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Abstract. A new hybrid model for the Redundancy Allocation Problem (RAP) in a
series-parallel con�guration with the k-out-of-n subsystem is presented in this study. The
redundancy policy is set to active, warm standby, or no redundancy in the given model.
In a warm standby policy, an imperfect switch detects the component failure and replaces
the failed component with a new standby. So, the subsystems redundancy policy is one of
the model decision variables. We presented a new RAP objective function for calculating
the reliability of a system made up of active and warm-standby subsystems. The presented
model seeks to determine the subsystems redundancy policy, i.e., the type and number
of redundant components required to maximize system reliability within the constraints
of system cost, volume, and weight. To solve the proposed model, we used two Genetic
Algorithms (GA) and a Hybrid GA (HGA) meta-heuristic algorithm with local search.
Because the RPD% of HGA is 2.1% (on average) better than GA in solving ten large-scale
instances, the result demonstrates HGA superiority over GA in solving the presented RAP.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Due to the competitive market, it has needed to have
a more reliable design in recent decades. Nowadays,
the term reliability includes reliability requirements,
reliability design, reliability prediction, reliability mod-
eling, and retrievals. One of the goals of reliability is
to design systems with higher quality during their life
cycle. Usually, the system reliability improves through
the improvement of the reliability of each component or
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allocating redundant components. This improvement
in practice happens by using better materials, better
manufacturing processes, or better design principles.
Many research methods have been conducted in relia-
bility improvement according to the system structure,
problem type, resolve method, objective function, and
components' failure distribution [1]. The system's
structure can be series, parallel, k-out-of-n [2], and/or
a combination of series and parallel [3]. System
reliability can be improved by redundancy allocation
[3] or reliability allocation [4]. Exact techniques [2,5],
approximate methods [6,7], heuristic methods [8,9],
and meta-heuristic methods [9{12] are examples of
problem-solving methods. The objective function of
the Redundancy Allocation Problem (RAP) is usually
considered to maximize the system reliability [3] and
minimize the system cost [13]. The components
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failure rates can be considered constant (exponential
distribution) [14], or time-dependent (i.e., Weibull
distribution) [15]. In this paper, we worked on a
RAP series-parallel system structure and a k-out-of-
subsystems con�guration. In this paper, the presented
RAP aims to optimize the number and type of the
redundant components in each subsystem as well as the
redundancy strategy of each subsystem to maximize
the system reliability under some constraints.

The RAP is divided into two categories based on
the allocated redundant components to the subsystems:
RAP without Component Mixing (RAPCM) and RAP
with a Mix of Components (RAPMC). The subsystems
redundancy strategy includes active and standby, and
the standby policy has three di�erent types based on
the components characteristics: cold standby, warm
standby, and hot standby. Misra and Sharma [16]
considered the RAP for a series-parallel system with
the k-out-of-n subsystem. They used the active redun-
dancy policy without component mixing in their model.
They solved the presented model with binary integer
programming. Coit and Smith [17] o�ered a new model
for RAPMC and an active redundancy policy. They
considered the series-parallel system structure with a
k-out-of-n subsystem.

Coit and Liu [18] presented a new RAPCM model
for a series-parallel system with k-out-of-n subsystems.
For the �rst time in their model, they considered active
and cold standby redundancy policies simultaneously.
They assumed the components with a Constant Failure
Rate (CFR) and a non-linear model and converted
the model to a binary integer program using variable
change. Coit [19] presented a new model in which the
redundancy policy was considered a model's decision
variable. The variable redundancy policy was active,
cold standby, and no redundancy. This paper consid-
ered the hot standby systems components to bring the
problem close to real-world conditions. Since the RAP
in computational time is NP-hard problems, we solved
the presented model using the meta-heuristic method.
A comparative search of recent research (after 2010)
related to RAP is shown in Table 1.

In this paper, we aim to �ll the literature gap by
considering the warm standby redundancy strategy for
a RAPCM. The contribution of the current research is
as follows:

� Calculating the system reliability with warm
standby components;

� Considering the warm standby redundancy strategy
for a RAPCM.

The current research methodology is presented in
Figure 1.

The rest of the paper is as follows. Section 2 is the
problem de�nition. Section 3 deals with calculating the

system and subsystems reliability with active, warm
standby, and no redundancy strategy. In Section 4, the
solving methodologies are presented. In Section 5, �rst
some instances are solved to determine the algorithms
performance. Then the e�ect of change on the model
parameters is investigated using a sensitivity analysis.
Finally, the model and algorithm are validated. Section
6 is the conclusion and further studies.

2. Model description

This section discusses the mathematical model of a
RAP with a series-parallel structure and a k-out-of-n
subsystem. The identical components can be allocated
to each subsystem, and the redundancy strategy is the
system variable. In the presented model, the problem
objective function is to maximize the system reliability
under the system cost, volume, and weight constraints.

2.1. Assumptions
The mathematical model of the above-mentioned RAP
is established based on the following assumptions:

� Active and warm-standby redundancy policies are
considered for each subsystem;

� Di�erent component types are available to allocate
to each subsystem;

� All the allocated components to each subsystem
must be the same;

� The components cost, weight, volume, and depend-
ability are constant and prede�ned;

� Components are binary state and have two working
or failed states;

� An imperfect switch detects and replaces the failed
components;

� Components are non-repairable;
� Components were CFR and failed independently.

The �rst assumption is the main novelty of the
current research, which �lls the literature review gap.

2.2. Nomenclatures
i Subsystems index (i = 1; :::; s)
ni Number of allocated components to

subsystem i
j Index of the allocated components to

each subsystem, (j = 1; :::; ni)
mi Number of available components type

for subsystem i
zi Index of component type which

is allocated to subsystem i, zi =
(1; :::;mi)

R(t) System reliability at time t depending
on design vectors z and n
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Table 1. Related research studies after 2010.

References Year Component type Objectives Solving algorithm

Beji et al. [20] 2010 Binary Single Hybrid particle swarm optimization

Yeh and Hsieh [21] 2011 Binary Single Penalty guided arti�cial bee colony

Hsieh and You [22] 2011 Binary Single Immune-based Algorithm

Chambari et al. [23] 2013 Binary Single Simulated annealing

Ardakan and Hamadani [24] 2014 Binary Single Modi�ed genetic algorithm

Guilani et al. [25] 2014 Multi Single Markov process

Zaretalab et al. [26] 2015 Binary Multi Knowledge-based archive
simulated annealing

Levitin et al. [27] 2015 Binary Single Genetic algorithm

Shari� et al. [28] 2015 Single Single
Genetic algorithm, memetic algorithm,

simulated annealing, and particle
swarm optimization

Lai and Yeh [29] 2016 Multi Single Two-stage simpli�ed
swarm optimization

Teimouri [30] 2016 Binary Single
Memory-based

electromagnetism-like
mechanism

Kim and Kim [31] 2017 Binary Single Parallel genetic algorithm

Ghavidel et al. [32] 2018 Binary Single LJaya-TVAC algorithm

Ardakan and Rezvan [33] 2018 Binary Multi NSGA-II

Tavana et al. [34] 2018 Multi Multi NSGA-II

Essadqi et al. [35] 2018 Multi Multi E�ective oriented GA

Peiravi et al. [36] 2018 Single Single Genetic algorithm

Hadipour et al. [37] 2019 Binary Multi Multi-objectives water ow
algorithm, NSGA-II, and NRGA

Ouyang et al. [38] 2019 Binary Single Improved particle
swarm optimization

Peiravi et al. [39] 2019 Binary Single Genetic algorithm

Huang et al. [40] 2019 Binary Single Heuristic survival
signature-based approach

Shari� et al. [41] 2019 Binary Single Memetic Algorithm

Sun et al. [42] 2019 Multi Multi NSGA-II

Shari� et al. [43] 2019 Multi Multi NSGA-II and NRGA
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Table 1. Related research studies after 2010 (continued).

References Year Component type Objectives Solving algorithm

Yeh [44] 2019 Single Single Simpli�ed Swarm Optimization (SSO)

Pourkarim Guilani et al. [45] 2019 Single Single Optimization via simulation approach

Juybari et al. [46] 2019 Single Single Stochastic fractal search

Shari� et al. [47] 2020 Multi Multi Recursive and genetic algorithms

Shari� and Taghipour [48] 2020 Binary Multi NSGA-II and NRGA

Mellal and Zio [49] 2020 Binary Binary Enhanced Nest Cuckoo
Optimization Algorithm (ENCOA)

Shari� et al. [50] 2021 Binary Single GA

Borhani-Alamdar and Shari� [51] 2020 Multi Single GA and simulated annealing

Zaretalab et al. [52] 2020 Multi Single GA and MA

Current study 2020 Binary Single GA and HGA

Figure 1. Methodology of the current research (actions, steps, and the order of steps).
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ki Minimum required number of
components for subsystem i

s Number of system subsystems
t System's mission time
C; V;W System-level constraints limits for cost,

volume, and weight
ci;j ; wi;j ; Cost, volume, and weight of the
vi;j jth available components type for

allocating to subsystem i
�ai;j The failure rate of the jth component's

type for allocating to subsystem i,
when its working

�si;j The failure rate of the jth component's
type for allocating to subsystem i,
when its on standby

�i Switch success probability at each
request for replacement at subsystem i

Ra(t) Reliability of a working component at
time t

Rd(t) Reliability of a standby component at
time t

fa(t) p.d.f of a working component at time t
fd(t) p.d.f of a standby component at time t
f(t) p.d.f of the system at time t
A Set of all subsystems with active

redundancy
S Set of all subsystems with cold-standby

redundancy
N Set of all subsystems with no

redundancy

2.3. Mathematical model
Based on the presented assumptions for the paper, the
mathematical RAP model is as follows:

Max R(t) = �s
i=1Ri(t; zi; ni; ki); (1)

s.t.:
sX
i=1

ci;zini � C; (2)

sX
i=1

vi;zini � V; (3)

sX
i=1

wi;zini �W; (4)

ni 2 fki; :::; nmax;ig; (5)

zi 2 f1; :::;mig: (6)

Eq.(1) is the model objective function, which aims
to maximize system reliability. A description of how

to calculate the system reliability will be presented
in the next section. Eqs. (2) to (4) are the system
cost, volume, and weight constraints. Finally, Eq. (5)
determines the minimum and maximum allocated
components to each subsystem, and �nally, Eq. (6)
de�nes the di�erent available component types for each
subsystem.

3. Calculation of the system reliability

If only k component is allocated to a subsystem, the
subsystem has no redundancy strategy. If more than
k components are allocated to a subsystem, the sub-
system can have an active or hot standby redundancy
strategy. In this case, the reliability of the subsystem
depends on its redundancy strategy. The subsystems
reliability with active and warm standby strategies is
presented in Subsections 3.1 and 3.3, respectively.

3.1. Subsystems reliability with active
redundancy

The reliability of a k-out-of-n subsystem with active
redundancy when the components are identical and
independent is computed using standard techniques.
Therefore, the reliability of ith subsystem with active
redundancy is calculated as follows:

Ri(t) =
niX
l=ki

�
ni
l

�
(e��ai;zi:t)l(1� e��ai;zi:t)ni�l: (7)

Assume that ni components of type zi are allocated to
the subsystem i. In Eq. (7), e��ai;zi:t is the reliability of
the component, and (e��ai;zi:t)l is the probability that
l components are working during the mission horizon
t. Besides, (1 � e��ai;zi:t) is the failure probability
of the components, and (1 � e��ai;zi:t))ni�l is the
probability that (ni � l) components fail during the
mission horizon t.

3.2. Subsystems reliability with no redundancy
If the model allocates k components to a k-out-of-
n subsystem, all k components should start working
at the beginning of the mission horizon, and the
subsystem has no standby component(s). Therefore,
the subsystem has no redundancy strategy. In this case,
the subsystem stops working when the �rst component
fails. So, the reliability of the subsystem i, with ni
components of type zi, is calculated as follows:

Ri(t)=(e��ai;zi:t)ni =(e��ai;zi:t)ki =e�ki:�ai;zi:t: (8)

3.3. Subsystems reliability with warm standby
redundancy

She and Pecht [53] calculated the reliability of a k-
out-of-n warm-standby system. In their model, the
switching system was perfect. In this paper, a discrete
imperfect switch detects the component failure and
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replaces the failed one with a new one on standby (if it
is available). The success probability for each detection
and replacement is equal �i. She and Pecht [53] divided
the warm standby reliability formula into two parts:
�xed coe�cients (C-part) and below the integral (I-
part):

� C-part: The switch starts its function when one
of the working components fails, and at least one
component is available on standby. When one
of the ki working components fails, the switch
failure probability is added to the system probability
function. But when one of them (ni � ki) on the
standby component fails, there is no switch failure
probability. Besides, when the system has ki work-
ing components and no component on standby, the
switch failure probability is not added to the system
probability function. So, the C-part calculates as
follows:

C-part =
��
ki
1

�
�i�ai;zi +

�
ni � ki

1

�
�di;zi

�
�
��
ki
1

�
�i�ai;zi +

�
ni � ki � 1

1

�
�di;zi

�
� :::

�
��
ki
1

�
�i�ai;zi +

�
1
1

�
�di;zi

�
�
��
ki
1

�
�ai;zi

�
=
��
ki
1

�
�ai;zi

�
�ni�ki
i=1 (�iki�ai;zi + i�di;zi) : (9)

� I-part: She and Pecht [53] calculated the I-part as
follows:

I-part =
Z 1
t

�Z t

tni�ki=0

�ni�ki�1
i=1Z ti+1

ti=0
e�ki�ai;zit�

Pni�ki
j=1 �di;zitj�ni�ki

i=1 dti
�
dt:

(10)

With simpli�cation and integration, the I-part is
simpli�ed as follows:

I-part =
Z 1
t

e�ki�ai;zit

�ni�kiX
i=0

(�1)i
e�i�di;zit

i!(ni � ki � i)!�dni�kii;zi

�
dt: (11)

Finally, with the integration of Eq. (11), I-part is
obtained as follows:

I-part =
1

�dni�kii;zi

ni�kiX
i=0

(�1)i

i!(ni � ki � i)!(ki�ai;zi + i�di;zi)

e�(ki�ai;zi+i�di;zi)t: (12)

Now, with multiplying the C-part and I-part
(Eqs. (9) and (12)), the subsystem reliability is
calculated as follows:

Ri(t) = (C-part)� (I-part)! Ri(t)

=
���

ki
1

�
�ai;zi

�
�ni�ki
i=1 (�iki�ai;zi

+i�di;zi)
1

�dni�kii;zi

�
�
�ni�kiX

i=0

(�1)i

i!(ni � ki � i)!(ki�ai;zi + i�di;zi)

e�(ki�ai;zi+i�di;zi)t
�
: (13)

3.4. System reliability
In a series-parallel system structure, the subsystems
are connected serially, when in each subsystem, the
components are parallel. So, the system reliability is
calculated by multiplying the subsystems reliabilities
as follows:

R(t)=�i2A
� niX
l=ki

�
ni
l

�
(e��ai;zit)l(1�e��ai;zit)ni�l

�
��i2S

����
ki
1

�
�ai;zi�ni�ki

i=1

(�iki�ai;zi + i�di;zi)
�
:

1
�dni�kii;zi

�
�
�ni�kiX

i=0

(�1)i

i!(ni � ki � i)!(ki�ai;zi + i�di;zi)

e�(ki�ai;zi+i�di;zi)t
��
��i2Ne�ki�ai;zit: (14)

4. Solving methods

Chern [54] proved that RAP belongs to the NP-hard
category of problems, so we used two metaheuristic
algorithms to solve the presented model. The �rst
algorithm is the Genetic Algorithm (GA), a wild appli-
cation for addressing the RAP (Table 1). The second
one is a Hybrid GA (HGA), which combines the GA
with a local search to improve the GA's performance.

4.1. Genetic Algorithm (GA)
The GA has a wide range of applicability in di�erent
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Figure 2. Pseudo-code of the proposed GA.

Figure 3. A sample for the solution encoding.

engineering optimization problems. This algorithm is a
population-based algorithm that starts from an initial
population and, with the inspiration of natural genet-
ics, moves to the global optimal solution. GA begins
with a set of solutions called the initial population
(initial generation), shown through the chromosome
structure. Then generate the next generation, using
some operators like crossover, mutation, and elitism.
The new generations at least have the characteristics
of the previous generation. The pseudo-code of the
proposed GA is presented in Figure 2.

4.1.1. Solution encoding
Each solution (chromosome) of the presented model is
coded as a 3 � s matrix [55]. On this chromosome,
s is the number of the system subsystems. The �rst,
second, and third rows of the chromosome represent the
type of redundancy strategy, the type of selected com-
ponents, and the number of allocated components to
each subsystem. As for this chromosome and the �rst
row, three choices are available as A: Active strategy,
S: Standby strategy, and N: No redundancy strategy.
The values of the second row of the chromosome vary
from 1 to mi; (i = 1; :::; s), and the values of the third

row vary from ki to nmax;i. A sample of chromosomes
for a system with 14 subsystems is shown in Figure 3.

As is presented in Figure 3, the �rst subsystem
redundancy strategy is active, and two components of
type 3 are allocated to the subsystem.

4.1.2. Initial population
The initial population is generated randomly.

4.1.3. Fitness function
The objective function of the presented model is to
maximize the system reliability. Since the initial popu-
lation is generated randomly, some of the generated
chromosomes are not feasible. We used a penalty
function to give a better chance to the feasible solutions
for the algorithm operators. The �tness function of the
model is presented in Eq. (15) as follows:

F = R=(b� pf): (15)

In Eq. (15), F is the chromosome �tness function, R
is the chromosome reliability, and pf is the penalty
function. The value of pf depends on the cost, volume,
and weight of the chromosome and is calculated as
follows:
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pf = �3
i=1pfi = pf1 � pf2 � pf3; (16)

pf1 = max
�Ps

i=1 ci;zini
C

; 1
�
; (17)

pf2 = max
�Ps

i=1 vi;zini
V

; 1
�
; (18)

pf2 = max
�Ps

i=1 wi;zini
W

; 1
�
: (19)

For a chromosome, if all constraints are satis�ed,
the chromosome is feasible and pf1 = pf2 = pf3 = 1
and the value of the �tness function is equal to the
chromosome reliability. But if at least one of the
constraints is not satis�ed, the chromosome is not
feasible. So pf1 � pf2 � pf3 > 1 and the value
of the chromosome �tness function is less than its
reliability.

4.1.4. Parents selection strategy
We used a roulette wheel selection strategy for selecting
the parents for the operators. This method gives
more chances to the chromosomes with better �tness
function.

4.1.5. Crossover operator
In this research, we used the uniform crossover. In
this type of crossover operator, �rst we select two
chromosomes using a roulette wheel. We then generate
a random chromosome whose genomes have a binary
random value (e.g., 0 or 1 ). The size of the ran-
dom chromosome is equal to the size of the problem
chromosomes. For each genome of the chromosome, if
the genome value is equal to one, the correspondence
genome of the parents replaces each other. The
crossover procedure is shown in Figure 4.

4.1.6. Mutation operator
For mutation, one parent is selected using the roulette
wheel. Then we generate a random chromosome whose
genomes have a real random value between 0 and 1.
For each genome, if the genome value is less than a
pre-de�ned value (mutation rate), the corresponding

genome in the parent chromosome will mutate. For
the �rst row of the chromosome, the parent genome is
equal to N, A, or S. For mutation, each genome will
change randomly to two other redundancy strategies.
For example, if the redundancy strategy is A, it will
be changed randomly to N, or S. The genome value
for the second and third rows of the chromosome will
be increased or decreased by one unit at random.
Figure 5 shows the procedure of the mutation oper-
ator.

4.1.7. The algorithm criterion for stopping
The pre-de�ned maximum generation is the algorithm
stopping criteria.

4.2. HGA with adaptive local search
The GA searches through all feasible and insensible
solutions at random. In many problems, most of
the time, a considerable part of the random initial
populations is not feasible. Since one of the most
critical factors in GA for �nding an optimal (or near-
optimal) solution is the quality of the initial popula-
tion, using a random initial population decreases the
chance of �nding the right answers. To eliminate these
weaknesses, many di�erent methods combine with GA.
One of these methods is a local search algorithm that
leads the reliability optimization problems to a better
result [55]. Local search is a technique to search near
the generated random solution to �nd potential better
solutions, so it improves the GA performance. Yun [56]
presented the adaptive local search, which searched for
the solutions neighborhood in each iteration of the GA.
Using adaptive local search decreases the local solution
trap in GA and leads GA to the optimal global solution.
In this paper, we present the HGA with an adaptive
local search for solving the presented RAP.

4.2.1. Adaptive local search scheme
The adaptive local search which we applied in this
paper uses the average �tness function values of two
consecutive generations as follows:

Fvr(g) =
Afv(g)

Afv(g � 1)
; (20)

Figure 4. Uniform crossover operator of the model.
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Figure 5. Mutation operator.8>>><>>>:
if Fvr(g) > 1 : Applying GA to local search

in the iteration
if Fvr(g) � 1 : Only applying GA

in the iteration
(21)

In Eq. (20), Afv(g) is the average �tness function
values of the best population based on an elitist
selection strategy at generation g, Afv(g � 1) is the
average �tness function values of the best population
based on an elitist selection strategy at generation
(g � 1), and Fvr(g) is the �tness function value ratio
at generation g.

4.2.2. HGA with local search
In this proposed HGA, we used the hill-climbing (HL)
local search method. Firstly, we apply the HL local
search for each of the chromosomes selected by the
elitist selection strategy for the next generation. The
new chromosomes are then obtained from the HL local
search algorithm, replaced by the old chromosomes,
and moved to the next generation. The HL local search
algorithm includes the following steps:

Step 1: Select one of the chromosomes that are
selected by the elitist selection strategy for the next
generation;
Step 2: Randomly generate some neighborhoods for
the selected chromosomes and calculate their �tness
function. The number of generated chromosomes
neighborhoods is equal to the problem population
size;
Step 3: Determine which neighborhood has the best
�tness function;
Step 4: If the �tness function of the neighborhood
chosen in Step 3 is better than the �tness function
of the chosen chromosome, replace the chromosome
with the neighborhood and proceed to Step 2;

Figure 6. Pseudo-code of the presented HL local search.

Step 5: Repeat Steps 1{4 for each chromosome
selected using the elitist selection strategy.

How to generate solution encoding, generate
the initial population, parents selection mechanism,
calculate �tness function, perform the crossover and
mutation operators, selection strategy of the next gen-
eration, and stop condition are precise as the presented
GA. The pseudo-code of the proposed HL local search
is presented in Figure 6.

4.3. Parameters tuning
The results of the metaheuristic algorithms depend on
the input parameters. So, we used the response surface
methodology [57] for the algorithms parameters tuning.
The range of the algorithms parameters is presented in
Table 2.

In Table 2, popsize de�nes the algorithms pop-
ulation size, pc is the crossover probability, pm is
the mutation probability, b is the penalty constant,
and maxgen is the maximum number of algorithms
generations. The optimal values for both algorithms
are presented in Table 3.
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Table 2. The range of the algorithms parameters.

Parameter Range Lower level Middle level High level
popsize 30{100 30 65 100
pc 0.60{1.00 0.60 0.80 1.00
pm 0.01{0.30 0.01 0.155 0.3
b 5{50 5 34.5 50

maxgen 20{80 20 45 80

Table 3. The optimum value of the algorithms input
parameters.

Optimal value
Parameter GA HGA
popsize 100 81.45
pc 1.00 1.00
pm 0.22 0.30
b 34.50 5.00

maxgen 80 61

5. Numerical analysis

Firstly, we solve ten di�erent instances to have a
comparison between metaheuristics. Then the e�ect
of changing the parameters of the objective functions
is investigated in the sensitivity analysis section. Next,
the model and algorithms are validated by comparing
them with other research. Finally, some managerial
insights are presented.

5.1. Numerical example
For comparison of the proposed algorithms, we used
a numerical instance presented by Fy�e et al. [3].
The instance contains a system with a k-out-of-n
series-parallel structure and 14 subsystems. In each
subsystem, three or four di�erent component types are
available. Other instance parameters are presented in
Table 4. The probability of switch success is 0.999,
and the mission horizon is 100 hours. The maximum
number of components for each subsystem is six, and

the constraints' right-hand sides are equal to C = 130,
V = 110, and W = 170. The number of unique
solutions to the problem is 7:996� 1023.

The proposed GA and HGA are both coded using
MATLAB R2019b. The results of GA and HGA are
presented in Tables 5 and 6.

The results in Tables 5 and 6 show the supe-
riority of the HGA in comparison to the GA. To
better compare these two algorithms, we selected ten
problems from the 33 presented by Nakagawa and
Miyazaki [5] and solved them using both algorithms.
These problems are quite similar to the solved instance
except that the weight constraint (right-hand side of
the weight constraint) varies from 166 to 175. Each
algorithm is run �ve times, and then we report the best,
the average, and the standard deviation of the system
reliability within these runs. The results for these ten
instances are presented in Table 7, and Table 8 shows
the PDA% of the algorithms.

The result of PDA% in Table 8 shows that HGA
has better performance for best-case and average-case
results for all instances. The best-case and average-
case results of GA are 2.41% and 2.1% (on average)
less than HGA, respectively.

To illustrate the signi�cant di�erences between
the results obtained by the proposed HGA and the GA,
a two-sample T-test was performed using Minitab 17,
and the result is presented in Table 9 and Figure 7.

These results prove that the HGA algorithm is

Table 4. The instance input parameters.
Subsys.a Component type 1 Component type 2 Component type 3 Component type 4

i ki �ai1 �si1 ci1 wi1 vi1 �ai2 �si2 ci2 wi2 vi2 �ai3 �si3 ci3 wi3 vi3 �ai4 �si4 ci4 wi4 vi4
1 1 0.001054 0.000100 1 3 5 0.000726 0.000040 1 4 4 0.000943 0.000080 2 2 3 0.000513 0.000025 2 5 2
2 2 0.000513 0.000025 2 8 2 0.000619 0.000032 1 10 1 0.000726 0.000040 1 9 2 { { { { {
3 1 0.001625 0.000425 2 7 4 0.001054 0.000100 3 5 4 0.001393 0.000708 1 6 2 0.000834 0.000042 4 4 3
4 2 0.001863 0.000538 3 5 3 0.001393 0.000708 4 6 2 0.001625 0.000425 5 4 3 { { { { {
5 1 0.000619 0.000032 2 4 5 0.000726 0.000040 2 3 4 0.000513 0.000025 3 5 5 { { { { {
6 2 0.000101 0.000010 3 5 4 0.000202 0.000015 3 4 4 0.000305 0.000020 2 5 3 0.000408 0.000023 2 4 3
7 1 0.000943 0.000080 4 7 3 0.000834 0.000042 4 8 2 0.000619 0.000032 5 9 4 { { { { {
8 2 0.002107 0.000720 3 4 1 0.001054 0.000100 5 7 1 0.000943 0.000080 6 6 2 { { { { {
9 3 0.000305 0.000020 2 8 5 0.000101 0.000010 3 9 3 0.000408 0.000023 4 7 4 0.000943 0.000080 3 8 5
10 3 0.001863 0.000550 4 6 3 0.001625 0.000415 4 5 2 0.001054 0.000100 5 6 1 { { { { {
11 3 0.000619 0.000032 3 5 4 0.000513 0.000025 4 6 3 0.000408 0.000023 5 6 3 { { { { {
12 1 0.002357 0.000835 2 4 4 0.001985 0.000605 3 5 3 0.001625 0.000708 4 6 4 0.001054 0.000100 5 7 2
13 2 0.000202 0.000015 2 5 5 0.000101 0.000010 3 5 5 0.000305 0.000020 2 6 3 { { { { {
14 3 0.001054 0.000100 4 6 4 0.000834 0.000042 4 7 2 0.000513 0.000025 5 6 2 0.000101 0.000010 6 9 4
a: Subsys.: Subsystem.
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Table 5. Results of the GA and HGA.

Subsystem GA HGA

i zi ni Redundancy strategy zi ni Redundancy strategy

1 3 2 Warm standby 3 2 Warm standby
2 1 2 No redundancy 1 2 No redundancy
3 4 2 Warm standby 4 1 No redundancy
4 3 3 Warm standby 3 3 Warm standby
5 1 1 No redundancy 2 1 No redundancy
6 2 2 No redundancy 2 2 No redundancy
7 3 1 No redundancy 2 1 No redundancy
8 1 3 Warm standby 1 3 Warm standby
9 3 3 No redundancy 3 3 No redundancy
10 2 4 Warm standby 2 4 Warm standby
11 1 4 Warm standby 1 4 Warm standby
12 1 2 Warm standby 1 2 Warm standby
13 2 2 No redundancy 2 2 No redundancy
14 3 3 No redundancy 3 4 Warm standby

Table 6. Comparison between the computational results
of GA and HA.

Algorithm GA HGA

System reliability 0.4269 0.4403
Resources consumed cost 118 118

Resources consumed weight 170 170
Resources consumed volume 105 101

preferred at a con�dence level of 95%. The di�erence
between the obtained results of both algorithms under
the statistical test presented in Eq. (22) is investigated.
Table 9 shows the results of the T-test for the above
comparison. The P � value = 0:000 indicates that
there is a signi�cant di�erence between these two
algorithms. After normalizing the data, the following
typical hypothesis test is run:

(
�HGA = �GA
�HGA 6= �GA

(22)

The box-plot shown in Figure 7 also supports a
signi�cant di�erence between the mean of the results
obtained from the HGA algorithm and the GA algo-
rithm.

5.2. Sensitivity analysis
For sensitivity analysis, di�erent values for C, W , and
V are considered to investigate the e�ect of changing
these parameters on the optimal system reliability.
Since the HGA has superiority in solving the instances,
we only solve sensitivity analysis instances using the
HGA. Moreover, we consider that the maximum allo-
catable components for each subsystem is equal to 4.

Regarding the system cost (C), the system weight

Table 7. Results for the ten instances.

GA HGA
Problem W Best Average SD Best Average SD

1 166 0.3913 0.3828 0.0081 0.3975 0.3907 0.0085
2 167 0.3974 0.3942 0.0031 0.4108 0.4025 0.0091
3 168 0.4172 0.4125 0.0081 0.4211 0.4156 0.0064
4 169 0.4219 0.4199 0.0030 0.4355 0.4283 0.0068
5 170 0.4269 0.4221 0.0044 0.4403 0.4395 0.0014
6 171 0.4331 0.4262 0.0070 0.4499 0.4432 0.0060
7 172 0.4468 0.4423 0.0040 0.4547 0.4475 0.0063
8 173 0.4611 0.4591 0.0018 0.4713 0.4656 0.0057
9 174 0.4656 0.4642 0.0013 0.4765 0.4692 0.0084
10 175 0.4705 0.4664 0.0037 0.4816 0.4799 0.0024
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Table 8. PDA% of the algorithms.

GA HGA
Problem W Best Average Best Average

1 166 1.56 2.02 0.00 0.00
2 167 3.26 2.06 0.00 0.00
3 168 0.93 0.75 0.00 0.00
4 169 3.12 1.96 0.00 0.00
5 170 3.04 3.96 0.00 0.00
6 171 3.73 3.84 0.00 0.00
7 172 1.74 1.16 0.00 0.00
8 173 2.16 1.40 0.00 0.00
9 174 2.29 1.07 0.00 0.00
10 175 2.30 2.81 0.00 0.00
Average 2.41 2.10 0.00 0.00

Figure 7. Box plots of the statistical test on HGA and
GA performance.

and volume constraints are relaxed, and the value of C
increases from 130 to 220 by steps of 10. The results
are presented in Table 10.

In Table 10, the system with C = 130 is consid-
ered the main system, and for other values of C, the
changes are highlighted as bold and underlined letters
and numbers. When the value of C increases, �rstly,
the model allocates more components to the subsys-
tems with the minimum allocated components (i.e.,
the subsystem with n = k). The model increases the
number of allocated components for each subsystem.
When C = 180, all subsystems have four components,
which is the maximum allocatable component for each
subsystem. In this case, the redundancy strategy of all
subsystems is changed to warm standby. After that,

by increasing the value of C, the model allocates the
components with better performance. Thus, by an
increase in the value of C from 190 to 220, only the
types of the components were changed. By increasing
the value of C from 130 to 220, the system reliability
increases from 0.5039 to 0.7643, which shows a 51.77%
increase.

Regarding the system weight (W ), the system
cost and volume constraints are relaxed, and the value
of W increases from 170 to 350 by steps of 20. The
results are presented in Table 11.

In Table 11, the system with W = 170 is
considered the main system, and for other values
of W , the changes are highlighted as bold and
underlined letters and numbers. When the value of
W increases, the model allocates more components
to the subsystems with the minimum allocated com-
ponents (i.e., the subsystem with n = k). The
model increases the number of allocated components
for each subsystem. When C = 290, all subsys-
tems have four components, which is the maximum
allocatable component for each subsystem. In this
case, the redundancy strategy of all subsystems is
changed to warm standby. After that, by increasing
the value of W , the model allocates the components
with better performance. Thus, by an increase in
the value of W from 290 to 350, only the types of
the components were changed. By increasing the
value of W from 170 to 290, the system's reliability
increases from 0.4403 to 0.7626, which shows a %73.20
increase.

Regarding the system volume (V ), the system
cost and weight constraints are relaxed, and the value
of V increases from 110 to 200 by steps of 20. The
results are presented in Table 12.

In Table 12, the system with V = 110 is consid-
ered the main system, and for other values of V , the
changes are highlighted as bold and underlined letters
and numbers. When the value of V is equal to 110,
the system allocates the components with the highest
performance to each subsystem. So, by increasing
the value of V , the components type doesn't change,
and only the number of allocated components to each
subsystem increases. By increasing the value of V from
110 to 180, the system reliability increases from 0.6286
to 0.7741, which shows a 23.14% increase.

The results of the sensitivity analysis demon-
strated that the system is more sensitive to the value
of W then to the value of C or �nally to the value of V .

Table 9. Two-sample T-test for HGA and GA performance.

Algorithm Number of
test problem

Mean Standard
deviation

Degree of
freedom

T -value P -value

HGA 10 0.49388 0.00223 18 {12.25 0.000
GA 10 0.50612 0.00223
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Table 10. Sensitivity analysis of the system's available budget (C).

Subsystems

No. C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 System
reliability

1 130
z 3 1 4 3 1 2 2 1 2 2 1 1 2 3

0.5039n 2 2 2 3 2 2 2 4 3 4 4 3 2 4
S W N A W A N W W N W W W N W

2 140
z 3 1 4 3 1 2 2 1 2 2 1 1 2 3

0.5386n 3 3 2 3 2 3 2 4 3 4 4 3 3 4
S W W A W A A W W N W W W A W

3 150
z 2 1 4 3 1 2 2 1 1 2 1 1 2 3

0.5580n 3 4 3 3 3 3 3 4 4 4 4 4 3 4
S W W A W A A W W W W W W A W

4 160
z 2 1 4 3 1 2 2 1 1 2 1 1 2 3

0.5631n 4 4 3 3 4 3 4 4 4 4 4 4 4 4
S W W A W A A W W W W W W W W

5 170
z 2 1 4 3 1 2 2 1 1 2 1 1 2 3

0.5954n 4 4 4 4 4 3 4 4 4 4 4 4 4 4
S W W W W A A W W W W W W W W

6 180
z 4 1 4 3 1 2 2 1 2 2 1 1 2 3

0.6209n 4 4 4 4 4 4 4 4 4 4 4 4 4 4
S W W W W W A W W W W W W W W

7 190
z 4 1 4 3 3 1 3 1 2 2 1 1 2 3

0.6333n 4 4 4 4 4 4 4 4 4 4 4 4 4 4
S W W W W W W W W W W W W W W

8 200
z 4 1 4 3 3 1 3 2 2 2 1 1 2 4

0.6847n 4 4 4 4 4 4 4 4 4 4 4 4 4 4
S W W W W W W W W W W W W W W

9 210
z 4 1 4 3 3 1 3 3 2 3 1 1 2 4

0.7219n 4 4 4 4 4 4 4 4 4 4 4 4 4 4
S W W W W W W W W W W W W W W

10 220
z 4 1 4 3 3 1 3 3 2 3 1 4 2 4

0.7643n 4 4 4 4 4 4 4 4 4 4 4 4 4 4
S W W W W W W W W W W W W W W

5.3. Model and algorithms validation
For model validation, we relaxed the volume constraint
and reduced the switch success probability to 0.99.
Then we multiply the values of the components warm
standby failure rate by  and reduce the value of

 from one to zero by steps of 0.2. Changing the
value of  does not a�ect the number and type of
the allocated components to each subsystem as well as
the redundancy strategy of each subsystem. Only the
value of the system reliability increased smoothly as we
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Table 11. Sensitivity analysis of the system maximum acceptable weight (W ).

Subsystems

No. W 1 2 3 4 5 6 7 8 9 10 11 12 13 14 System
reliability

1 170
n 3 1 4 3 2 2 2 1 3 2 1 1 2 3

0.4403z 2 2 1 3 1 2 1 3 3 4 4 2 2 4
S W N N W N N N W N W W W N W

2 190
n 3 1 4 3 2 2 2 1 3 2 1 1 2 3

0.4696z 4 2 2 3 2 2 2 3 3 4 4 2 2 4
S W N W W W N A W N W W W N W

3 210
n 3 1 4 3 2 2 2 1 3 2 1 2 2 3

0.5006z 4 2 3 3 2 3 2 3 3 4 4 3 3 4
S W N W W W W A W N W W W A W

4 230
n 3 1 4 3 2 2 2 1 3 2 1 2 2 3

05319z 4 4 3 3 3 3 2 3 3 4 4 3 3 4
S W W W W W W A W N W W W A W

5 250
n 3 1 4 3 3 2 2 1 3 2 1 2 2 3

0.5759z 4 4 3 4 3 3 3 4 3 4 4 3 3 4
S W W W W W W W W N W W W A W

6 270
n 3 1 4 3 3 2 2 1 3 2 2 2 2 3

0.6210z 4 4 3 4 3 4 3 4 4 4 4 3 4 4
S W W W W W W W W W W W W W W

7 290
n 3 1 4 3 3 2 2 1 3 2 2 2 2 3

0.6310z 4 4 4 4 3 4 4 4 4 4 4 4 4 4
S W W W W W W W W W W W W W W

8 310
n 4 1 4 3 3 2 2 1 1 2 2 2 2 3

0.6412z 4 4 4 4 4 4 4 4 4 4 4 4 4 4
S W W W W W W W W W W W W W W

9 330
n 4 1 4 3 3 1 3 3 2 2 2 2 2 3

0.6952z 4 4 4 4 4 4 4 4 4 4 4 4 4 4
S W W W W W W W W W W W W W W

10 350
n 4 1 4 3 3 1 3 3 2 3 3 4 2 3

0.7626z 4 4 4 4 4 4 4 4 4 4 4 4 4 4
S W W W W W W W W W W W W W W

expected. The system reliability for di�erent values of
 is presented in Table 13.

The system reliability for  = 0 is equal to 0.4505.
when the value of  is equal to zero. The standby
components failure rates are equal to zero, so the model

is turned into a system with cold standby components.
The result for  = 0 in terms of the subsystems
allocated components, the type of the allocated com-
ponents to each subsystem, the redundancy strategy of
the subsystems, and the system reliability, the result
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Table 12. Sensitivity analysis on the system maximum acceptable volume (V ).

Subsystems

No. V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 System
reliability

1 110
n 4 1 4 3 3 1 3 3 2 3 3 4 2 4

0.6286z 2 2 2 3 2 2 2 3 3 4 4 2 2 4
S W N A W A N W W N W W W N W

2 120
n 4 1 4 3 3 1 3 3 2 3 3 4 2 4

0.6391z 2 2 2 3 2 3 2 3 3 4 4 2 3 4
S W N A W A W W W N W W W W W

3 130
n 4 1 4 3 3 1 3 3 2 3 3 4 2 4

0.7047z 2 3 3 3 2 3 3 3 3 4 4 3 3 4
S W W W W A W W W N W W W W W

4 140
n 4 1 4 3 3 1 3 3 2 3 3 4 2 4

0.7269z 3 3 3 3 3 3 3 3 3 4 4 4 3 4
S W W W W W W W W N W W W W W

5 150
n 4 1 4 3 3 1 3 3 2 3 3 4 2 4

0.7443z 4 4 3 3 3 4 3 3 4 4 4 4 3 4
S W W W W W W W W W W W W W W

6 160
n 4 1 4 3 3 1 3 3 2 3 3 4 2 4

0.7674z 4 4 3 4 4 4 3 4 4 4 4 4 3 4
S W W W W W W W W W W W W W W

7 170
n 4 1 4 3 3 1 3 3 2 3 3 4 2 4

0.7732z 4 4 4 4 4 4 4 4 4 4 4 4 3 4
S W W W W W W W W W W W W W W

8 180
n 4 1 4 3 3 1 3 3 2 3 3 4 2 4

0.7741z 4 4 4 4 4 4 4 4 4 4 4 4 4 4
S W W W W W W W W W W W W W W

Table 13. System's reliability for di�erent values of .

 1.00 0.80 0.60 0.40 0.20 0.00
System reliability 0.4303 0.4440 0.4467 0.4489 0.4499 0.4505

is the same as the results of Aghaei et al. [58]. It
shows the presented RAP ability to deal with warm
and cold standby components and demonstrates the
solving methodologies are precisely designed.

Moreover, Table 13 shows that the presented
model is applicable to cold and warm standby com-
ponents simultaneously. For this reason, and for the

subsystems with cold standby components, the warm
standby failure rates should be set to zero.

5.4. Managerial insights
The presented model will help the managers and sys-
tem designers optimize the redundant systems in terms
of reliability when the components are warm. Using
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the results of the presented models leads the managers
to operate the systems at a lower cost and the system
designers to a bene�cial trade-o� between the system's
reliability and cost. The systems that use warm
standby components like batteries (i.e., UPSs) and
radioactive components (i.e., nuclear power plants and
nuclear submarines) and the electricity transmission
systems may use the result of the presented model to
design and operate more reliable systems.

The results of Tables 10{12 show that increas-
ing the right-hand-side of the model constraints �rst
leads the model to allocate more components to the
subsystems. Then the models use the components with
higher performance to increase the system reliability. It
means that the model is more sensitive to the number
of subsystems components than to their type.

6. Conclusions and recommendations for
future research

In most of the research conducted on Redundancy Al-
location Problem (RAP), the subsystems components
are considered cold standby. But in real-world systems
such as UPSs, nuclear power plants, and nuclear
submarines, the components are in warm standby. So,
it is essential to present the new practical models to
�gure out the reliability of these systems. This paper
presents a new Hybrid GA (HGA) for solving the
RAP without Component Mixing (RAPCM) with k-
out-of-n subsystems con�guration and warm standby
components with Constant Failure Rate (CFR). In
this model, the redundancy of the subsystems was
considered as the model decision variable. Since the
proposed model is an NP-hard non-linear programming
model, we solve the presented model with an HGA and
compare the results with a Genetic Algorithm (GA).
The results show the superiority of the HGA compared
to GA, and the HGA achieves results on average 2.1%
better than GA in terms of the system reliability for ten
di�erent large-scale problems. Moreover, the results
show that the model is more sensitive to the number of
the allocated components to the subsystem compared
to the type of the allocated components. By changing
the values of the warm standby components failure
rates, we showed that the presented model is applicable
for systems with cold and warm standby components
simultaneously.

Future studies may have two directions. The �rst
direction deals with the model assumptions. Consider-
ing the systems with repairable components makes the
problem more realistic. Besides, the structure of the
current research may apply to a RAP with a Mix of
Components (RAPMC). Finally, considering the multi-
state warm standby components is a proper way to
draw the problem close to real-world conditions. The
second direction is using di�erent solving methodolo-

gies. Considering the multi-objective RAP with the
current assumptions brings more options for decision-
makers.
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