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Abstract. With rapid advancements in technologies, studying and simulating a real
complex system taint with uncertain parameters has become extremely demanding. Based
on the relevant literature, there are three approaches to recognizing and simulating
di�erent systems, namely engineering, statistical, and engineering-statistical. Regarding
the purpose of this research, by considering two outputs, simultaneously, Laser Assisted
Micro-Machining (LAMM) was studied by adopting the engineering-statistical approach.
Investigating variates simultaneously pose some complicated issues, such as calibrating
variates at the same time, adjusting them concurrently, and calculating the values of
parameters, with which this paper should cope. Considering Mean Squared Prediction
Error (MSPE) as the comparison index for the thrust force output, the index value was
obtained 1.48 by the Kennedy and O'Hagan model, 2.47 by the model presented by Roshan
and Yan, and 1.9425�10�4 by the proposed model. Moreover, for the cutting force output,
the index was obtained 0.21 by the Kennedy and O'Hagan, 1.41 by Roshan and Yan,
and 1.6�10�8 by the presented model. The obtained values demonstrated reasonable and
acceptable results for the MSPE index compared with the models that considered the
outputs individually.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

In the real world, we are faced with uncertainty in
everyday life. In simulating complicated systems, mak-
ing management decisions, evaluating the performance
of systems in di�erent situations, and then optimizing
them, the uncertainty plays a critical role. To better
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cope with the uncertainty, di�erent models can be
de�ned. A model is a representation of a system,
person, thing, or a given structure, typically on a
smaller scale than the original one. According to
recent studies, three approaches are generally adopted
to model real systems, including engineering, statisti-
cal, and engineering-statistical. These approaches are
described as follows.

The �rst approach to model a system is called the
engineering approach. Engineering models, which are
developed by applying some techniques such as �nite
element and numerical analysis, are considered physics-
based and ful�ll the physical interpretation of a system.
Accordingly, they considerably help understand the
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real system. However, to accomplish this approach,
some simplifying assumptions are considered, which
make the models almost unrealistic. Furthermore, it is
a time-consuming procedure to search for the reasons
of discrepancy between a developed model and the
observed data in order to �x all the wrong assumptions.
Therefore, if the developed model does not operate
properly, it takes a long time to �nd the error and
change it and then, reformulate the model. In the
following, some of the studies, which have recently been
conducted in this �eld, are presented in Table 1. In this
�eld, Singh and Melkote's research [1] is one of the most
striking papers.

The second approach is the statistical one by
which an empirical model (be a GP or a regression
model) is built to capture the discrepancies. In this
approach, real data are collected from the systems
to estimate the unknown parameters of the model
(calibration parameters). The �rst disadvantage of this
approach is that any changes in the system result in
repeating the data collection procedure, developing a
new model, and collaborating it again. Moreover, the
approach does not respond well out of experimental
conditions and it lacks physical interpretation. In
this regard, some relevant research is reported in
Table 1. Among the conducted research, Kennedy and
O'Hagan [2] and Roshan and Melkote [3] are the most
inuential ones on the current study. It is noteworthy
that statistical inference, Bayesian Approach (BA),
Gaussian Process (GP), Maximum Likelihood Estima-
tion (MLE), response surface methodology, Analysis of
Variance (ANOVA), regression, and robust techniques
are the most popular approaches in this �eld.

By the integration of the two previous approaches,
the third approach, namely the engineering-statistical
approach, is developed. This approach begins with
building and calibrating an engineering model (by col-
lecting data), which ful�lls the physical interpretation,
and then, distinguishes the discrepancy and its causes
using ANOVA; �nally, it tries to eliminate the dis-
crepancy by applying statistics. At the next step, the
adjustment models are postulated and eventually, the
�nal model ful�lls a physical interpretation. Contrary
to the two previous approaches, this approach is not
time-consuming, which is considered as its distinctive
feature. In this respect, relevant works done on this ap-
proach are presented in Table 1. For more information,
the interested readers are referred to Yan [4], Roshan
and Yan [5], and Sheikhi and Saghaie [6] which apply
the Computational Fluid Dynamics (CFD), BA, and
GP respectively.

It should be noted in the real world, some of
the systems are too complicated to be easily modeled.
In these situations, engineering approaches, including
the �nite element and CFD, are applied to modeling
the system. These models may be formed by the

combination of multiple models, each of which presents
a speci�c part of the system. For instance, such
systems have more than one output variable, mostly;
hence, for each variable, a di�erent model can be
used. Needless to say, these models are not concise
and there is some bias between the model values and
real observations. In order to cope with the problem,
statistical approaches are applied for calibrating and
adjusting such complicated models, which leads to the
engineering-statistical approach.

1.1. Contribution of the present study
A summary of studies regarding each system modeling
approach is demonstrated in Table 1. Subsequently,
in this paper, an engineering-statistical approach is
adopted to ful�ll the drawbacks of both the statistical
and engineering approaches. It is clear that although
the previously proposed engineering-statistical proce-
dures have been of single-output type [4,6,7], studying
the covariance and correlation between the outputs
may end up in more appropriate models to get better
results. Therefore, instead of applying BA, which needs
prior distribution as well as hard usage for multiple
outputs, MLE and GP are applied.

2. Methodology

This section is aimed at providing the proposed ap-
proach. As a basic model, Kennedy and O'Hagan [2]
presented Model (1) for a system. In this model, y
implies the output of the system, x = (x1 : : : xp) shows
the vector of input variables, and f(x; �) plays the role
of an engineering model. Moreover, � = (�1 : : : �p)
reects the vector of calibration parameters of the
engineering model:

y = �f (x; �) + � (x) + ": (1)

where, � is the scale parameter, �(x) denotes the
discrepancy function (model bias), and the random
error is presented by "iid� N(0; �2). Then, by considering
h(x) = (ho(x) : : : hl(x)) as a set of known functions and
� = (�o : : : �l), Kennedy and O'Hagan de�ned a GP for
the discrepancy:

�(x) � GP (h(x)0�; �2R(:)): (2)

The covariance function is presented by:

cov(�(xi); �(xj)) = �2R(xi � xj);
in which �2 is the variance of �(x) and R is an n � n
correlation matrix.

Inspired by Kennedy and O'Hagan's paper,
Roshan and Yan [5] considered � = 1 and � = 0; thus,
Models (1) and (2) were changed to Model (3):

y = f (x; �) + � (x) + ";

� (x) � GP �0; �2R (:)
�
: (3)
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Table 1. A summary of studies considering each approach as well as the applied methods.
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Allaire [11] � { { � { { { { { { { { { {
Nocedal and Wright [12] � { { � { { { { { { { { { { {
Szab�o [13] � { { � { { { { { { { { { { {
Mathelin and Hussaini [14] � { { � { { { { { { { { { { {
Singh and Melkote [1] � { { � { { { { { { { { { { {
Veps�a et al. [15] � { { � { { { { { { { { { { {
Palumbo et al. [16] � { { � { { { { { { { { { { {
Stickler and Schachinger [17] � { { � { { { { { { { { { { {
Sena and Silvapulle [18] { � { { { � { { { { { { { { {
Kumar et al. [19] { � { { { � { { { { { { { { {
Roussas [20] { � { { { � { { { { { { { { {
Zio [21] { � { { { { � { { { { { { { {
Dong et al. [22] { � { { { { � { { { { { { { {
Parnianifard et al. [23] { � { { { { { � { { { { { { {
Kennedy and O'Hagan [2] { � { { { { { � � � � { { { {
Roshan and Melkote [3] { � { { { { { � � � � { { { �
Park and Grandhi [24] { � { { { { { { � { { { { { {
Caiado and Goldstein [25] { � { { { { { { � { { { { { {
Wong et al. [26] { � { { { { { { � { { { { { {
Sankararaman and Mahadevan [27] { � { { { { { { � { { { { { {
Duru et al. [28] { � { { { { � { � � { { - - { {
Azzimonti et al. [29] { � { { { { { { � � { { � { {
Reid [30] { � { { { { { { { { { { � { {
Junaid and Wani [31] { � { { { { { { { { � { { � {
Brandt [32] { � { { { { � { { { { { � { {
Korunovi�c et al. [33] { � { { { { { { { { � { { { �
Lin and Lin [34] { � { { { � { { { { { { { { {
Lunardon and Ronchetti [35] { � { { { { { { � { { { { { {
Pratola and Higdon [36] { � { { { { { { � { { { { { {
Recep et al. [37] { � { { { { { { � { { { { { {
Saikumar et al. [38] { � { { { { { { � { { { { { {
Chen et al. [39] { � { { { { { { � { { { { { {
Neal [40] { � { { { { { { � { { { { {
Mondal et al. [41] { � { { { { { { � { { { { { {
D��az-Garc��a, [42] { � { { { � { { { { � { { {
Rahimi et al. [7] { � { { { { { � � { { { { { {
Yan [4] { { � � { { { � � � � { { � {
Roshan and Yan [5] { { � � { { { � � � � { { { �
Yan et al. [9] { { � � { { { � � � � { { { �
Sheikhi and Saghaie [6] { { � { { { { { � � � { { � {
Singh et al. [10] { { � { { { { � � � � { { { �
Current study { { � { { { { � � � { � � { �



Z. Khalaj et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 3394{3403 3397

As the �rst step of their algorithm, the model discrep-
ancy was estimated and its causes were detected. Next,
the Gaussian correlation function could be de�ned as:

R (xi � xj) = exp

(
�

pX
k=1

�k(xik � xjk)2

)
: (4)

Therefore, � and � = (�2; �2; �0) remain as unknown
parameters. Then, to estimate the values of � and �,
�(x) is integrated out from the joint posterior, resulting
in:

p (�; �jy) / 1
j�2R+ �2Ij1=2

exp
�
�1

2
(y � f (�))0
�2R+ �2I

(y � f (�))
�
p (�; �) ; (5)

in which R is a n � n correlation matrix (R(i; j) =
R(xi � xj)); I is the identity matrix (n � n); f(�) =
(f(x1; �), : : : ; f(xn; �)); and y = (y1; : : : ; yn). Subse-
quently, considering r(x) = (R(x�x1), : : : ; R(x�xn)),
the discrepancy function is given by:

� (x) � GP �h(x)0�; �2R (:)
�
: (6)

Roshan and Yan [5] showed that the prediction variance
would be calculated by Eq. (7):

s2 (x) = �2
f + �2

f
_f(x)0

�
_F 0 _F
��1 _f (x) ; (7)

in which _F = ( _f(x1), : : : ; _f(xn)) and _f(x) is the
gradient function of f̂(x) according to x:

_f (x) = f̂ (x)

 
�̂1

x1
; �̂2;��̂3e��̂4x4 ; �̂3�̂4x3e��̂4x4

!
:

(8)

Next, applying ANOVA, the main e�ects of the engi-
neering model and the discrepancy function are stud-
ied. Then, a prior inverse-Gamma is speci�ed for �2. In
the next step, calculating the prediction variance, the
parameters are estimated. By identifying the factors
with signi�cant e�ects on the model discrepancy, the
scale adjustment model will be obtained by Eq. (9). A
variety of common methods for the calibration of pa-
rameters in multiple correlated responses are classi�ed
by [8].

g (x; �; ) = f (�1x1; : : : ; �pxp; ) : (9)

It should be noted the above methodology studies only
single-output models. In this manuscript, a methodol-
ogy is proposed to study multivariate systems. Herein,
all of the outputs are considered simultaneously.

In the following, the proposed model and method-
ology are studied. For q variables, the model is changed
to:

8><>:yi = fi (x; �) + �i (x) + "i; i = 1; : : : ; q
�i (x) � GP (0; �2

i Ri(:)); i = 1; : : : ; q
("1; : : : ; "q) �MVN

�
0; (�2

1 ; : : : ; �2
q )
�
:

(10)

Optimizing fi(x; �), the calibration parameters �i are
obtained. In this respect, an iterative algorithm is
used, which updates the error covariance matrix in
every iteration. That is, in every single step, the
covariance matrix is replaced with a new one. This
dynamic approach helps improve the solution and bring
it closer to its exact value. To optimize fi(x; �), the
MLE method is used. Then, Gaussian processes will
be �tted for �i(x) using the squared exponential kernel
function with default kernel parameters. Predicting
�i(x) for each run, errors are estimated as:

"i = yi � (fi (x; �i) + �i (x)) ; i = 1; : : : ; q: (11)

The bias-corrected engineering model is given by:

ŷi = fi (x; �i) + �̂i (x) : (12)

Now, Multivariate Analysis of Variance (MANOVA)
decomposition is performed on q variables, simultane-
ously, and the signi�cant factors of fi can be easily
obtained. fi(xi) and ŷi(xi) can be plotted side by side
to understand the changes in main e�ects due to dis-
crepancies and to look at the main e�ect plots, making
the procedure simpler. In order to detect the factors
with signi�cant e�ects on the model discrepancy, the
scale adjustment model will be given by Eq. (9). The
procedure is stated in Figure 1.

By following the above procedure, the engineering
model and the real data are achieved and the model is
calibrated by MLE estimation. Calculating the errors
and applying the iterative algorithm, the covariance
matrix is updated until the calibrated model is ad-
equate. Then, the discrepancy model is calculated
by a GP and its causes are detected by MANOVA.
Calculating the errors and updating the covariance
matrix, the whole procedure will be repeated to reach
adequacy. The parameters and variables are stated in
Table 2.

The methodology is applied to Laser-Assisted
Micro-Machining (LAMM), studied by [1,7,9]. In this
problem, four variables and two outputs are considered.
Roshan and Yan [5] worked on cutting force as one
of the outputs. In the present study, thrust force, as
another output, is studied simultaneously as presented
in Section 3.

3. Numerical example

A case study of LAMM was studied previously by
some researchers. However, an engineering model was
developed by Singh and Melkote [1], calibrated by
Singh et al. [10], and adjusted statistically by Roshan
and Yan [5]. Roshan and Yan [5] stated that the
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Figure 1. The proposed procedure

Table 2. Description of parameters and variables.

Parameter/variable Description

Y = (y1 : : : yq) The output variables
q Number of the output variables

x = (x1 : : : xp) The vector of input variables
p Number of the input variables

� = (�1 : : : �q) The vector of calibration parameters of the engineering model
f (x; �) The engineering model
� The scale parameter

� (x) The discrepancy function (model bias)
" The random error
�2 The variance of the errors

� = (�o : : : �l) The mean of the discrepancy function
�2 The variance of the discrepancy function
R n� n correlation matrix
� The characteristic length scale
 The vector of adjustment parameters of the engineering-statistical model

Table 3. Levels of variables based on the model presented
by Singh et al. [10].

Variable Levels

X1 10 15 20 25

X2 10 50

X3 0 5 10

X4 100 200

engineering model consisted of a geometric model for
computing strain rates, a �nite element model for
computing temperature distribution, a material model
for computing stresses, a force model for computing
forces, and an iterative algorithm to account for the
machine-tool-workpiece deection.

In Table 3, four variables are considered: nominal
depth of cut (x1), speed (x2), laser power (x3), and
laser location (x4) at 4, 2, 3, and 2 levels, respectively.
Two outputs, namely cutting force and thrust force,

have been studied separately. However, in this paper,
they are studied simultaneously. For these two vari-
ables, the model is presented by model Eq. (13):8><>:yi = fi (x; �) + �i (x) + "i; i = 1; 2

�i (x) � GP (0; �2
i Ri(:)); i = 1; 2

("1; "2) �MVN
�
0; (�2

1 ; �2
2)
�
:

(13)

Since the engineering models are complicated and
time-consuming (14 hours) besides being expensive to
evaluate [5], f(x; �) is replaced by a metamodel, which
is considered easy-to-evaluate. The metamodel used
by Singh et al. [10] for both output variables is shown
below:

fi (x) = b0x1
b1 exp fb2x2 � b3x3exp (�b4x4)g : (14)

As the above model is nonlinear, nonlinear regression
is applied for both f1 and f2 to achieve the param-
eters b0; : : : ; b4. The covariance between two forces
is considered as the initial covariance and is updated
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frequently to achieve the optimal solution. Optimizing
the engineering model, using MLE and the iterative
algorithm, and considering the covariance between
the outputs (cov(�(xi); �(xj)) = �2R(xi � xj)), the
parameters of the model for thrust force are estimated
at: c�10 = 1:6062, c�11 = 0:8882, c�12 = 0:0006,c�13 = 0:0098, and c�14 = 0:0019, These parameters
were estimated by Singh et al. [10] using nonlinear
regression at c�10 = 1:605, c�11 = 0:888, c�12 = 0:00058,c�13 = 0:009, and c�14 = 0:0018. For the cutting force,
they are estimated at: c�20 = 1:3581, c�21 = 0:8888,c�22 = 0:0014, c�23 = 0:0269, and c�24 = 0:0034, which
were previously estimated at �20 = 1:358, �21 = 0:888,
�22 = 0:00139, �23 = 0:0268, �24 = 0:00343 by Singh
et al. [10] using nonlinear regression.

Therefore, the models for the thrust force and the
cutting force are calibrated respectively as follows:8>>><>>>:

f1 (x) = 1:6062x1
0:8882

exp f0:0006x2 � 0:0098x3exp (�0:0019x4)g ;
f2 (x) = 1:3581x1

0:8888

exp f0:0014x2 � 0:0269x3exp (�0:0034x4)g : (15)

It is observed in Figure 2 that the model is �tted
excellently and the metamodel is proper. The actual
values are shown on the vertical axis and the predicted
ones on the parallel axis. Since the dots are near
the bisector line, the errors can be negligible. As
cov (� (xi) ; � (xj)) = �2R (xi � xj), using Eq. (4), the

Figure 2. Actual versus predicted thrust force (a) and
cutting force (b) by the engineering model.

covariance between the errors is calculated as:

cov ("1; "2) =
�

0:0002 0:0001
0:0001 0:2825

�
: (16)

The values of the parameters and variables are listed
in Table 4 in order to simplify studying this section.

By applying MANOVA to the engineering model,
the factors with the highest level of e�ects on both
variables were detected. This study only reports the
results of the Wilk's test, since it is the most commonly
used test along with the well-known F approximation.
Compared with F�; in which � = 0:01; all factors are
important. The results are reported in Table 5.

As Roshan and Yan [5] have stated, two-factor
interactions are not so imperative, while considering
them increases the complexity of the model. Therefore,
the related terms are neglected here.

Table 4. Values of parameters and variables.

Parameter/
variable

Description Value

Y The output variables (y1; y2)
q Number of the output variables 2
x The vector of input variables (x1 : : : x4)
p Number of the input variables 4

�
The vector of calibration parameters of
the engineering model

(1:605; 0:888; 0:00058; 0:009; 0:0018)
(1:3581; 0:888; 0:0014; 0:0269; 0:0034)

f(x; �) The engineering model (f1(x); f2(x))
� The scale parameter 1

� (x) The discrepancy function (model bias) (�1; �2)
" The random error ("1; "2)
�2 The variance of errors (0:0118; 0:0148)
� The mean of the discrepancy function (�1; �2)
�2 The variance of the discrepancy function (1:1401; 0:3114)
R n� n correlation matrix R1, R2

� The characteristic length scale
�2
0 = (2:6891; 21:2868; 2:0061; 56:5802)

�1
0 = (7:774; 27:7022; 3:1395; 265:0827)
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Table 5. Results of general MANOVA applied to the engineering function.

Factor Test
statistic

F DF P F0:01
Being

signi�cantNum Denom
X1 0.00013 1133.272 6 78 0.000 3.04

p
X2 0.40779 28.319 2 39 0.000 5.19

p
X3 0.08162 48.757 4 78 0.000 3.57

p
X4 0.44367 24.452 2 39 0.000 5.19

p

Table 6. Results of general MANOVA applied to the discrepancy function.

Factor Test
statistic

F DF P F0:01
Being

signi�cantNum Denom
X1 0.78619 1.662 6 78 0.142 3.04 �
X2 0.99389 0.120 2 39 0.887 5.19 �
X3 0.75552 2.934 4 78 0.026 3.57 �
X4 0.99462 0.106 2 39 0.900 5.19 �

Now, the discrepancy functions should be con-
structed. By �tting a GP, the parameters of the
discrepancy function will be calculated by Eqs. (3)
and (4):

For the thrust force:
�2 = 0:0118; �2 = 1:1401;

�0 = (2:6891; 21:2868; 2:0061; 56:5802) ; (17)

For the cutting force:

�2 = 0:0148; �2 = 0:3114;

�0 = (7:774; 27:7022; 3:1395; 265:0827) : (18)

By applying MANOVA to the discrepancy func-
tion, the most e�ective factors on both variables are
detected. The results of the Wilk's test are reported in
Table 6. As observed, compared with F0:01, all factors
are insigni�cant. All of the factors are e�ective on the
engineering models and none of them are e�ective on
the discrepancy functions. This ine�ectiveness means
that the responses (y) have been modeled as much as
possible and the remaining, which are not modeled, are
part of y, which is the random error, indeed.

The main e�ects of f(x) and f(x) + �(x) are
presented by Figure 3. It is seen that they are
so close and almost covered by each other. Hence,
the discrepancy function is not impressive and it can
be neglected. However, here, the model adjustment
approach is continued.

The following adjusted model seems to be physi-
cally meaningful for both forces:

ĝ (x; ) = f̂ (x1; x2; x3; x4) : (19)

Therefore, according to Eq. (19), the engineering-
statistical models for the thrust force and the cutting
force are adjusted, respectively.

Figure 3. The main e�ects of f(x) and f(x) + �(x) on (a)
Thrust force and (b) cutting force.8>>>>>><>>>>>>:

g (x) = 1:6062x1
0:8882

exp
�

0:0006x2 � 0:0098x3e�0:0019x4
	
;

g (x) = 1:3581x1
0:8888

exp
�

0:0014x2 � 0:0269x3e�0:0034x4
	
:

(20)

Considering ŷ = f̂ + �̂ for the thrust force, they are
estimated at: f̂ = 19:9315; �̂ = 0:0091; ŷ = 19:9315+
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0:0091 = 19:9406 and for the cutting force, they are
estimated at: f̂ = 16:5787; �̂ = 0:0031; by = 16:5787 +
0:0031 = 16:5819. Apparently, for the thrust force,
the mean remaining error is 0.0091 and for the cutting
force, the value is 0.0032.

The Mean Squared Prediction Error (MSPE)
seems to be a proper index for quantifying the improve-
ment:

MSPE =
1
n

nX
i=1

[yi � f (xi)]
2: (21)

For the thrust force, the index was obtained 1.48 by
Kennedy and O'Hagan adjustment model [2], 2.47
by the adjustment model presented by Roshan and
Yan [5], and 1.9425�10�4 by the currently proposed
model. For the cutting force, the index was obtained
0.21 by the Kennedy and O'Hagan [2], 1.41 by the
Roshan and Yan [5], and 1.6�10�8 by the presented
model.

As the above analysis shows, the errors of the
proposed method are fairly near to zero. The reason is
that the initial experiments are used again. Therefore,
to validate the methodology, cross-validation and a
second approach are applied. These approaches are
stated in the next section.

3.1. Validation
As explained before, validation is needed to ensure that
the methodology works �ne. Hence, to validate the
methodology, the cross-validation approach is applied.
In order to accomplish the cross-validation, the pro-
gramming should be repeated 48 times. In each run,
one observation should be omitted. Calibrating and
adjusting the model for the remaining 47 observations,
the results are applied to the new experiment (omitted
one). Calculating the MSPE for the entire experiments,
the average error squares are calculated for both the
thrust force (Eq. (22)) and the cutting force (Eq. (23)):

MSPE =
1
n

 
nX
i=1

[ŷ1;i � y1;i]
2

!
= 4:0691; (22)

MSPE =
1
n

 
nX
i=1

[ŷ2;i � y2;i]
2

!
= 1:5378: (23)

It is seen that the methodology gets solutions fairly
close to those of the previous works and it can be
considered valid now.

Again, as a second approach for validation of the
methodology, new experiments should be conducted.
To do new experiments, a normal distribution with
mean �x and variance cov(x) is used to create 48 new
random sets of input variables. The same procedure
is done for output variables. That is, the previous
outputs and the covariance matrix between them are
set for the outputs, and for the inputs Eq. (24) is used:

�x = [20 30 5 22:5] ;

�x =

266416:82 0 0 0
0 403:740 0
0 0 16:82 0
0 0 0 56:77

3775 : (24)

By applying the parameters discrepancy function, es-
timated previously, the error is calculated for both
outputs by Eq. (25):

MSPE =
1
n

 
nX
i=1

[ŷ1;i � y1;i]
2 +

nX
i=1

[ŷ2;i � y2;i]
2

!
= 0:0014: (25)

Again, not using the discrepancy function, the errors
are calculated by Eq. (26):

MSPE =
1
n

 
nX
i=1

[f1;i � y1;i]
2 +

nX
i=1

[f2;i � y2;i]
2

!
= 170:5232: (26)

It is seen that even for the created variables, the
discrepancy function is proper. Thus, the methodology
works better than the previous one, as validated by the
new inputs and outputs.

4. Conclusion

In this paper, by integrating the engineering and
statistical approaches, a novel engineering-statistical
approach was introduced for calibrating and adjusting
a model for complex systems. The methodology
was applied to the Laser-Assisted Micro Machining
(LAMM) problem in order to study the thrust force
and cutting force as the outputs, simultaneously, for
the �rst time. Considering Mean Squared Prediction
Error (MSPE) as the index of model adequacy, the
values were obtained 1:9425 � 10�4 for thrust force
and 1:6 � 10�8 for cutting force by the presented
model. The proposed model worked better by the
index than the models introduced previously. The
errors were considerably reduced because the data from
which the model was developed and the data to which
the model was applied were the same. Therefore, to
validate the methodology, the proposed approach was
applied to new data and MSPE was gained 0.0014,
which was less than when the discrepancy function
was not applied (170.52) yet. Cross-validation was
applied to all the experiments as well. For the
thrust force and cutting force, MSPE was calculated
4.0691 and 1.5378, respectively. In this paper, we
focused on presenting a methodology for calibration
and adjustment of a multi-output model. On the other
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hand, the experimental designs played a crucial role in
both computer experiments and physical experiments.
For further research work in future, using the space-
�lling design for the computer design can be a new
direction. Even the orthogonal space-�lling design may
be studied to obtain more e�cient estimations.
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