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Abstract. This paper applies stacking sequence optimization for maximizing the buckling
load of rotationally restrained laminated composite rectangular plates with di�erent
boundary conditions resting on an elastic Pasternak foundation subjected to uniaxial and
biaxial in-plane static loads. The Mindlin Plate Theory (MPT), which considers the �rst-
order shear deformation e�ect, was used to extract the characteristic equations of the plates
under in-plane loading, including plate-foundation interaction. The buckling problem of
laminated plates was analyzed by the Rayleigh-Ritz method. The aim of optimization was
to maximize the buckling load and post-buckling load capacities using Genetic Algorithm
(GA) method, and the design variable was the ply orientation. The results showed that
the optimal orientation, �, of the laminated square plate under biaxial in-plane loading
in various conditions was 45�, approximately. The existence of a foundation, clamped
boundary conditions, and high aspect ratio led to increase in the optimal orientation.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

A large number of polymer matrix laminated composite
structures are widely utilized in structural, aeronau-
tics, aerospace, marine engineering, resource tank and
automotive industries due to their low weight, high
strength, high sti�ness, and corrosion properties. For
instance, the use of composite laminates in commer-
cial aircraft structures has increased considerably over
the past two decades and about 50% of the Airbus
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A350 XWB structures are made of composite mate-
rial [1].

Due to this revolutionary tendency adopted by
the industry, many researchers have attempted to
develop a method for composite laminate structures [2].
Composite structures are generally modeled as plates;
thus, identifying their behaviors is crucial to under-
standing the response of the mentioned structures
under extreme loading [3{5]. The variation of plies,
thickness, orientation, and stacking sequence makes it
easy and possible to achieve the desired mechanical
properties such as the in-plane, exural, and buckling
behaviors of composite laminates. Therefore, optimiza-
tion of composite laminates has recently received much
attention [6{9].

There are several methods for obtaining the crit-
ical buckling load on isotropic and orthotropic plates.
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Shokrani et al. [10] utilized two-variable re�ned plate
theory to investigate the buckling behavior of double-
orthotropic nanoplates bonded in elastic media under
biaxial and uniaxial loading. Shahraki et al. [11]
utilized Frobenius solution method to analyze the
buckling of the orthotropic rectangular plate under
biaxial in-plane loading with non-uniform distribution.
Lei et al. [12] studied buckling analysis of functionally
graded carbon nanotube-reinforced composite plates
employing the �rst-order shear deformation theory to
consider the impacts of rotary inertia and transverse
shear deformation. Yu et al. [13] presented a new
e�cient and precise approach to simulate buckling
problems of laminated composite plates with cutouts
by combining the isogeometric analysis and the level
set. Kheirikhah and Babaghasabha [14] explored buck-
ling behavior of soft core corrugated sandwich plates
under uniaxial load. The face sheets were considered as
composite laminates and the three-dimensional Finite
Element Method (FEM) was utilized to analyze.

To describe the plate-foundation interactions,
several types of elastic foundation models have been
proposed one of the simplest of which is Winkler
model [15]. The model consists of separate independent
linear springs that are close to each other. This kind
of foundation is a one-parameter model in which only
springs in the loaded area are a�ected. Farahani and
Mohebkhah [16] utilized Winkler's model for devel-
oping their models to investigate the sensitivity of
Direct Displacement-Based (DDB) designed frames to
the e�ect of foundation exibility. Pasternak [17] added
a shear layer to Winkler's model to improve the model.
The layer establishes a shear interaction between the
independent springs. The model is broadly utilized
to illustrate the mechanical behavior of structure-
foundation interactions. Nazarimofrad et al. [18,19]
conducted buckling analysis of an orthotropic rectan-
gular Mindlin plate resting on an elastic Pasternak
foundation. They utilized Rayleigh-Ritz method to
solve the governing equations based on the Mindlin-
Reissner plate theory.

Guo et al. [20] proposed a deep collocation
method based on a feedforward Deep Neural Network
(DNN) to solve the formed partial di�erential equations
of buckling analysis plates. Samaniego et al. [21]
developed an energy approach based on DNN-based
approximation method to solve the formed partial
di�erential equations. The results of computational
mechanics illustrated the capabilities of the proposed
method. However, due to various coupled parameters
of composite plates, the previous work by Shokrollahi
and Shafaghat [2] showed that using the Rayleigh-Ritz
based method could be a reliable and accurate method
to develop the analysis method of composite lami-
nates. Akhavan et al. [22] presented exact solutions
for the buckling analysis of rectangular isotropic plates

located on Pasternak foundation with various types
of boundary conditions subjected to uniformly and
linearly in-plane loadings. Golmakani and Rezatalab
[23] investigated the buckling analysis of orthotropic
graphene sheets embedded within elastic medium by
Pasternak model under non-uniform biaxial loading.
The �rst-order shear deformation theory and di�eren-
tial quadrature method were used to derive the nano-
plate equilibrium equations and solve the governing
equations in various boundary conditions, respectively.

In the case of optimizing the maximum buckling
load of laminated composite plates, the aim is often
achieved by changing the stacking sequence, ply orien-
tation, and ply thickness as design variables. Many re-
searchers have studied the problem of optimal design of
composite laminates. Topal and Uzman [24] managed
to optimize laminated composite plates with simple
supports subject to in-plane loads. The objective
function was to maximize the buckling load capacity
of composite plates by changing the design variable
(ply orientation). The �rst-order shear deformation
theory was used for the �nite element analysis. Genetic
Algorithm (GA) is one of the �rst e�ective approaches
to the optimization of composite laminates. Le-Manh
and Lee [25] obtained maximum bending, buckling,
and post-buckling capacities of imperfect laminated
composite plates by GA and NURBS-based �nite
element iso-geometric analysis. The �ber orientation
was the design variable. Vu-Bac et al. [26] proposed
a new method to develop material and geometric
nonlinearities for inverse analysis. The NURBS-based
�nite element analysis was also utilized to capture the
stable shape changes. Vosoughi et al. [27] maximized
the buckling load of thick laminated composite plates
by optimizing the stacking sequence of plates. To this
end, they employed the �nite element, GA, and particle
swarm optimization methods. Ehsani and Rezaeep-
azhand [28] employed GA to optimize the stacking
sequence and pattern composition of the laminated
grid plate. The objective function was the buckling
load, while the design variables were the pattern and
orientation of the grid layer. Ritz method, as a classical
laminated plate theory, was considered to determine
the buckling loads.

The success attributed to GA has led to much
research on the application of other approaches to
the optimization of laminated composites. Using the
permutation search algorithm and considering the ply
orientation as a design variable, Jing [29] performed op-
timization for obtaining the maximum of buckling load.
de Almeida [30] maximized the bucking load of a sym-
metric laminated plate in stacking sequence optimiza-
tion using the harmony search algorithm. They indi-
cated that although harmony search algorithm was less
reliable than a special version of GA, it would be more
e�ective than other metaheuristic methods. Kaveh et
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al. [31] optimized the stacking sequence of laminated
composites using the biogeography-based optimization
algorithm to maximize the buckling load of symmetric
composite laminated plates. de Almeida [32] proposed
a new optimization method for composite structures
based on harmony search algorithm. The results of
this study showed that composite structures could be
optimized better by the harmony search algorithm than
other previous approaches. To maximize load capacity
and improve the dynamic performance of laminated
composite plates, Serhat and Basdogan [33] developed
a multi-objective optimization method. Atri and
Shojaee [34] developed a method for dealing with the
buckling response of laminated composite plates using
coupling of truncated hierarchical B-splines methods.
The results of numerical cases considering di�erent
�ber orientations of laminated plates and various ge-
ometrical shapes pointed to the high accuracy of all
test models. Recently, Nguyen et al. [35] proposed
a new optimization method based on the gradient-
based interior point algorithm for increasing the bi-
axial bulking load capacity of laminated composite
plates. Jing et al. [36] employed an Enhanced Permu-
tation Search (EPS) algorithm for simply supported
orthotropic plates to maximize the buckling load. The
obtained results of EPS algorithm showed that the
computational cost decreased dramatically, compared
to traditional algorithms. In spite of several researches
on the optimization of laminated composite plates for
obtaining the maximum of buckling load, to the best
of our knowledge, there is no research conducted on
optimization of laminated composite plates considering
routinely restrained and elastic Pasternak foundation
e�ects.

The main objective of this study is to apply
GA to the buckling optimization of a rotationally
restrained composite plate resting on an elastic Paster-
nak foundation. To solve the problems in which the
objective function is discontinuous, non-di�erentiable,
stochastic, or highly nonlinear, GA can be utilized,
which is categorized as search heuristics. GA is a
global search algorithm that uses a population of
designs instead of a single point in the design space;
hence, the probability of �nding the global optimum

in the optimization process is high and local optimum
points need to be avoided [37]. The optimization
implementation is done using GA [38] and the Toolbox
of MATLAB software [39]. The analysis procedure is
based on the Mindlin Plate Theory (MPT) considering
the �rst-order shear deformation e�ects including the
plate-foundation interaction. The buckling problem of
the laminated plate is analyzed using Rayleigh-Ritz
method. The aim of optimization is to maximize the
buckling load capacity, while ply orientation is taken
as a design variable.

2. Theoretical formulation

Consider a rectangular laminated composite plate with
the constant thickness of h and the in-plane dimensions
of a and b resting on an elastic Pasternak foundation,
as illustrated in Figure 1. Two of boundary conditions
are rotationally restrained and the other two bound-
aries are subject to simply supported conditions. By
ignoring the axial in-plan deformations, the governing
strain energy equation of the laminated composite plate
resting on the Pasternak foundation can be written by
Eq. (1) as shown in Box I [40], where w0,  x, and  y are
the transverse displacement, rotational displacement
about x axe, and rotational displacement about y axe,
respectively. Furthermore, kw and ks are the lateral
sti�nesses of resistant elements of foundation in vertical
and shear directions, respectively. Indeed, these two
parameters de�ne the Pasternak foundation, as shown
in Figure 1(a). Parameter k is de�ned as a shear
correction coe�cient considered as 5=6. Considering
the classical plate theory for the laminated composite
structure, D is de�ned as the exural sti�ness matrix:

D =

24 D11 D12 D16
D21 D22 D26
D16 D26 D66

35 ;
Dij =

NLX
k=1

zk+1Z
zk

�Q(k)
ij z

2dz (i; j) = (1; 2; 6) : (2)

Aij is the extensional sti�ness matrix as follows:

�i =
1
2
s b0 sa0

2666666664
D11

�
d x
dx

�2
+ 2D12

d y
dy

d x
dx + 2D16

d x
dx

�
d x
dy + d y

dx

�
+D22

�
d y
dy

�2
+ 2D26

d y
dy

�
d x
dy + d y

dx

�
+D66

�
d x
dy + d y

dx

�2

+KA44

�
dw0
dy +  y

�2
+KA55

�dw0
dx +  x

�2
+2KA45

�
dw0
dy +  y

� �dw0
dx +  x

�
+ kww0

2 + ks
��dw0

dx

�2 +
�
dw0
dy

�2
�
3777777775 dxdy (1)

Box I
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Figure 1. Rectangular laminated composite plate resting on an elastic Pasternak foundation.

Aij =
NLX
k=1

zk+1Z
zk

�Q(k)
ij dz (i; j) = (4; 5) ; (3)

where �Q(k)
ij (1; 2; 4; 5; 6) are the transformed sti�ness

coe�cients of the kth layer of the plate, and zk
and zk+1 are the coordinates of the lower and upper
surfaces of the kth layer of the plate along z direction,
respectively.

The external potential energy �e can be written
below in which in-plane applied loads are denoted by
N0
xx and N0

yy:

�e = �1
2

Z b

0

Z a

0
N0
xx

�
dw0

dx

�2

+N0
yy

�
dw0

dy

�2

dxdy:
(4)

Considering that kr, as a sti�ness value, could be stored
in a system as shown in Figure 1(c), the restraining
energy �s can be calculated as follows:

�s =
kr
2

Z a

0

�
 y2 (y = 0) +  y2 (y = b)

�
dx: (5)

Then, the total elastic potential � of the laminated
composite system would be as follows:

� = �i + �e + �s: (6)

Using the appropriate shape function into each term
of Eq. (6) (i.e., Eqs. (1), (4), and (5)), the eigenvalue
problem of buckling could be solved in conjunction with
the Rayleigh-Ritz method. All boundary conditions
should be satis�ed by shape functions. The shape
functions for w0,  x, and  y are considered in the
following equations:

w0 = Ww1 (x)w2 (y) ;

 x = X x1 (x) x2 (y) ;

 y = Y  y1 (x) y2 (y) (7)

where w1 (x), w2 (y),  x1 (x),  x2 (y),  y1 (x), and
 y2 (y) are the shape functions based on satisfaction
of boundary conditions. The unknown parameters W ,
X, and Y remain as uncalculated parameters due to

buckling theory [40]. By substituting Eq. (7) into Eq.
(6), the �nal form of elastic potential energy can be
written as follows:

� =
1
2
D11X2

Z a

0

�
d x1

dx

�2

dx
Z b

0
 2
x2dy

+D12XY
Z a

0

d x1

dx
 y1dx

Z b

0

d y2

dy
 x2d

+D16X2
Z a

0

d x1

dx
 x1dx

Z b

0

d x2

dy
 x2dy

+D16XY
Z a

0

d x1

dx
d y1

dx
dx
Z b

0
 x2 y2d

+
1
2
D22Y 2

Z a

0
 2
y1dx

Z b

0

�
d y2

dy

�2

dy

+D26XY
Z a

0
 x1 y1dx

Z b

0

d x2

dy
d y2

dy
dy

+D26Y 2
Z a

0

d y1

dx
 y1dx

Z b

0

d y2

dy
 y2dy

+
1
2
D66X2

Z a

0
 2
x1dx

Z b

0

�
d x2

dy

�2

dy

+D66XY
Z a

0

d y1

dx
 x1dx

Z b

0

d x2

dy
 y2dy

+
1
2
D66Y 2

Z a

0

�
d y1

dx

�2

dx
Z b

0
 2
y2dy

+
1
2
KA44W 2

Z a

0
w2

1dx
Z b

0

�
dw2

dy

�2

dy

+KA44WY
Z a

0
w1 y1dx

Z b

0

dw2

dy
 y2dy

+
1
2
KA44Y 2

Z a

0
 2
y1dx
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0
 2
y2dy
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+KA45W 2
Z a

0
w1
dw1

dx
dx
Z b

0
w2
dw2

dy
dy

+KA45WY
Z a

0

dw1

dx
 y1dx

Z b

0
w2 y2dy

+KA45WX
Z a

0
w1 x1dx

Z b

0

dw2

dy
 x2dy

+KA45XY
Z a

0
 x1 y1dx

Z b

0
 x2 y2dy

+
1
2
KA55W 2

Z a

0

�
dw1

dx

�2

dx
Z b

0
w2

2dy

+KA55WX
Z a

0

dw1

dx
 x1dx

Z b

0
w2 x2dy

+
1
2
KA55X2

Z a

0
 2
x1dx

Z b

0
 2
x2dy

+
1
2
kwW 2

Z a

0
w2

1dx
Z b

0
w2

2dy + ksW 2
Z a

0

�
dw1

dx

�2

dx
Z b

0
w2

2dy + ksW 2
Z a

0
w2

1dx
Z b

0

�
dw2

dy

�2

dy

�1
2
N0
xxW

2
Z a

0

�
dw1

dx

�2

dx
Z b

0
w2

2dy

�1
2
N0
yyW

2
Z a

0
w2

1dx
Z b

0

�
dw2

dy

�2

dy

+
1
2
krY 2

Z a

0
 2
y1dx

�
 2
y2 (y=0)+ 2

y2 (y = b)
�
:

(8)

In Eq. (8), the shape functions w1 (x), w2 (y),  x1 (x),
 x2 (y),  y1 (x), and  y2 (y) are subjected to integra-
tion with respect to x or y. The integrals must be
solvable because the shape functions are known. The
following parameters are introduced and written in Eq.
(9) for the sake of simplicity.

I1 =
Z a

0

�
d x1

dx

�2

dx; J1 =
Z b

0
 2
x2dy;

I2 =
Z a

0

d x1

dx
 y1dx; J2 =

Z b

0

d y2

dy
 x2dy;

I3 =
Z a

0

d x1

dx
 x1dx; J3 =

Z b

0

d x2

dy
 x2dy;

I4 =
Z a

0

d x1

dx
d y1

dx
dx; J4 =J17 =

Z b

0
 x2 y2dy;

I5 = I13 =
Z a

0
 2
y1dx; J5 =

Z b

0

�
d y2

dy

�2

dy;

I6 = I17 =
Z a

0
 x1 y1dx; J6 =

Z b

0

d x2

dy
d y2

dy
dy;

I7 =
Z a

0

d y1

dx
 y1dx; J7 =

Z b

0

d y2

dy
 y2dy;

I8 = I20 =
Z a

0
 2
x1dx; J8 =

Z b

0

�
d x2

dy

�2

dy;

I9 =
Z a

0

d y1

dx
 x1dx; J9 =

Z b

0

d x2

dy
 y2dy;

I10 =
Z a

0

�
d y1

dx

�2

dx; J10 = J13 =
Z b

0
 2
y2dy;

I11 =
Z a

0
w2

1dx; J11 =
Z b

0

�
dw2

dy

�2

dy;

I12 =
Z a

0
w1 y1dx; J12 =

Z b

0

dw2

dy
 y2dy;

I18 =
Z a

0

�
dw1

dx

�2

dx; J18 =
Z b

0
w2

2dy;

I14 =
Z a

0
w1
dw1

dx
dx; J14 =

Z b

0
w2
dw2

dy
dy;

I15 =
Z a

0

dw1

dx
 y1dx; J15 =

Z b

0
w2 y2dy;

I16 =
Z a

0
w1 x1dx; J16 =

Z b

0

dw2

dy
 x2dy;

I19 =
Z a

0

dw1

dx
 x1dx; J19 =

Z b

0
w2 x2dy;

C1rot =  2
y2 (y = 0) ; C2rot =  2

y2 (y = b) : (9)

By considering the above de�ned parameters, Eq. (8)
can be rewritten as follows:

� =
1
2
D11X2I1J1 +D12XY I2J2 +D16X2I3J3

+D16XY I4J4 +
1
2
D22Y 2I5J5 +D26XY I6J6

+D26Y 2I7J7 +
1
2
D66X2I8J8 +D66XY I9J9

+
1
2
D66Y 2I10J10 +

1
2
KA44W 2I11J11

+KA44WY I12J12 +
1
2
KA44Y 2I5J10



2058 S. Farahani et al./Scientia Iranica, Transactions A: Civil Engineering 28 (2021) 2053{2069

+KA45W 2I14J14 +KA45WY I15J15

+KA45WXI16J16 +KA45XY I6J4

+
1
2
KA55W 2I18J18 +KA55WXI19J19

+
1
2
KA55X2I8J1 +

1
2
kwW 2I11J18

+
1
2
ksW 2I18J18 +

1
2
ksW 2I11J11

�1
2
N0
xxW

2I18J18 � 1
2
N0
yyW

2I11J11;

+
1
2
krY 2I5 (C1rot + C2rot) : (10)

When the elastic potential energy � achieves a sta-
tionary value, the buckling of laminate plates occurs.
Indeed, the �rst variation of �� vanishes: �� = 0.
According to Eq. (10), the only variable quantities in
� are constants W , X, and Y , i.e., � = � (X:Y:Z).
Thus, the main buckling condition �� = 0 decreases to
the well-known Ritz equations as follows:

d�
dW

=0) d�
dW

=
�
KA44I11J11 + 2KA45I14J14

+KA55I18J18 + kwI11J18 + ksI18J18

+ ksI11J11 �N0
xxI18J18 �N0

yyI11J11

�
W

+ (KA45I16J16 +KA55I19J19)X

+ (KA44I12J12 +KA45I15J15)Y = 0;

d�
dX

=0) d�
dX

= (KA45I16J16 +KA55I19J19)W

+
�
D11I1J1 + 2D16I3J3 +D66I8J8

+KA55I8J1

�
X + (D12I2J2 +D16I4J4

+D26I6J6 +D66I9J9 +KA45I6J4)Y = 0;

d�
dY

=0) d�
dY

= (KA44I12J12 +KA45I15J15)W

+
�
D12I2J2 +D16I4J4 +D26I6J6 +D66I9J9

+KA45I6J4

�
X +

�
D22I5J5 + 2D26I7J7

+D66I10J10 +KA44I5J10 + krI5(C1rot

+ C2rot)
�
Y = 0: (11)

Upon de�ning the following parameters, we have:

�11 =KA44I11J11 + 2KA45I14J14 +KA55I18J18

+ kwI11J18 + ksI18J18 + ksI11J11;

�12 = KA45I16J16 +KA55I19J19;

�13 = KA44I12J12 +KA45I15J15;

�22 = D11I1J1 + 2D16I3J3 +D66I8J8 +KA55I8J1;

�23 =(D12I2J2 +D16I4J4 +D26I6J6 +D66I9J9

+KA45I6J4;

�33 =D22I5J5 + 2D26I7J7 +D66I10J10 +KA44I5J10

+ krI5 (C1rot + C2rot) ;

��11 = I18J18 + �I11J11;

N0
yy = �N0

xx: (12)

The equation system (12) can be written in a matrix
form as:24�11 �N0

cr
��11 �12 �13

�21 �22 �23
�31 �32 �33

358<:WXY
9=; =

8<:0
0
0

9=; : (13)

The coe�cient matrix determinant of the equation
system (13) must be equal to zero given no non-trivial
solution has been used. Therefore, the closed form of
the buckling load N0

cr is obtained by Eq. (14) as shown
in Box II. In addition, non-dimensional buckling load,
non-dimensional Winkler foundation parameter, and
non-dimensional Pasternak foundation parameter are
present respectively as follows:

�N0
cr = N0

cr
b2

E2 � h3 ; KW = kw
b4

E2 � h3 ;

KS = ks
b2

E2 � h3 : (15)

According to Kuehn et al. [40], the following shape
functions can be utilized for the plate with a simple
support at the two opposite edges and rotationally
restrained conditions on the other two edges.
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N0
cr =

�11 (�22�33 � �23�32)� �21 (�12�33 � �13�32) + �31 (�12�23 � �13�22)
��11 (�22�33 � �23�32)

: (14)

Box II

w1 (x) = sin
�m�x

a

�
;

w2 (y) = (1� �) sin
��y
b

�
+ �

1
2

h
1� cos

�
2
�y
b

�i
;

 x1 (x) = cos
�m�x

a

�
;

 x2 (y) = (1� �) sin
��y
b

�
+ �

1
2

h
1� cos

�
2
�y
b

�i
;

 y1 (x) = sin
�m�x

a

�
;

 y2 (y) = (1� �) cos
��y
b

�
+ � sin

�
2
�y
b

�
: (16)

In Eq. (16), the factor � can be calculated by interpo-
lating between the two models of a simply supported
laminate plate (i.e., kr = 0) and a fully supported
laminate plate (i.e., kr ! 1). These two models cor-
respond to � = 0 and � = 1, respectively. Therefore,
the factor � can be obtained as follows:

� =
krb

2D22� + krb
: (17)

3. Results and discussion

This section is divided into two subsections. The
�rst and second parts deal with the validation of the
formulas and the desired optimization, respectively.

3.1. Modeling and validation
In the �rst subsection, to validate the presented
method, the non-dimensional buckling load factors
of the laminated plates under two types of loading
(uniaxial and biaxial) are evaluated with previous

works. The material properties of laminated plates are
considered as follows:
E1

E2
= 40;

G12

E2
=
G13

E2
= 0:6;

G23

E2
= 0:5; �12 = �13 = 0:25:

It is assumed that the ratio of the length of b to the
thickness of the plate is b=h = 10. Table 1 shows
the non-dimensional buckling load factors (uniaxial
and biaxial) of a symmetrically laminated composite
plate with 3 plies [0/90/0] on Winkler and Pasternak
foundations at di�erent values of aspect ratios for
the present method, as compared with the works of
Setoodeh and Karami [41] and Xiang et al. [42]. The
results point to a good correlation between the �ndings
of the present method and the related literature. The
results in Table 1 indicate that the developed method
is reliable enough to be utilized in measuring non-
dimensional buckling load factors.

To ensure revalidation of the results using
Ref. [43], the optimal stacking sequence of several
states is investigated with the above-mentioned mate-
rial. It is assumed that the aspect ratios of the thick-
ness of the plate are b=h = 10 and b=h = 30. Table 2
shows the non-dimensional buckling load factors of a
symmetrically laminated composite plate with 8 plies
[�= � �= � � � ] without foundations at di�erent values
of aspect ratios. The results are compared with the
present method, pointing to a good correlation between
the present method and the mentioned reference. For
example, to validate the formulas, an angle-ply com-
posite plate made of T300/5208 graphite/epoxy layers

Table 1. Uniaxial and biaxial non-dimensional buckling load factors of a laminated composite.

Uniaxial: � = 0 Biaxial: � = 1

a=b KW KS

Setoodeh and
Karami

[41]

Xiang et al.
[42]

Present
study

Setoodeh and
Karami

[41]

Xiang et al.
[42]

Present
study

1
0 0 22.234 22.315 22.312 9.942 10.202 10.520

100 0 32.235 32.447 32.439 11.923 12.228 12.235
100 10 49.226 50.751 50.743 21.866 22.228 22.237

2
0 0 16.424 16.434 16.426 3.269 3.286 3.295

100 0 32.354 32.447 32.426 9.345 9.590 9.621
100 10 49.039 49.266 49.251 19.140 19.590 19.622
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Table 2. Non-dimensional buckling load factors of a symmetrically laminated composite.

a=b = 1:0 a=b = 1:5 a=b = 2:0

a=h Optimal
angle

Kam and
Chang

[43]

Present
study

Optimal
angle

Kam and
Chang

[43]

Present
study

Optimal
angle

Kam and
Chang

[43]

Present
study

10 40 36.85 34.26 23 21.17 20.03 13 12.45 12.09
30 45 59.06 56.77 43 60.17 57.36 32 48.86 46.14

Table 3. The results of buckling analysis.

Example a
(mm)

b
(mm)

kr
(N.mm)

Programming results ABAQUS [44] results

Nxx (N/mm) Nxx (N/mm)
1 500 500 0 17.7 18.4
2 3000 500 0 3.50 3.69
3 500 500 1� 109 20.00 21.95
4 3000 500 1� 109 9.59 10.72

Figure 2. Deformation caused by the buckling of the composite plate.

is considered. The properties of composite materials
are given as E1 = 4 � 107 MPa, E2 = 1 � 106

MPa, G12 = 6 � 105 MPa, and �12 = 0:25. All
optimization problems consider that the plies have
the same thickness of 0.125 mm. For numerical
example, we consider a rectangular composite plate
with dimensions b = 500 mm, a = 500 mm, and
a = 3000 mm. The plate has four layers with stacking
sequence [30n�30n�30n30]. The laminated composite
plate has simple support and semi-clamped support
(kr = 0 and 1 � 109). Table 3 and Figure 2 show
the results of buckling analysis. The results point to

a good correlation between the outcome of the present
method and that of ABAQUS software [44].

3.2. Optimization by (GA)
By using the proposed method that has been validated
in the previous subsection, this subsection estimates
the optimum �ber orientation angles of laminated
plates employing the GA approach. The aim is to max-
imize the buckling load capacity of laminated plates
considering the orientation (�) as design variables. To
capture the e�ect of boundary support of plates, three
di�erent boundary conditions are assumed by changing
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the boundary sti�ness ratio (i.e., kr as shown in Figure
1(c)) as follows: simple support, semi-clamped support,
and clamped support. 4-ply [�=� �=� �=�] symmetric
laminates at several aspect ratios (a=b), �, KW , and
KS are considered. The aim of the optimization is that
the capacity of the buckling load is maximized using
GA, while the design variable is the �ber orientation, �.
Thus, it should �nd an optimal orientation � for various
models. Overlaying the plies as negative and positive
is in accordance with Refs. [24,45]. The mentioned
authors concluded that this type of stacking sequence
enjoyed the best performance. In the analysis, the
elastic lamina's properties are considered as follows:

E1

E2
= 40;

G12

E2
=
G13

E2
= 0:6;

G23

E2
= 0:5;

�12 = �13 = 0:25:

The ratio of the length of b to the thickness of the plate
is considered b=h = 10.

3.2.1. The plate with simple support
At �rst, a laminated composite plate with simple
support (kr = 0) is considered. Table 4, Figure 3,
and Figure 4 show the optimal orientation (�) of the

Figure 3. Optimal orientation � of the plate with simple
support on the elastic foundation.

Figure 4. Non-dimensional buckling load factors of the
plate with simple support on the elastic foundation.

plate at several aspect ratios (a=b), �, KW , and KS .
As can be seen, if there is uniaxial in-plane loading
(� = 0), the optimal orientation for all models will
be below 35�. It is obvious that the plies tend to be
located in the loading direction. Upon adding Winkler
foundation, the optimal orientation decreases. The
optimal orientation undergoes a signi�cant reduction
when Pasternak foundation is added. At aspect ratios
greater than 1, changes in the optimal orientation are
negligible.

If there is biaxial in-plane loading (� = 1 and
� = 2), the optimal orientation tends to increase. At
the aspect ratio (a=b) equal to 1 under biaxial in-plane
loading, in situations with and without the foundation,
the optimal orientation (�) is 45� [24; 46; 47]. The
orientation increases at the aspect ratios greater than
1. However, at the aspect ratios between 2 and 8, the
orientation does not change. At � = 1, the founda-
tions cause a decrease in the optimal orientation, i.e.,
approximately 57�. However, at � = 2, the foundations
have a minor e�ect on the optimal orientation.

According to Table 5 and Figure 4, with an in-
crease in �, the buckling load decreases. In addition, by
adding foundations (especially Pasternak foundation),

Table 4. Optimal orientation � of the plate with simple support on elastic foundation.

Aspect ratio 1 2 5 8
Case � KW KS

Model 1 0 0 0 35.54 33.18 34.22 34.42
Model 2 0 100 0 22.94 30.41 28.79 28.30
Model 3 0 100 10 22.56 22.56 24.03 24.17
Model 4 1 0 0 45.00 66.54 66.65 66.66
Model 5 1 100 0 45.00 56.99 57.45 57.50
Model 6 1 100 10 45.00 56.99 57.45 57.50
Model 7 2 0 0 45.00 75.06 74.71 74.77
Model 8 2 100 0 45.00 69.66 69.66 69.66
Model 9 2 100 10 45.00 74.99 74.64 74.70
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Table 5. Non-dimensional buckling load factors of the plate with simple support on elastic foundation.

Aspect ratio 1 2 5 8
Case � KW KS

Model 1 0 0 0 37.51 36.75 36.56 36.53
Model 2 0 100 0 42.02 41.31 41.18 41.18
Model 3 0 100 10 54.52 54.52 54.50 54.47
Model 4 1 0 0 19.45 16.04 15.98 15.97
Model 5 1 100 0 24.51 23.08 22.85 22.82
Model 6 1 100 10 34.51 33.08 32.85 32.82
Model 7 2 0 0 12.96 9.06 9.06 9.06
Model 8 2 100 0 16.34 13.50 13.50 13.50
Model 9 2 100 10 23.01 19.12 19.12 19.12

Table 6. Optimal orientation � of the plate with semi-clamped support on elastic foundation.

Aspect ratio 1 2 5 8
Case � KW KS

Model 1 0 0 0 28.49 29.04 30.83 29.82
Model 2 0 100 0 22.86 24.74 24.92 25.50
Model 3 0 100 10 22.29 21.80 20.70 21.26
Model 4 1 0 0 44.54 60.03 60.15 60.17
Model 5 1 100 0 45.08 50.38 50.51 50.53
Model 6 1 100 10 45.08 50.38 50.51 50.53
Model 7 2 0 0 45.28 71.06 70.79 70.83
Model 8 2 100 0 45.93 65.40 65.42 65.42
Model 9 2 100 10 46.23 71.04 70.77 70.82

the buckling load increases. Increasing the aspect ratio
has a minor e�ect on the buckling load variations;
however, increasing the aspect ratio causes increase in
the half-wave of buckling. By assuming the same total
thickness of the plate, the above results can be obtained
for the plate with di�erent layers (e.g., the plate with
8 layers).

3.2.2. The plate with semi-clamped support
Table 6 and Figure 5 illustrate a laminated composite
plate with semi-clamped support (kr = 1 � 109). As
shown, if there is uniaxial in-plane loading (� = 0),
the optimal orientation � in all models is below 30�.
Therefore, all values are less than those of the plate
with simple support. In addition, variation in optimal
orientation is less than that in the aspect ratio. If
there is biaxial in-plane loading (� = 1 and � = 2),
at the aspect ratio equal to one, with and without the
foundations, the optimal orientation � is 45�. However,
at the aspect ratios greater than 1, under biaxial
loading, the optimal orientation increases. The optimal
orientation in the plate with semi-clamped support is
signi�cantly less than that in the plate with simple

Figure 5. Optimal orientation � of the plate with
semi-clamped support on elastic foundation.

support. According to Table 7, in all the models, the
buckling load on the plate with semi-clamped support
is somewhat more than that on the plate with simple
support.

3.2.3. The plate with clamped support
Table 8 and Figure 6 show a laminated composite
plate with clamped support (kr = 1 � 1012). As



S. Farahani et al./Scientia Iranica, Transactions A: Civil Engineering 28 (2021) 2053{2069 2063

Table 7. Non-dimensional buckling load factors of the plate with semi-clamped support on elastic foundation.

Aspect ratio 1 2 5 8
Case � KW KS

Model 1 0 0 0 40.66 39.45 39.44 39.44
Model 2 0 100 0 43.68 43.63 43.43 43.42
Model 3 0 100 10 56.68 56.68 56.61 56.61
Model 4 1 0 0 21.21 19.43 19.38 19.37
Model 5 1 100 0 26.16 25.93 25.89 25.89
Model 6 1 100 10 36.16 35.93 35.89 35.89
Model 7 2 0 0 14.03 11.09 11.09 11.08
Model 8 2 100 0 17.31 15.45 15.45 15.45
Model 9 2 100 10 23.93 21.10 21.10 21.10

Table 8. Optimal orientation � of the plate with clamped support on elastic foundation.

Aspect ratio 1 2 5 8
Case � KW KS

Model 1 0 0 0 26.75 29.32 29.90 30.39
Model 2 0 100 0 26.75 26.75 26.72 26.33
Model 3 0 100 10 20.23 21.40 21.32 21.40
Model 4 1 0 0 53.75 52.60 52.18 52.10
Model 5 1 100 0 48.62 47.31 46.78 47.04
Model 6 1 100 10 48.62 47.31 46.78 47.04
Model 7 2 0 0 54.72 63.89 64.07 63.93
Model 8 2 100 0 54.73 60.10 60.22 60.27
Model 9 2 100 10 54.74 65.11 65.31 65.42

Figure 6. Optimal orientation � of the plate with
clamped support on elastic foundation.

shown, if there is uniaxial in-plane loading (� = 0),
the optimal orientation (�) in all models will be below
30�. Therefore, the values are similar to those of the
plate with semi-clamped support. In the plate under
biaxial loading, the optimal orientation in all models is
higher than 45�. In the models with � = 1, the optimal
orientation variations versus the aspect ratio ones are
almost negligible.

In various supporting conditions, when � = 2
and the aspect ratio is greater than 1, the optimal
orientation is higher than 60�. It is shown that the

Figure 7. Optimal orientation � of the plate with
clamped support on elastic foundation.

ply orientation tends to be located in the y direction,
because in the long plate, the e�ect of in-plane loading
in the y direction is more signi�cant. According to
Table 9, in all models, the buckling load on the plate
with clamped support is quite greater than that on the
plates with simple support and semi-clamped support.

For example, a clamped supported laminated
composite plate (kr = 1 � 1012) with di�erent foun-
dation sti�ness values (KW = 200 and KS = 20) is
considered. The results are presented in Figures 7{8
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Table 9. Non-dimensional buckling load factors of the plate with clamped support on elastic foundation.

Aspect ratio 1 2 5 8
Case � KW KS

Model 1 0 0 0 42.37 42.28 42.11 42.12
Model 2 0 100 0 44.90 44.90 44.90 44.90
Model 3 0 100 10 57.72 57.54 57.55 57.54
Model 4 1 0 0 24.91 24.88 24.87 24.86
Model 5 1 100 0 28.98 28.85 28.79 28.79
Model 6 1 100 10 38.98 38.85 38.79 38.79
Model 7 2 0 0 15.86 15.52 15.51 15.51
Model 8 2 100 0 18.62 18.50 18.50 18.50
Model 9 2 100 10 24.99 24.57 24.56 24.56

Figure 8. Non-dimensional buckling load factors of the
plate with simple support on elastic foundation.

Table 10. Optimal orientation � of the plate with
clamped support on elastic foundation.

Aspect ratio 1 2 5 8
Case �

Model 1 0 9.08 9.8 11.23 14.47
Model 2 1 43.74 42.23 42.48 42.55
Model 3 2 54.76 66.35 66.25 66.41

Table 11. Non-dimensional buckling load factors of the
plate with clamped support on elastic foundation.

Aspect ratio 1 2 5 8
Case �

Model 1 0 69.82 69.84 69.91 69.98
Model 2 1 52.68 52.4 52.32 52.31
Model 3 2 34.12 33.61 33.59 33.59

and Tables 10{11. As shown, if there is uniaxial in-
plane loading (� = 0), the optimal orientation in all
models is below 15�. Therefore, the values are quite
lower than those of the clamped supported plate with
lower foundation sti�ness. In the plate under biaxial
loading, the optimal orientation in all models is higher

than 45�. In the models with � = 1, the optimal
orientation variation versus the changes in di�erent
aspect ratios is almost negligible (i.e., it is similar
to that of the clamped supported plate with lower
foundation sti�ness).

In various supporting conditions, when � = 2
and the aspect ratio is greater than 1, the optimal
orientation is higher than 65�. According to Table 10,
high foundation sti�ness increases the buckling load.

4. Numerical post-buckling results

4.1. Comparison of the analytical solutions
for the post-buckling analysis

This subsection illustrates the accuracy of the present
analytical solutions for the load-deection curves of
clamped supported laminated composite plates with
con�gurations (90=0=45=�45) and (67:5=�67:5) under
shear loads such that all individual laminate layers
have the same thicknesses of 0.3 mm and 0.6 mm,
respectively. Also, it is assumed that the material
properties of all lamina are the same. In the analysis,
elastic lamina properties are assumed to be:
E11 = 113 GPa; E22 = 9 GPa; G12 = 3:82 GPa;

�12 = 0:302;

Finite element software is used to validate the ana-
lytical solution. The analytical and FEM curves are
given in Figures 9 and 10. The results show that
the analytical curves enjoy positive agreement with the
FEM curves in the post-buckling process.

4.2. Optimization scheme
In the second subsection, the optimum stacking se-
quences of unsymmetrical rotationally-restrained lam-
inated composite plates under shear loading are pre-
sented. In the optimization process, the number of
generations and the number of the runs are consid-
ered as 100 and 200 for GA algorithm, respectively.
Figure 11 shows the load-deection curves of three
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Figure 9. Laminated composite plates with
con�gurations (90=0=45=� 45).

Figure 10. Laminated composite plates with
con�gurations (67:5=� 67:5).

kinds of laminates with di�erent torsion sti�nesses
( �K = 0; 10; 100) and di�erent numbers of plies. In
Table 12, the optimal stacking sequence of the plate is
given for three kinds of laminates with di�erent torsion
sti�nesses. It can be observed that the bearing capacity
is higher than that of the laminate with con�gurations
(90=0=45= � 45). This increase is estimated to be
approximately 80%, demonstrating that the optimal
stacking sequence is very e�cient. In addition, an
increase in edge torsion sti�ness results in increasing
the bearing capacity of the laminates. On the other
hand, according to the results, as the number of layer
increases, the load-deection curves become almost the
same. These results can be of value to the design
engineers of composite plate-like structures. In another
example, width b is considered 500 mm and the other
properties of the above example remain the same.
Figure 12 shows the load-deection curves of new lam-
inates with di�erent torsion sti�nesses ( �K = 0; 10; 100)
and di�erent numbers of plies. In Table 13, the optimal
stacking sequence of the plate is given for three kinds
of laminates with di�erent torsion sti�nesses. It can
be observed that the increase of the width has not
inuenced the optimal stacking sequence. However, the
above increase results in reducing the bearing capacity
of the plate. In addition, an increase in edge torsion
sti�ness leads to increase in the bearing capacity of the
laminates. On the other hand, based on the results,
as the number of layers increases, the load-deection
curves become almost the same.

Figure 11. Load-deection curves of laminates with di�erent number of plies for Model 1.

Table 12. Optimum stacking sequence from Genetic Algorithm (GA) for Model 1.

Number of plies �K Optimal stacking sequence

4 0 [�64=� 63=� 64=� 65]
4 10 [�65=� 61=� 64=� 65]
4 100 [�59=90=� 51=� 58]
8 0 [�65=� 63=� 61=� 48=54=� 67=� 63=� 63]
8 10 [�64=� 66=� 61=� 59=� 52=� 65=� 69=� 69]
8 100 [�58=� 60=75=76=� 11=� 47=� 64=� 58]
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Figure 12. Load-deection curves of laminates with di�erent number of plies for Model 2.

Figure 13. Load-deection curves of laminates with di�erent number of plies with di�erent moduli of elasticity.

Table 13. Optimum stacking sequence from Genetic Algorithm (GA) for Model 2.

Number of plies �K Optimal stacking sequence

4 0 [�64=� 62=� 64=� 65]

4 10 [�65=� 63=� 63=� 65]

4 100 [�59=81=� 61=� 57]

8 0 [�63=� 63=� 67=62=50=� 68=� 68=� 63]

8 10 [�67=� 62=� 70=� 59=� 70=� 60=� 63=� 65]

8 100 [�56=� 66=� 88=� 86=� 25=� 57=� 54=� 61]

As the last example, the e�ects of the change in
the modulus of elasticity E1 on the bearing capacity of
the laminates are examined. Three di�erent moduli of
elasticity E1 are considered and the other properties
of the �rst example remain the same. Figure 13
shows the load-deection curves of new laminates
with di�erent torsion sti�nesses ( �K = 0; 10; 100) and
di�erent moduli of elasticity E1. In Table 14, the
optimal stacking sequence of the plate is given for three
kinds of laminates with di�erent torsion sti�nesses. It
can be observed that an increase in the modulus of
elasticity E1 has no signi�cant inuence on the optimal
stacking sequence. However, increase in the modulus of
elasticity E1 results in increasing the bearing capacity
of the plate.

Table 14. Optimum stacking sequence from Genetic
Algorithm (GA) with di�erent moduli of elasticity.

�K E1 (GPA) Optimal stacking sequence

0 113 [�65=� 64=� 63=� 64]

0 225 [�67=� 68=� 66=� 69]

0 360 [�70=� 69=� 68=� 71]

10 113 [�65=� 63=� 66=� 65]

10 225 [�61=� 63=� 88=� 56]

10 360 [�64=78=61=� 44]

100 113 [�60=� 62=82=� 56]

100 225 [�49=� 69=� 55=� 53]

100 360 [�55=67=� 32=� 46]
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5. Conclusion

Identi�cation of buckling characteristics of laminated
composite plates is a bene�cial tool that captures and
assesses the performance of composite plates under
biaxial and uniaxial loading. Upon �nding the updated
buckling characteristics of plates, it is possible to obtain
their maximum buckling loading capacity. To evaluate
the characteristics better, the studied laminated plates
need to be analyzed precisely considering not only
the characteristics of composite plates but also the
boundary condition characteristics. Thus, the current
study employed the new modi�ed algorithm based on
Genetic Algorithm (GA) to maximize the buckling load
considering optimization of the �ber orientations and
di�erent boundary supported conditions. The results
of the present study showed that if there was uniaxial
in-plane loading (� = 0), the optimal orientation in
all the models would be below 35�. It is obvious that
under this condition, the plies tend to be located in
the loading direction. By adding the elastic foun-
dation, especially Pasternak foundation, the optimal
orientation decreased in all boundary conditions. At
an aspect ratio greater than 1 under uniaxial in-plane
loading, the optimal orientation variation was almost
negligible.

For the plates under biaxial in-plane loading (� =
1 and � = 2) at the aspect ratios equal to 1 and with
and without the foundation, the optimal orientation
tended to be almost 45�for all boundary conditions.
However, in the plates with clamped boundary con-
ditions, under the above-mentioned situations, the
optimal orientation tended to be 55�approximately.

Furthermore, based on the results, when the
number of layers on the laminated plates increased,
insigni�cant e�ects were determined in terms of the
capacity of buckling load. However, in post-buckling
behavior, the plates with many layers had the highest
convergence rate.

Under biaxial in-plane loading at aspect ratios
greater than 1 and with and without the foundation,
the optimal orientation was greater than 45�; however,
the clamped support and Pasternak foundation caused
a minor decrease in the optimal orientation.

It can be observed that the bearing capacity
of the laminate with the optimal stacking sequence
was higher (approximately 80%) than that of the
laminate with the normal stacking sequence. On the
other hand, based on the results, as the number of
layers increased, the load-deection curves became
almost the same. It was observed that the increase
of the width did not a�ect the optimal stacking
sequence. In addition, an increase in the edge tor-
sion sti�ness and the modulus of elasticity (EI) re-
sulted in increasing the bearing capacity of the lam-
inates.
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