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Abstract. It took decades for electrical power grids to transform from traditional
to smart power grids with focus on transparency on utility and consumer. Energy
management systems play a substantial role in responding to demands within the smart
power grid umbrella, enabling demand-side management at the residential level. These
systems generate consumption pro�les of appliances and reduce the burden on end-user
in scheduling appliance operations. By using these consumption pro�les of past usage,
there is a possibility to generate a time window containing user preferable time slots
for appliance operation for the next day. Using this time window, one can generate a
cost-e�ective schedule pattern autonomously. In this regard, this paper proposes a home
energy-demand management scheme consisting of a time window generator and a schedule
pattern generator to generate a cost-e�ective comfortable scheduling pattern with a demand
threshold constraint. Multi-class home appliances enabled with a net-meter indicate the
e�ectiveness of the proposed approach. The simulation results illustrate that the proposed
approach helps users save electricity bills with constraint preserving comfort.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Energy Management Systems (EMSs) appear to be vi-
able and suitable from the grid and consumer perspec-
tives. EMSs on the grid side target e�cient generation,
transmission, and distribution and aim at cost-e�ective
planning, monitoring, and scheduling energy needs on
the consumer side [1]. The demand side, mostly the
residential area, consumes a substantial portion of the
power generated compared to commercial and indus-
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trial sectors [2]. A smart power grid combined with
demand response enables demand-side management
in residential areas to make a balance between the
grid supply and consumer demand [3]. This balance
avoids blackouts and brownouts during peak hours and
also avoids underutilization of power during o�-peak
hours. The demand response in residential areas makes
demand management possible not only at the grid level
via direct load control mechanism (in real time) but
also at the residence level via appliance scheduling (day
ahead) [4{6]. This appliance scheduling provides end-
user/consumers with an opportunity to cost-e�ectively
operate appliances under a dynamic pricing scheme via
Home Energy Management (HEM) systems. The cost-
e�ective operation of appliances allows individuals to
reduce Electricity Bill (EB) with full or no comfort by
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shifting the operation of appliances through scheduling
algorithms [7{10].

Scheduling of appliance operations via algorithms
has drawn signi�cant attention in recent years, en-
abling end-users to control appliances concerning time-
varying electricity tari�s. The scheduling algorithms
incorporate utility updates (day-ahead electricity tar-
i�) with rooftop photovoltaic (PV) information and
end-user preferences to plan home appliance opera-
tions [11{13]. Numerous models and algorithms for
appliance scheduling, including variable tari�s and
thresholds on power, derived from the grid with dif-
ferent pricing schemes or demand management ap-
proaches addressing either EB reduction or uncompro-
mised user's comfort are observed in the literature as
discussed below.

Loenthiran et al. [9] proposed appliances schedul-
ing using load shifting techniques to reduce EB. Such
demand shifting techniques may discomfort the user
due to operational delays. In [10], researchers presented
a mathematically developed model to schedule appli-
ances using a linear programming technique for EB re-
duction. In [11], a heating-ventilation-air-conditioning
model was presented for the HEM system using mixed-
integer nonlinear programming to reduce EB. However,
the model considers only EB minimization. In [12],
the authors presented linear programming models for
appliance scheduling to minimize EB. In [13], an HEM
system compromising user comfort was designed for
EB reduction via appliance scheduling. In [14], the
authors de�ned the objectives and constraint functions
mathematically to reduce EB. However, the func-
tion considers only EB minimization as an objective.
In [15], the authors presented a scheduling algorithm
to control operational time and energy consumption of
appliances using mixed-integer nonlinear programming
for reducing EB. The authors in [9{15] did not consider
demand peaks and operational delays that might arise
due to shifting demand at o�-peak hours or during low-
tari� hours while reducing EB.

In [16], the HEM algorithm using a mathematical
model of home appliances was proposed to minimize
user discomfort and EB. In [17], a mathematical
model of optimization using mixed-integer nonlinear
programming and heuristic algorithms was suggested
to minimize EB and discomfort. In [18], the authors
presented a mathematical formulation of the objective
function and algorithm for EB reduction with comfort,
considering the limited number of appliances. In [19],
researchers adopted a exible load control strategy to
schedule appliances for reducing EB and discomfort.
Ma et al. [20] proposed appliance scheduling under
day-ahead pricing using integer linear programming
to reduce EB comfort. In [21], a decentralized HEM
framework was given to minimize EB while preserving
user preferences. In [22], appliance scheduling using

demand shifting techniques for HEM including renew-
able energy sources was proposed to reduce energy
consumption, thereby decreasing EB with user comfort.
In [23], the authors adopted a bottom-up approach to
HEM using smart plugs to reduce EB and maintain
user comfort. The authors in [16{23] did not consider
demand peaks that might be developed during EB
reduction while preserving user comfort.

Following a review of the literature, it becomes
clear that the reported HEM schemes generate a day-
ahead schedule pattern for appliances to reduce EB by
shifting appliance operation to a non-preferable hour,
thereby compromising the end-user comfort. Some
HEM schemes entirely prefer addressing user comfort
alone. In both cases, the schemes do not consider
demand peaks that may occur while reducing EB
with user comfort. Thus, our observation shows that
this �eld needs immediate addressing to achieve cost-
e�ective energy management with user comfort and
demand threshold constraints via scheduling of appli-
ance operations. However, if past consumption pro�les
of appliance operations are available, a time window
containing user-preferred time slots for an appliance
operation can be generated. The user or utility can
set a demand threshold or grid power draw constraint
to maintain a demand below a certain level, thereby
suppressing demand peaks without curtailing. If cost-
e�ective scheduling patterns are generated from these
windows autonomously considering constraints, then
cost-e�ective energy management with user comfort
and constraint is possible. Therefore, this paper
proposes an HEM scheme consisting of a time window
generator, a schedule-pattern generator, a demand
threshold, and a grid power draw constraint to generate
a cost-e�ectively comfortable schedule pattern.

A home with multi-class appliances enabled with
a net-meter and demand threshold constraint demon-
strates the e�ectiveness of the proposed approach. The
simulation results showcase the performance of the
proposed approach compared to the outcome of full-
comfort schedule-pattern and cost-e�ective comfort-
able schedule pattern, thereby achieving EB saving
with comfort and constraint. In the rest of the article,
Section 2 presents an overview of the HEM system
model. Section 3 formulates and de�nes both time
window and schedule-pattern generation algorithms.
Section 4 shows simulation results. Section 5 concludes
the paper with the bene�ts of the proposed algorithms
to the user.

2. Home Energy Management (HEM) model

This section presents an HEM scheme for a net-meter-
enabled home with entities like multi-class appliances
demand, grid-tied rooftop PV power information, day-
ahead electricity tari� on the utility, grid power con-
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Figure 1. Household energy management model.

straint, and hourly demand threshold constraint, as
shown in Figure 1.

Entity 1-multi-class appliances demand
From the literature review, we have predominantly
observed that the reported HEM schemes consider two
types of load, shiftable and non-shiftable, to generate a
day-ahead scheduling pattern for appliance operation.
Some HEM schemes also assume interruptible and non-
interruptible appliances for scheduling in real time.
Our approach functions in line with those existing in
the literature, which generates a schedule pattern day-
ahead of appliance operation. Therefore, this paper
considers a set of multi-class appliances A classi�ed
into two broad categories based on their demand-type
shiftable and non-shiftable as ClassNA and ClassSA,
respectively, as shown in Eq. (1):

A = fClassNA [ ClassSAg : (1)

These appliances are operated at their de�ned time
slots or at an appropriate time slot based on their type.
ClassSA appliances get operated at an appropriate
time slot of the day, whereas ClassNA appliances get
operated at user-de�ned time slots. However, some
shiftable appliances get operated one time in a day
(such as kettle, iron, water heater, vacuum cleaner, and
well pump), two times a day (such as rice cooker and
electric stove), and one time for two continuous hours
in a day (such as washing machine).

Therefore, ClassSA appliances are categorized fur-
ther into three types as ClassSO, ClassST, and ClassSC
based on their possibility of being operated once, twice,

and once for two continuous hours a day, respectively,
as indicated in Eq. (2):

ClassSA = fClassSO [ ClassST [ ClassSCg : (2)

The energy-demand analysis for a day f24-hourg is a
one-hour resolution as a one-time slot, assuming that
each hourly slot is 60 minutes. The shortest operational
length of an appliance is assumed to be 1 minute.
Accordingly, any appliance's operational length should
be a multiple of 1 minute that extents from 1 minute to
60 minutes (one hour), or 1 minute to 120 minutes (two
hours). Simultaneously, there are possibilities with an
actual operational length, which is less than an hour,
but in multiples of 1 minute. The proposed approach
assumes that the appliance demand for this type of
operational length exists for an entire hour and should
schedule the appliance operation at an appropriate
hourly time slot.

For an appliance a, the assumption is that the
demand remains constant during its operation. When
the rating of an appliance is Ra, the demand Da per
its operational length na is obtained using Eq. (3):

Da =
Ra
60
� na j8 a 2 fAg : (3)

Entity 2-grid-tied rooftop PV power
information
A grid-connected rooftop PV is assumed in this article,
as a local source of uninterruptible renewable energy,
to be available for appliance operation. PVday;gen is
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considered as the summation of PVh;gen, as shown in
Eq. (4):

PVday;gen =
24X
h=1

PVh;gen: (4)

Assuming the intermittent nature of PV, this paper
considers the net-meter features to alleviate the uncer-
tainty of rooftop PVs output power at the residence
level. Furthermore, this paper also assumes that
the PV installation capacity depends on the user's
choice.

Entity 3-day-ahead electricity tari� form
utility
However, this article assumes that a house's demand
cannot be managed all alone with rooftop PV. There-
fore, there is a seamless grid power every hour of the
day GPh. The day-ahead hourly tari� information Th
from the utility for the grid power is shown in Eq. (5):

Tariff = fT1; T2; � � � ; T24g: (5)

The HEM utilizes suitable low-tari� hours of Eq. (5)
to reduce EB.

Entity 4-grid power constraint
Operating appliances during low-tari� hours can cause
demand peaks to be unsuitable for the grid. Thus,
this study considers a constraint on power drawn from
the grid to reduce such peaks. The assumption in
this article is that the utility limits the user from
drawing the grid power based on their rooftop PV
installation capacity such that the grid power, drawn,
should always be less than or equal to installed PVpeak,
as listed in Eq. (6).

GPh � PVpeak j8 h 2 [1; 2; 3; � � � ; 24] : (6)

This consideration enables the utility to be sensitive
to power requirement, given the intermittent nature of
PV, and it ensures grid power availability as a standby
to avoid demand curtailment.

Entity 5-hourly demand threshold constraint
The assumption in this paper is that the demand
threshold should be in a way that even if all non-
shiftable appliances operate simultaneously during a
particular time slot, they should not be curtailed.
Furthermore, the demand threshold should be within
grid power limits.

Hence, drawing upon Eq. (6), Dh;threshold is
assumed in Eq. (7):

Dh;threshold � GPh: (7)

The demand threshold is a limit set by the user on
the appliance demand in a time slot, whereas the grid
power is the hourly power available from the grid to the
user. To distribute the demand uniformly throughout
the day and to reduce demand peaks, Eqs. (6) and (7)

attempt to limit users from drawing grid power and,
in turn, encourage them to utilize renewable energy
(PV), thereby bene�ting society concerning carbon
footprints.

The utility decides whether the user can draw
the grid power and communicates it to the HEM day-
ahead, which helps users keep the demand below a
threshold, thereby preventing rebound peaks for grid
stability. This threshold might delay or reduce the
operation of speci�c appliances so as to prevent demand
peaks, thereby discomforting users. Hence, the users
can minimize this trade-o� between personal comfort
and grid reliability through proper PV installation,
taking into account Eqs. (6) and (7).

3. An algorithmic approach to generating
cost-e�ective schedule pattern based on
user preferences

This section de�nes the user-preferred time window
generator and schedule-pattern generation algorithms.

3.1. User preferred time window
A review of the literature illustrates that there is a
possibility to generate a user-preferred time window
using a classi�er [24]. The classi�er chooses the most
preferred time slot by the user over some days and
�nally, considers it a user-preferred time slot; to be
speci�c, a group of such user-preferred time slots
produces a time window for an appliance.

For example, if a user operates an appliance, say
an electric heater, for the �rst 20 days of the month
at 5 am and operates the same appliance during the
last 10 days of the month at 6 am, then the classi�er
considers the user-preferred time slots for an electric
heater as 5 am and 6 am, thereby generating a time
window with time slots 5 am and 6 am considering 5 am
as the full-comfort time slot. However, concerning the
user preference within the last 10 days of the month,
the full-comfort time slot should be 6 am because the
users might change their preference for operating the
appliance from the 5 am time slot to 6 am. Thus, the
classi�er lacks generating the full-comfort time slots
considering the recently preferred time slots by the
user. In this regard, this article paper considers a
time window generator based on the Arti�cial Neural
Network (ANN) technique that generates the user-
preferred time slots considering the recently used time
slots to identify full-comfort time slots.

3.1.1. An ANN technique for generating a time
window

The ANN network receives the input signals and then,
multiplies it by the corresponding weights. A linear
combiner output is generated by summing up all the
weighted inputs, as shown in Eq. (8):
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Linear combiner output=
nX
i=1

[inputi � weighti] : (8)

To generate the time window past 30 days of con-
sumption, pro�les containing the ON and OFF states
of appliances at particular time slots are taken into
consideration. The state of an appliance a, as shown in
Eq. (9), at a particular time slot for a particular day is
considered as inputs to the ANN:

App stateTS;d =
0; OFF state

1; ON state
(9)

The weights of the ANN network are arbitrarily se-
lected, as shown in Eq. (10):

Wd =
d

100
: (10)

Therefore, considering the inputs from Eq. (9) and
weights from Eq. (10), the weighted input of the ANN
is shown in Eq. (11).

weighted inputTS;d = App stateTS;d �Wd: (11)

Concerning Eqs. (8){(11), the linear combiner output
of ANN is shown in Eq. (12):

Linear combiner output=
30X
d=1

�
weighted inputTS;d

�
:

(12)

If the linear combiner output at a particular time slot
TS is non-zero, then TS is the preferred time slot by
the user for appliance operation. On the other hand,
if the output is zero, then TS is considered as the non-
preferred time slot by the user for appliance operation.
A particular time slot with the highest linear combiner
output value is the time slot of highest priority, also
known as a full-comfort time slot in this article.

3.1.2. An algorithmic approach to generating a time
window using the ANN technique

The time window generator provides the exibility to

generate user-preferred time slots ahead of scheduling
appliance operation considering Eqs. (8){(12), as dis-
cussed in Algorithm 1.

The generated time window containing these pre-
ferred time slots is termed as the preferred time window
for appliance a, as shown in Eq. (13), and discussed in
Algorithm 1.

PTWa = fTS1;TS2; � � � ;TS24g : (13)

An appliance gets operated with user ease during
an appropriate time slot within this generated time
window. For ClassNA appliances, the time window
contains a list of must-run time slots, whereas for
ClassSA appliances, it contains a range of optional
operational time slots.

3.2. Cost-e�ective schedule-pattern generation
algorithms

This section de�nes the pattern-generation algorithms
considering entity 1, entity 2, entity 3, entity 4, en-
tity 5 and generates the user-preferred time window.
In this algorithmic approach, the assumption is that
GPh;avai is initially equal to GPh and PVh;avai is equal
to PVh;gen.

3.2.1. The scheduling-pattern generation algorithm
for ClassNA appliances

The demand Da is calculated using Eq. (3) for an
appliance, a 2 ClassNA. However, it is assumed that
Da is non-shiftable and remains constant for all time
slots of PTWa de�ned by the user.

ClassNA appliances get scheduled for their opera-
tion in their respective de�ned time slots that belong
to PTWa, as discussed in Algorithm 2.

After generating the scheduling pattern for
ClassNA, ClassSA appliances are arranged in order,
priority-wise and class-wise (ClassSO, ClassST, and
ClassSC), as discussed in Algorithm 3.

After sorting ClassSA appliances, their schedul-
ing pattern is generated, as per arranged order, one

Algorithm 1: Time window generation algorithm.
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Algorithm 2: ClassNA appliances scheduled pattern generation algorithm.

Algorithm 3: ClassSA appliances sorting algorithm.

after the other sequentially as discussed below. The
proposed scheduling pattern generation algorithms for
shiftable appliances check all appropriate time slots
with su�cient PV energy to meet the demand or
low tari�s. Accordingly, they schedule the appliance
operation at a suitable time slot with minimum tari�
or maximum renewable energy utilization.

The PV appropriate hour is a suitable time slot
within PTWa with minimum su�cient PV power to
accommodate the demand of an appliance a during its
operation, as shown in Eq. (14):

PVmn = min fPVh;gen jh 2 PTWa g : (14)

The idea behind the de�nition of PV appropriate
time slots is to maximize the utilization of available
renewable energy by accommodating the demand of
an appliance within available energy in a speci�c time
slot and allowing greater demands to use other higher
energy time slots. The concept provides an opportunity
to utilize renewable energy to its maximum and allows
the end-user to maximize EB savings.

Similarly, the appropriate utility hour is a time
slot within PTWa, as shown in Eq. (15) and has

minimum tari� and grid power, which is enough to
meet the demand of an appliance during its operation.

Tmn = min fTh jh 2 PTWa g : (15)

The scheduling pattern generation for non-shiftable
appliances is the same, regardless of whether appliance
operations are scheduled independently or simultane-
ously. Although simultaneous scheduling of shiftable
appliances through optimization techniques helps re-
duce EB with user comforts, it may draw power from
grids at the same time over low-tari� hours and sell
PV power during high-tari� hours. The motivation
behind the proposed scheme is to drive the end-user
to utilize renewables for the bene�ts of the user, grid,
and society. Accordingly, we proceeded with the
scheduling pattern generation for shiftable appliances
independently, thereby reducing EB with user comfort
and drawing less power from the grid.

3.2.2. The scheduling pattern generation algorithm for
ClassSO appliances

For scheduling the operation of an appliance a 2
ClassSO operating once a day, the demand Da is
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Algorithm 4: ClassSO appliances scheduled pattern generation algorithm.

Algorithm 5: ClassST appliances scheduled pattern generation algorithm.

calculated using Eq. (3). Based on Da, the pattern
generation algorithm schedules appliance operation at
an appropriate hour for PV or utility, as represented
in Eqs. (14) and (15).

Likewise, operations of ClassSO appliances are
scheduled subsequently with user preferences, as dis-
cussed in Algorithm 4.

After generating the scheduling pattern for

ClassSO appliances, that for ClassST appliances is
generated (using Algorithm 5) concerning the updated,
available PV and grid power (from Algorithm 4).

3.2.3. The scheduling pattern generation algorithm for
ClassST appliances

For scheduling the operation of an appliance a 2
ClassST operating twice a day, the demand Da is
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calculated using Eq. (3), assuming that this appliance
operates two times a day at di�erent time slots with
the same operational length. Based on the demand
Da, the appliance gets scheduled for two turns of
operation (�rst turn and second turn) subsequently in
appropriate time slots, as discussed in Algorithm 5.

Likewise, the operations of ClassST appliances are
scheduled subsequently for each turn, as discussed in
Algorithm 5.

After generating the scheduling pattern for
ClassST appliances, that for ClassSC appliances is
generated (using Algorithm 6) concerning the updated,
available PV , and grid power (from Algorithm 5).

3.2.4. The schedule-pattern generation algorithm for
ClassSC appliances

Appliances in this classi�cation are non-preemptive in
operation and their entire operation is scheduled as a
whole during two suitable continuous time slots where
there exists su�cient PV power or low tari�s. In cases
of insu�cient PV or low tari� for two consecutive time
slots, the combination of suitable time slots of PV and
grid should be preferred. For scheduling the operation
of such appliance a 2 ClassSC operating once a day for
two continuous hours (between 60 and 120 minutes),
demand Da is calculated using Eq. (3). Since the
energy demand management is assumed to be using
hourly time slots of 60 minutes, the demand Da of
120 minutes is segregated into demands Da;1 and Da;2
for the �rst 60 minutes and second 60 minutes of 120
minutes, respectively, as shown in Eq. (16):

Da = Da;1 +Da;2 j8 a 2 ClassSC : (16)

Based on the demands Da;1 and Da;2, appliance
operation is scheduled at appropriate hours of PV
or utility or combination of both, as discussed in
Algorithm 6.

An assumption for such a class of appliance is
that its operational length varies from more than 60
minutes to less than or equal to 120 minutes (i.e.,
60 < na � 120 minutes). Based on a review of the
literature, the operational length of most appliances
does not exceed 120 minutes [25]. For example,
the washing machine operates for 90 minutes, and
since energy demand management in this article is
hourly, 90 minutes are split into 60 minutes and 30
minutes. The demand within the two time frames of
60 and 30 minutes is calculated and then, the appliance
operations are scheduled for two consecutive hourly
time slots. Therefore, the authors assume that the
demand of such an appliance exists for two continuous
hours (between 0 and 120 minutes).

Likewise, operations of ClassSC appliances are
scheduled subsequently with user comfort, as discussed
in Algorithm 6.

The HEM schemes de�ned via Algorithms 1{6
can be summarized as in a given set of multi-class
appliances, past consumption data, demand thresh-
old and grid-power draw constraint, and PV and
utility information day-ahead. The algorithms �nd
appropriate time slots to schedule appliances for next-
day operations for cost-e�ective energy operation of
appliances with comfort and constraint.

4. Simulation results and discussions

This section discusses simulation results using the
proposed algorithms by assuming ClassNA and ClassSA
appliances, as listed in Table 1. Table 2 lists ClassNA
appliances and Tables 3, 4, and 5 list ClassSA ap-
pliances with their operational length na in minutes,
generated preferred time window, and demand during
operation. The assumption is that Tables 3, 4, and 5
list appliances as per priority, i.e., the appliance with a
smaller time window and lengthiest demand at top of
the list and vice versa using Algorithm 3.

The user de�nes the operational length of an
appliance and the time window generator de�nes the
preferred time slots for an appliance, respectively, as
listed in Tables 2{5. For ClassNA appliances, the
preferred time slots are must-run hours, whereas they
are optional operating hours for ClassSA appliances.
The operational length de�nes the number of minutes
that an appliance must run during its turn of opera-
tion.

For simplicity, each time slot is divided into 60
minutes and the minimum operational length of an
appliance is 1 minute. Also, for the demonstration
of the proposed approach, the assumption is that the
PV capacity, demand threshold, and grid power limit
values are 1.5 kW (peak), 1.5 kWh, and 1.5 kWh,
respectively, resolving Eqs. (6) and (7). However,
the PV capacity, demand threshold, and grid power
limit values may vary based on the user willingness,
considering Eq. (6) and Eq. (7). This study assumes a
dynamic electricity tari� in [26].

4.1. Scheduling the operation of appliances
using the proposed algorithmic approach

The proposed algorithmic approach schedules the op-
eration of ClassNA appliances in their preferred time
slots, as stated in Algorithm 2 and schedules the
operation of ClassSA appliances in appropriate time
slots, as stated in Algorithms 4 to 6.

4.1.1. Scheduling ClassNA appliance operations
For scheduling ClassNA appliances, the demand Da for
an appliance a is calculated using Eq. (3) and listed in
Table 2. Using Algorithm 2, the operations of all theses
ClassNA appliances are scheduled sequentially in their
respective, user-de�ned preferred time slots, as shown
in Figure 2.
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Algorithm 6: ClassSC appliances scheduled pattern generation algorithm.
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Table 1. List of appliances with their rating for 1 bedroom-hall-kitchen home classi�ed as ClassNA and ClassSA, further
sub-classi�ed as ClassSO, ClassST, and ClassSC.

Room Appliance Rating ClassNA
ClassSA

ClassSO ClassST ClassSC

Bed room
CFL 1 0.018 kWh X
Tube 1 0.036 kWh X
Fan 1 0.5 kWh X

Living room

CFL 2 0.018 kWh X
Tube 2 0.036 kWh X
Fan 2 0.5 kWh X
TV 0.1 kWh X
Iron 1.1 kWh X
Vacuum cleaner 1.3 kWh X

Kitchen

Tube 3 0.036 kWh X
Refrigerator 0.15 kWh X
Kettle 1.5 kWh X
Rice cooker 1.3 kWh X
Electric stove 0.9 kWh X

Bath room
Water heater 1.5 kWh X
Well pump 0.9 kWh X
Washing machine 2 kW� X

�: Rated maximum power during their term of operation; X: Represents that an appliance
belongs to a particular class.

Table 2. ClassNA appliances with their respective operational length, preferred time slots, and demand per hour.

ClassNA
na per hour

(mins)
PTWa

(hours)
Da per hour

(kWh)
CFL 1 60 1 � 6, 23 � 24 0.018
Tube 1 60 19 � 21 0.036
Fan 1 60 1 � 6, 19 � 24 0.5
CFL 2 60 1 � 6, 22 � 24 0.018
Tube 2 60 7 � 8, 18 � 21 0.036
Fan 2 60 7 � 21 0.5
TV 60 17 � 21 0.1
Tube 3 60 6 � 7, 18 � 20 0.036
Refrigerator 60 1 � 24 0.15

Table 3. ClassSO appliances with their respective operational length, preferred time slots, and demand per turn.

ClassSA

na during each
turn of operation

(mins)

PTWa

(hours)

Da during its
turn of operation

(kWh)

ClassSO

Kettle 20 7 � 8 0.5
Iron 15 7 � 8 0.275
Water heater 10 5 � 6 0.25
Vacuum cleaner 30 6 � 10 0.65
Well pump 30 4 � 10 0.45
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Table 4. ClassST appliances with their respective operational length, preferred time slots, and demand per turn.

ClassSA

na during each
turn of operation

(mins)

PTWa (hours) Da during its
turn of operation

(kWh)
1st

turn
2nd
turn

ClassST
Rice cooker 30 6 � 9 15 � 17 0.65
Electric stove 25 6 � 9 14 � 16 0.375

Table 5. ClassSC appliances with their respective operational length, preferred time slots, and demand per turn per hour.

ClassSC
Time slots

(hours)

na during the
turn of operation

(mins)

Da during the
turn of operation

(kWh)

PTWa

(hours)

Washing machine
First-time slot 60 0.779 Da;1 5 � 12
Second-time slot 30 0.138 Da;2

Figure 2. ClassNA appliances scheduled pattern using Algorithm 1.

Figure 3. ClassSO appliances scheduled pattern using Algorithm 3.

4.1.2. Scheduling operations of ClassSA appliances

For scheduling the operations of ClassSA appliances,
the demand Da is calculated using Eq. (3) for each
appliance a 2 ClassSA and tabulated in Tables 3{
5. Algorithms 4{6 scheduled the operations of all
these ClassSA appliances at their respective appropri-
ate hours of either PV or utility, respectively, as shown
in Figures 3{5.

As discussed in the proposed approach, the ap-
pliances listed in Tables 2{5 are scheduled as per user
preference, as shown in Figure 6.

4.2. Demonstration of the e�ectiveness of the
proposed HEM scheme

The HEM approach proposed in this article is an
analytical method to minimize EB with an hourly
demand threshold including user comfort.

4.2.1. Demonstrating the e�ectiveness of ANN-based
time window generation technique

We considered full-comfort-based time slots for demon-
strating the e�ectiveness of the time window generator.
Full-comfort time slots are those with highest priority
from the generated time window. We have compared
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Figure 4. ClassST appliances scheduled pattern using Algorithm 4.

Figure 5. ClassSC appliances scheduled pattern using Algorithm 5.

Figure 6. Multi-class appliances scheduled pattern with user comfort.

the proposed ANN-based generated full-comfort time
slots with a classi�er-based generated full-comfort time
slots, as listed in Table 6.

In a full-comfort scenario, the user operates ap-
pliances with 100% comfort and no operational delay
calculated using Eqs. (17) and (18):

Operational delay = j(Comfortable hour)
�(Scheduled hour)j ; (17)

Percentage of comfort =
(24�Operational delay)

24

� 100: (18)

The observation made based on the comparison is
that there is an operational delay of 0 to 4 hours

with a comfort ranging between 83.33% and 100% for
the classi�er-based full-comfort time slots concerning
ANN-based full-comfort time slots. This discomfort is
because the classi�er considers the most preferred time
slot as a user-preferred time slot, and ANN considers
the recently used time slots over some recent days as
user-preferred time slots. However, comfort should
always be 100% with no operational delay in terms
of full comfort. In this regard, the ANN-based time
window generation technique overrules the classi�er-
based time window generation technique.

4.2.2. Demonstrating the e�ectiveness of the proposed
cost-e�ective scheduling pattern generation
algorithms

We considered the operation scheduling for appliances
with a full-comfort scenario and a cost-e�ective sce-
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Table 6. Outcomes of ClassSA appliances in terms of operational delay and percentage of comfort concerning the
full-comfort time slots identi�ed by ANN and Na��ve Bayes classi�er.

ClassSA appliances

Kettle Iron Water
heater

Vacuum
cleaner

Well
pump

Rice
cooker

Electric
stove

Washing
machine

Parameters 1st
turn

2nd
turn

1st
turn

2nd
turn

1st
turn

2nd
turn

Full-comfort
time slot (hour)

ANN 7 8 6 10 10 8 17 9 16 9 10
Na��ve Bayes 8 7 5 7 6 8 16 8 16 11 12

Operational delay (hours) 1 1 1 3 4 0 1 1 0 2 2
Percentage of comfort (%) 95.83 95.83 95.83 87.5 83.33 100 95.83 95.83 100 91.67 91.67

Table 7. Assessed parameters for full-comfort and cost-e�ective based scheduling appliances operations.

Parameters
Approach

Full-comfort CEF
ANN Na��ve Bayes

Total demand (kWh) 23.50 23.50 23.50
Total PV generated (kWh) 9.28 9.28 9.28
Total PV used (kWh) 6.44 6.85 7.75
Total grid power draw (kWh) 17.06 16.66 15.76
Total buy bill (Rupees) 63.25 62.19 57.98
Total sell bill (Rupees) 8.63 7.43 4.69
Total electricity bill (Rupees) 54.62 54.76 53.28
Peak demand (kWh) 1.88 2.21 1.46
Overall average comfort (%) 100.00 93.94 93.18
CO2 emission (kg) 7.65 7.47 7.06

nario for demonstrating the e�ectiveness of the pro-
posed scheduling pattern generation algorithms. In a
full-comfort scenario, the user prefers full-comfort time
slots only to schedule the operation of appliances with
100% comfort and no constraints. In the cost-e�ective
scenario, the user prefers to schedule appliances with a
certain comfort level considering constraints.

Figure 7 presents these scenarios with emphasis
on the operational demand of scheduled appliances
in full-comfort time slots generated by the classi�er

and ANN technique and the cost-e�ective scheduling
pattern generated using time window by the scheduling
pattern generation algorithms. The presented scenarios
were assessed for a day in terms of di�erent parameters,
as listed in Table 7, calculated using Eqs. (19){(28).

Total demand =
24X
h=1

(Dh;NA +Dh;SA) ; (19)

where Dh;SA = Dh;SO +Dh;ST +Dh;SC.

Figure 7. ANN full-comfort, Na��ve Bayes full-comfort, and cost-e�ective comfort based scheduled pattern of multi-class
appliances.
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Total PV generated =
24X
h=1

PVh;gen; (20)

Total PV power used =
24X
h=1

(PVh � PVh;avai) ; (21)

Total grid power drawn=
24X
h=1

(GPh�GPh;avai) ; (22)

Total electricity buy bill

=
24X
h=1

[(GPh �GPh;avai) � Th]; (23)

Total electricity sell bill =
24X
h=1

[(PVh;avai) � Th]; (24)

Total electricity bill=Total buy bill�Total sell bill;
(25)

Peak demand = max(demand of the day); (26)

Overall average comfort = average

(percentage of comfort of allshiftable appliances);
(27)

CO2 emission = Total grid power drawn � k; (28)

where k = 0:4483 (calculated from carbonfund.org)
Table 7 shows that compared to the ANN-

based full-comfort scenario, cost-e�ective scheduling
increases PV utilization from 6.44 kWh to 7.75 kWh.
This increment in PV utilization reduces power drawn
from the grid from 17.06 kWh to 15.76 kWh. Fur-
thermore, it minimizes the total electricity net bill
from 54.32 rupees to 53.28 rupees. Moreover, Table 7
illustrates that cost-e�ective scheduling reduces the
peak demand from 1.88 kWh to 1.46 kWh. The
reduction in net EB while preserving user preferences
considering constraints was achieved with the average
overall comfort of 93.18%, as listed in Table 7. The
decrease in the power drawn from the fossil fuel-based
grid bene�ts the user and grid, and the society concern-
ing carbon footprints as the cost-e�ective scheduling
reduced carbon emission from 7.65 kg to 7.06 kg, as
listed in Table 7.

The bene�ts listed and highlighted in Table 7
are achieved because PTW allocates a certain degree
of freedom to scheduling the operation of appliances
at appropriate hours (PV available hours or low-
tari� hours), and the threshold on hourly demand
limits the peaks. Therefore, the inference from these
results is that EB reduction is possible with a certain

degree of comfort and constraints while preserving user
preferences.

5. Conclusion

This study proposed a heuristic approach to cost-
e�ective energy management without compromising
user comforts while considering constraints via schedul-
ing appliances operations for a home with multi-class
appliances. An ANN-based time window, termed as
a user-preferred time window (PTW) concept, was
applied to achieve comfort. A threshold on hourly
demand was also considered in this approach to prevent
rebound peaks at low-tari� hours. The proposed ap-
proach addresses the trade-o� between Electricity Bill
(EB) and comfort by scheduling appliances upon taking
into account user preferences, day-ahead tari�, grid-
power draw and hourly demand threshold constraints,
and rooftop PV.

This study compared the proposed ANN-based
generated full-comfort time slots with classi�er-based
generated full-comfort time slots and found that the
ANN-based time window generation technique over-
ruled the classi�er-based time window generation tech-
nique. The scheduling of appliance operations with
a full-comfort scenario and a cost-e�ective scenario
was considered to demonstrate the e�ectiveness of
the proposed scheduling pattern generation algorithms.
The inference from the obtained simulation results
through cost-e�ective scheduling was that EB could be
reduced through increment in PV utilization, includ-
ing reducing demand peaks and CO2 emission with
maximum possible comfort. Therefore, the proposed
approach was of bene�t to both (a) the user by reducing
EB and (b) the grid by reducing demand peaks while
still preserving user comfort. These bene�ts were
achieved because PTW allocated a certain degree
of freedom for scheduling appliances at appropriate
hours (PV available hours or low-tari� hours), and
the threshold on hourly demand limited the peaks.
Therefore, it was found that the reduction in EB
was possible with a certain degree of comfort. It
can be concluded the proposed heuristic approach is
a feasible choice for multi-class appliance scheduling
for cost-e�ective energy demand management with user
ease.

Nomenclature

a Appliance
A Set of appliances
App stateTS;d State of an appliance a at a

particular time slot TS of the day d
CEF Cost-e�ective
ClassNA Non-shiftable appliances
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ClassSA Shiftable appliances
ClassSC One time in a day for two continuous

hours when shiftable appliances are
operating

ClassSO One time in a day when shiftable
appliances operated

ClassST Two times a day when shiftable
appliances operated

COM Comfort
d Day [1; 2; 3; � � � ; 30]
Da Demand of an appliance (kWh)
Da;1 Demand of an appliance during the

�rst 60 minutes of two continuous
hours of operation (kWh)

Da;2 Demand of an appliance during the
second 60 minutes of two continuous
hours of operation (kWh)

Dh;a Demand of an appliance during an
hour (kWh)

Dh;SA Total demand of ClassSA appliances
during an hour h

Dh;SC Total demand of ClassSO appliances
during an hour h

Dh;SO Total demand of ClassSO appliances
during an hour h

Dh;ST Total demand of ClassST appliances
during an hour h

Dh;threshold Threshold on hourly demand (kWh)
Dh;total Total hourly demand (kWh)
GPh Grid power during an hour of the day

(kWh)
GPh;avai Hourly available grid power (kWh)
na Operational length of an appliance

(minutes)
OpD Operational delay (hours)
PoC Percentage of comfort (%)
PTWa Preferred time window for an

appliance operation with time slots
TS1;TS2; � � � ;TS24

PVday;gen PV power generated for the day (kWh)
PVh;avai Hourly available PV power (kWh)
PVh;gen PV power generated hourly (kWh)
PVmn Minimum PV power (kWh)
PVpeak Peak power of PV (kWp)
Ra Rating of an appliance (kWh)
Th Hourly electricity tari� (Rupees/kWh)
Tmn Minimum electricity tari�

(Rupees/kWh)
TS Time slot [1; 2; 3; � � � ; 24]

Wd Corresponding weight for a state of an
appliance a at a particular time slot
TS of the day d

weighted Weighted input for a state of an appli-
inputTS;d ance a at a particular time slot TS of

the day d.
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