goal
programming model will also be linear. Besides, the
goal programming model type is the same as the more
complicated model type between leader and follower.

The goal programming model derived from the
relaxed problem from the second-level objective func-
tion and, also, the replacement of the function f with
the objective function of the �rst level can be stated as
follows:

f=(w)
f1�f1min

f1max�f1min
+(1�w)

f2�f2min

f2max�f2min
; (45)

s.t.:X
j1

A1(i1; j1)X(j1) +
X
j2

B1(i1; j2)Y (j2)

� G1(i1) 8i1; (46)
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X
j1

A2(i2; j1)X(j1) +
X
j2

B2(i2; j2)Y (j2)

� G2(i2) 8i2; (47)

X(j1) � 0 8j1; (48)

Y (j2) � 0 8j2: (49)

The steps to solve Bi-Level Programming (BLP) by the
GPBLO are given below:

Step 1: Normalize the �rst- and second-level objec-
tive functions with a fuzzy normalization method;
Step 2: Consider the numerical coe�cient w for
the �rst-level normalized objective function and the
numerical coe�cient (1 � w) for the second-level
normalized objective function;
Step 3: Integrate two objectives in a new single-
objective function for the problem;
Step 4: Ignore �rst- and second-level objective
functions and consider negative in�nity for the initial
candidate value of the �rst-level objective function;
Step 5: Set the value of w to 0;
Step 6: Solve the resulting single-level model;
Step 7: Consider the values obtained for the �rst-
level variables as parameters for the second-level
model;

Step 8: Solve the second-level model;
Step 9: If the solution to the second-level model
is optimal, then calculate the value of the �rst-level
objective function;
Step 10: If the value obtained for the �rst-level
objective function is better than the candidate's
value, update the best found and save the values of
the �rst- and second-level variables;
Step 11: Increase the value of w by 0.1 and repeat
Steps 6 to 10 until w reaches 1;
Step 12: The solution given to the candidate's value
and variables is the solution for the bi-level problem.

5. Computational analysis

In this section, 20 sample bi-level problems in di�erent
sizes that can be solved using the KKT method are
randomly generated in the �rst stage. These problems
are linear-linear and continuous-continuous. Then, we
solve them using the CPLEX solver. In addition,
we solve these problems using the GPBLO algorithm
and a metaheuristic method based on Particle Swarm
Optimization (PSO). Bi-level PSO has been employed
in many published papers to solve bi-level models.
Results of these methods are presented in Table 2. The
values of the problem parameters are generated using
the uniform distribution. These values are presented
in Table 3.

Table 2. Comparison of the KKT method with the GPBLO.

Ins. #Xa #Y b #C1c #C2d KKT GPBLO PSO
F1e Timef F1 Time Gap F1 Time Gap

1 2 2 2 2 411.7 0.1 411.7 0.2 0% 411.7 21.4 0%
2 3 3 3 3 357.9 0.1 357.9 0.2 0% 357.9 29.9 0%
3 4 4 4 4 439.0 0.2 439.0 0.2 0% 439.0 37.6 0%
4 5 5 5 5 514.2 0.1 514.2 0.2 0% 514.2 42.5 0%
5 8 8 8 8 519.0 0.2 518.9 0.9 0% 513.8 47.6 1%
6 10 40 10 20 457.0 0.5 449.7 0.2 2% 443.3 50.8 3%
7 20 50 10 30 399.2 1.6 384.6 0.2 4% 383.2 58.1 4%
8 30 60 20 40 384.8 2.0 377.0 0.2 2% 369.4 56.7 4%
9 40 70 30 50 364.1 2.8 357.0 0.4 2% 345.9 65.4 5%
10 50 80 40 60 364.6 3.5 356.3 0.3 2% 342.7 63.9 6%
11 60 90 50 70 345.9 9.8 319.3 0.4 8% 318.2 68.9 8%
12 70 100 60 80 358.5 9.6 329.5 0.4 8% 329.8 73.9 8%
13 80 110 70 90 353.1 8.8 323.5 0.4 8% 324.9 78.7 8%
14 90 120 80 100 345.8 16.1 328.8 0.4 5% 321.6 79.7 7%
15 100 130 90 110 358.5 21.3 351.6 0.5 2% 329.8 83.3 8%
16 110 140 100 120 334.6 20.5 323.4 0.5 3% 307.8 86.7 8%
17 120 150 110 130 346.4 67.0 330.1 0.8 5% 318.7 87.2 8%
18 130 160 120 140 351.9 75.1 330.5 0.7 6% 323.7 88.0 8%
19 140 170 130 150 354.1 90.3 324.5 0.8 8% 322.2 90.0 9%
20 150 180 140 160 349.9 131.7 339.3 0.9 3% 318.4 92.5 9%

Mean 3% Mean 5%
a: The number of variables in the �rst-level model; b: The number of variables in the second-level model;
c: The number of constraints in the �rst-level model; d: The number of constraints in the second-level model;
e: The value of the objective function of the �rst-level model; f: Calculation time in seconds.
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Table 3. The values of problem parameters.

C1(j1) = Uniform (10,20) C2(j1) = Uniform (10,20)

D1(j2) = Uniform (10,20) D2(j2) = Uniform (10,20)

A1(i1; j1) = Uniform (1,5) A2(i2; j1)= Uniform (1,5)

B1(i1; j2) = 0 B2(i2; j2) = Uniform (1,5)

G1(i1) = Uniform (50,90) G2(i2) = Uniform (50,90)

As the problem size increases, the computational
time for the MIP method becomes quite long. It
can be observed that in these 20 instances, the value
of the objective function approximately has a 3%
gap with the optimal objective value. This is while
the computational time, on average, is much shorter.
Then, 20 bi-level problems were generated in di�erent

sizes. These problems are linear-linear and discrete-
discrete. We consider the follower model as an integer
linear programming type. Due to the non-convexity
of this type of the model, the condition of KKT
is no longer a necessary and su�cient condition for
its optimality. Therefore, these problems cannot be
solved by the KKT method. However, because the
�rst-level variables are binary, we can obtain their
optimal solutions by CE method. Each iteration
will be solved by the CPLEX solver and, then, the
best solution among the options is identi�ed as the
optimal solution. We also solve these problems using
the GPBLO method to compare the results. The
values of problem parameters are generated similar
to Table 3 except for the parameter G1(i1), which is
generated randomly by a uniform (5,9) distribution.
The results are shown in Table 4. It can be observed
that in these 20 cases, the value of the objective

Table 4. Comparison of the CE method with the GPBLO.

Ins. #Xa #Y b #C1c #C2d CEf GPBLO PSO

F1g Timeh F1 Time Gap F1 Time Gap

21 5 5 1 5 284 2.1 284 1.5 0% 284 7.9 0%

22 6 10 1 5 476 4.1 474 1.6 0% 476 8.6 0%

23 7 15 1 10 431 5.6 426 1.8 1% 431 9.6 1%

24 8 20 1 15 360 12.1 356 1.8 1% 356 10.5 1%

25 9 25 1 20 336 7.9 336 3.3 0% 329 16.9 2%

26 10 30 1 25 325 39.6 314 3.5 3% 315 20.0 3%

27 11 35 1 30 313 22.0 313 2.7 0% 300 16.2 4%

28 12 40 1 35 336 27.9 333 5.9 1% 323 32.2 4%

29 13 45 1 40 301 15.2 298 6.3 1% 289 37.4 4%

30 14 50 1 45 295 42.9 282 13.4 4% 280 69.2 5%

31 15 55 1 50 313 112.2 313 11.6 0% 300 60.9 4%

32 16 60 1 55 303 287.0 294 20.2 3% 285 115.1 6%

33 17 65 1 60 279 483.9 279 48.0 0% 262 246.7 6%

34 18 70 1 65 270 375.6 250 34.9 7% 254 178.1 6%

35 19 75 1 70 293 248.6 293 42.5 0% 278 231.8 5%

36 20 80 1 75 278 515.7 272 44.1 2% 261 227.1 6%

37 21 85 1 80 319 590.4 315 66.3 1% 297 396.3 7%

38 22 90 1 85 |* |* 301 275.1 { 286 813.6 {

39 23 95 1 90 |* |* 263 345.6 { 250 955.3 {

40 24 100 1 95 |* |* 282 134.2 { 268 758.6 {

Mean 1% Mean 4%

a: The number of variables in the �rst level model; b: The number of variables in the second level model;

c: The number of constraints in the �rst level model; d: The number of constraints in the second level model;

f: Complete Enumerations; g: The value of the objective function of the �rst level model;

h: Calculation time in seconds; * The algorithm was not performed due to the long calculation time.
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Figure 1. Comparison of KKT with GPBLO in terms of
computation times (in seconds).

Figure 2. Comparison of CE with GPBLO in terms of
computation times (in seconds).

function is 1% less than the optimal objective value
with much shorter computational time. Figure 1
illustrates the comparison of KKT with GPBLO in
terms of computation times (in seconds), and Figure 2
illustrates the comparison of CE with GPBLO in terms
of computation times (in seconds).

In the following, several sample problems designed
to test bi-level optimization algorithms are considered.
These problems were presented in [18,21,27]. These
problems are solved using the GPBLO algorithm in
conjunction with the model obtained from KKT con-
ditions, or by the CE method.

Instance 1 [16]:

max :
x1;x2

F1 =�18x1+10x2+11y1�11y2+23y3+40y4

s.t.:

max
y1;y2;y3;y4

: F2 =�35x1�9x2+20y1�44y2+10y3+7y4

s.t.:

47x1 � 14x2 � y1 + 4y2 + y3 � 49y4 � 1:5;

�23x1 + 2x2 + 45y1 � 35y2 + 12y3 + 41y4 � 13:5;

�9x1 � 18x2 + 12y1 + 13y2 + 37y3 � 11y4 � 5:5;

6x1 � 19x2 � y1 � 2y2 � 49y3 � 11y4 � �43:5;

�31x1 � 8x2 + 2y1 + 17y2 + 47y3 � 25y4 � 6:3;

46x1 + 3x2 � 28y1 + 17y2 � 36y3 � 3y4 � 22:5;

�45x1 + 34x2 � 44y1 + 44y2 + 16y3 � 2y4 � 17;

29x1 � 13x2 + 38y1 + 19y2 � 2y3 + 7y4 � 39;

13x1 + 10x2 + 27y1 � 29y2 � 49y3 � 38y4 � �38;

x1; x2; y1; y2; y3; y4 � 0:

Zhao et al. [16] provided three identi�ed solutions to
this problem that have been obtained using three dif-
ferent metaheuristic methods. Given that the second-
level model in this problem is linear programming,
this model can be converted into a single-level model
and its global optimal solution is obtained using the
KKT conditions, as previously stated. This problem
was also solved using the GPBLO method. The
results are presented in Table 5. As can be seen,
the GPBLO solution is the same as the KKT solution
and signi�cantly outperforms the previously identi�ed
solutions.

Instance 2 [16]:

max
x1;x2

: F1 = 5x1 + 2x2 + 4y1

s.t.:

max
y1;y2

: F2 = 3x2 + 5y1 � 2y2

s.t.:

Table 5. The best solutions of Instance 1 for di�erent methods.

Method x� y� F1 F2

Method 1: Zhao et al., 2014 [16] (0.897, 1.128) (0.000, 0.075, 1.048, 0.534) 39.789 �30:561
Method 2: Zhao et al., 2015 [16] (0.890, 1.125) (0.000, 0.071, 1.045, 0.529) 39.613 �30:625
Method 3: Zhao et al., 2017 [16] (0.894, 1.127) (0.000, 0.074, 1.047, 0.532) 39.724 �30:463

KKT (1.326, 1.289) (0.000, 0.332, 1.257, 0.926) 51.311 �53:582
GPBLO (1.326, 1.289) (0.000, 0.332, 1.257, 0.926) 51.311 �53:582
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Table 6. The best solutions of Instance 2 for di�erent methods.

Method x� y� F1 F2

Method 1: Zhao et al., 2014 [16] (0.000, 0.000) (2.000, 0.000) 8.000 10.000

Method 2: Zhao et al., 2015 [16] (1.000, 0.000) (1.000, 0.000) 9.000 5.000

Method 3: Zhao et al., 2016 [16] (0.438, 0.000) (1.563, 0.000) 8.437 7.813

KKT (2.000, 0.000) (0.000, 0.000) 10.000 6.000

GPBLO (2.000, 0.000) (0.000, 0.000) 10.000 6.000

Table 7. The best solutions of Instance 3 for di�erent methods.

Method x� y� F1 F2

HGAPSO-1 (Kuo and Han 2011) [27] (999.265, 496.392) (999.265, 496.392) 104229.91 201325.49

HGAPSO-2 (Kuo and Han 2011) [27] (999.470, 499.503) (999.470, 499.503) 104775.37 202175.61

HGAPSO-3 (Kuo and Han 2011) [27] (999.932, 499.933) (999.932, 499.933) 104990.20 202481.01

KKT (1000.000, 500.000) (1000.000, 500.000) 105000.00 202500.00

GPBLO (1000.000, 500.000) (1000.000, 500.000) 105000.00 202500.00

2x1 + 2x2 + 2y1 + 4y2 � 8;

x1 + x2 + y1 � 2;

x2 + x3 + y2 � 3;

x1 � 4; x2 � 4; y1 � 2; y2 � 2;

x1; x2; y1; y2 � 0:

For this problem, Zhao et al. [16] provided three
identi�ed solutions obtained from three di�erent meta-
heuristic methods. Given that the second-level model
in this problem is linear programming, this model can
be converted into a single-level model and its global
optimal solution is obtained using the KKT conditions,
as previously stated. This problem was also solved
using the GPBLO method. The results are presented
in Table 6. As can be seen, the GPBLO solution is the
same as the KKT solution and is signi�cantly better
than the previously identi�ed solutions.

Instance 3 [27]:

max :
x1;x2

F1 = 110x1 + 120x2 � 40y1 � 50y2

s.t.:

min
y1;y2

: F2 = 130x1 + 145x2

s.t.:

x1 � y1; x2 � y2; y1 � 1000; y2 � 500;

y1 + y2 � 750; x1; x2; y1; y2 � 0:

Kuo and Han [27] provided three identi�ed solutions
to this problem that were obtained from three di�erent
metaheuristic methods. Given that the second-level
model in this problem is linear programming, this
model can be converted as a single-level model and
its global optimal solution is obtained using the KKT
conditions, as previously stated. This problem was
also solved using the GPBLO method. The results
are presented in Table 7. As can be seen, the GPBLO
solution is the same as the KKT solution and is better
than the previously identi�ed solutions.

Instance 4 [25]:

max
x

: F1 = x+ 10y;

s.t.:

min
y

: F2 = y;

s.t.:

�25x+ 20y � 30; x+ 2y � 10; 2x� y � 15;

2x+ 10y � 15; x; y 2 Z+:

Tahernejad et al. [25] solved this problem using a
metaheuristic method. Given that the second-level
model is integer programming in this problem, the
KKT method cannot be used to solve it. However,
considering that the decision variables of the �rst-level
model are integers, the global optimal solution can be
obtained by using the CE method. This problem was
also solved using the GPBLO method. The results are
presented in Table 8. As can be seen, the results of
these three methods are equal to each other.
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Table 8. The best solutions of Instance 4 for di�erent
methods.

Method x� y� F1 F2
Tahernejad et al., 2020 [25] 2.000 2.000 22.00 2.00

CE 2.000 2.000 22.00 2.00
GPBLO 2.000 2.000 22.00 2.00

6. Conclusions and future research

In this paper, a mat-heuristic algorithm called GPBLO
for solving bi-level optimization problems was pre-
sented. Numerical experiments applied to small-,
medium-, and large-sized instances whose optimal
solution was obtained by solving a single-level model
using KKT conditions or by a CE method indicated the
e�ciency of the algorithm. Several sample problems
designed to test bi-level optimization algorithms were
considered. This study solved these problems using the
GPBLO algorithm under KKT conditions or CE meth-
ods. In some instances of these problems, the solution
obtained from the GPBLO algorithm was the same
as the global optimal solution and outperformed the
previously identi�ed solutions. Therefore, this method
could be used to identify the solutions that might be
optimal or near-optimal. For future research, it is
possible to design exact algorithms that can identify
the optimal solution in an acceptable time span.
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