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Abstract. This paper proposes an Age-Dependent Clustering (ADC) structure to be
used for prognostics. To achieve this aim, a step-by-step methodology is introduced, that
includes clustering, reproduction, mapping, and �nally estimation of Remaining Useful
Life (RUL). In the mapping step, a neural �tting tool is used. To clarify the age-based
clustering concept, the main elements of the ADC model is discussed. A Genetic algorithm
(GA) is used to �nd the elements of the optimal model. Lastly, the fuzzy technique is
applied to modify the clustering. By investigating a case study on the health monitoring of
some turbofan engines, the e�cacy of the proposed method is demonstrated. The results
showed that the concept of clustering without optimization processes is e�cient even for
the simplest form of performance. However, by optimizing structure elements and fuzzy
clustering, the prognosis accuracy increased up to 71%. The e�ectiveness of ADC prognosis
is proven in comparison with other methods.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

The prognostics concept, in simple words, is the process
of identifying the early signs of failure and degra-
dation in a component and subsequently predicting
its Remaining Useful Life (RUL) [1]. As today the
maintenance framework in various domains is changing
to the predictive paradigm, a great portion of the recent
researches is dedicated to the areas such as health
management, prognostics, and risk assessment [2{4]. In
the industrial systems, the E-maintenance frameworks
are used within Prognosis models . The condition of
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a machine can be monitored at any time through an
e�cient Prognostics and Health Management (PHM)
system. This brings signi�cant cost savings through op-
timization of maintenance planning and elimination of
needless preventative maintenance. Furthermore, the
maintenance strategy is transformed from traditional
fail-and-�x methods to predict-and-prevent practices.
Nowadays, numerous prognostics methods have been
developed for economic and operational purposes.

Prognostics methods are categorized into three
classes: model-based, data-driven, and hybrid ap-
proaches [2]. In case where a perfect system model
is not accessible, the data-driven prognostics method
is employed to estimate the RUL. Most e�orts focus
on data-driven approaches and it seems that they
re
ect the di�culty of de�ning both damage and
failure criteria in model-based approaches. Data-driven
approaches depend on the availability of run-to-failure
data [5]. Therefore, the damage propagation modeling
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for gas turbines came to be the subject of recent re-
searches, the results of which could provide the required
data for developing prognostics algorithms[6,7].

Today as a result of the development of sensing
technology and data centres, the collection of large
volume data for PHM purposes is made possible. How-
ever, the �rst challenge is how to map the conditions of
a complex system which experience a descending trend.
The other challenge in a PHM process is designing the
prediction module to estimate the RUL of a system
after observing a particular disorder. Methods from
nonlinear �lters [8], dynamic wavelet neural network
[9], similarity-based approach [10], to network-based
particle �ltering [11], a combined method in which
the neural networks and wavelet theory are combined
[12], and fusion of prognostics algorithms [13] have
been used as prediction tools. Yu has developed a
prognostics system based on logistic regression and
a state-space-model for engine RUL prediction [14].
Simon has compared the accuracy of estimation and
computational e�ort of variants of the Kalman Filter
(KF) including linearized KF, extended KF, and un-
scented KF for aircraft engine health estimation [15].
Based on extended KF, Lu et al. presented a nonlinear
underdetermined state estimation method and showed
that the proposed method results in a signi�cant
enhancement in terms of underdetermined estimation
accuracy and robustness [16]. Son et al. proposed a
constrained KF for prediction in the condition that
monitoring signals are noisy [17]. Besides KF, the
particle �lter is an attractive approach for degradation
prediction [18,19].

A review of health monitoring, diagnostics, and
prognostics of mechanical machines is done in [20]. In
recent years, researchers have suggested novel methods
for prognostics algorithms, including pattern-based
method which is the result of the combination of the
logical analysis of data and Kaplan-Meier estimator.
[21], Bayesian hierarchical model [22], etc. However, in
conventional prognosis algorithms, two levels of health
states are often assumed including the perfect working
state and failure state. It is while, deterioration process
of many real-world cases includes di�erent phases of
health conditions, leading to a multistage degradation
process [23].

Most of the researches which focused on the
multistage degradation process su�ers from some re-
strictions that are explained in the following section.
Subsequently, the motivation and contribution of this
article are described.

First, multistage structures have usually consid-
ered a Markovian deterioration process, with a constant
transition rate, consequently the parameters such as
aging and device deterioration over time are ignored
[24,25]. In other models, such as the semi-Markov
explicit-duration process [26], the limitation is that the

transition between stages is not a�ected by the age of
the device. To overcome the above challenges, based on
age-clustering an algorithm is presented in this paper.

The second limitation of current studies is the
problem of prediction model selection [27]. Usually, it
is assumed that the prediction tool is already known:
for example, in this regard the tools such as neural
network [28], linear or nonlinear regression [29], particle
�lter [30], Support Vector Machine (SVM) [31,32]
could be t referred to. The focus of the present
study is on the parameter selection of the selected
tool. The contribution made in this paper is to
present a procedure for optimized age-based clustering
of data that can be combined with many conventional
prediction methods such as Arti�cial Neural Network
(ANN), Local Linear Model Trees (LOLIMOT) [33],
regression, etc. to improve their results. In the present
article, a 
exible structure for prognosis is introduced
that uses ordinary and available predictive tools in
place of complex methods, while resulting in signi�cant
performance improvements.

This paper is organized as follows: In Section
2 the Age-Dependent Clustering (ADC) prognostics
framework and its implementation are described To
demonstrate the application of the results of this paper,
a case study is presented in Section 3. Finally the
summary and conclusions are presented in Section 4.

2. ADC algorithm

In this section, the ADC framework and structure
elements are brie
y discussed.

2.1. ADC framework
This section brie
y describes the fundamentals of the
ADC framework as shown in Figure 1. The proposed
framework includes the following phases:
a) Clustering. The time to initiate the prediction

of each test unit is indicated with tc. For a
prognosis problem with some test units, there is
an interval of tc [min(tc) : max(tc)]. This interval
should be divided into some smaller partitions in
the clustering phase. The width of the ith cluster
is de�ned by Eq. (1):
CWi = ti � ti�1; (1)

nX
i=1

CWi = max(tc)�min(tc):

tn is max(tc) and t0 is min(tc). The number of
clusters (n) and the width of each cluster (CWi)
are two elements of structure that should be de-
termined through an optimization process. More
details are discussed in the following sections.

b) Reproduction. In the next phase, the train data
set is reproduced n times for n di�erent age spans.
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Figure 1. The Age-Dependent Clustering (ADC)
framework.

To this end, n observation time points (toi, i= 1 :
n) are considered and at these points the feature
extraction of train data set is performed. Each
observation point is relevant to a certain cluster (toi
for ith cluster). In the train data set, for i = 1 : n,
units with life lengths less than toi are withdrawn;
the others are trimmed to toi. Each reproduction
of train data would be matched with the relevant
cluster if its observation point is well selected.
For simplicity, it may be assumed that toi is the
middle point of ith interval [ti�1 : ti]. However,
to obtain better results, observation points should
be determined through an optimization process.
In the last step of this phase, signal processing
of units in each reproduction is performed and n
vectors of Health Indicator (HI) are produced. The
example presented in Appendix A indicates that
the train data is reproduced 3 times for 3 age
clusters (n = 3).

c) Mapping. In the previous phase, train data
was reproduced n times and nHI vectors were
produced. Now in the third phase, a learning
algorithm or a �tting tool like ANN, regression, or

LOLIMOT is trained to map between HI and RULs
of n reproduction of train data sets. At the end of
this phase n prediction modules are developed for
n clusters.

d) RUL estimation. Up to this point, the main
components of an ADC framework are provided
and now they are ready to be used. So, for a target
test device, in the �rst step, the appropriate cluster
is selected according to its age when prediction
initiates (tc). The clustering technique is discussed
in the following.

In the next step, signal processing and HI cal-
culation (such as train units) for the target device is
performed. Finally, the features of the HI of the target
units are inputted into the appropriate prediction
module and the device RUL is estimated.

2.2. Clustering technique
Clustering can be done in a classic manner so that each
unit belongs to a speci�c group. In this way, clustering
follows a simple rule: \a unit belongs to a cluster if its
tc is between the minimum and maximum age of that
cluster".

The main drawback of this approach is that the
data points around the boundaries of the clusters may
fall into the cluster (i), while they have a higher
maturity compared to the cluster (i + 1) or cluster
(i � 1). To solve this problem, it is possible to apply
fuzzy clustering techniques so that each data point
belongs to one cluster to some degree speci�ed by a
membership function. There are various membership
functions including sigmoidal, trapezoidal-shaped, Z-
shaped, S-shaped, etc. [34].

2.3. ADC elements
The elements of the ADC framework are described in
the following:

a) Number of clusters (n). This element repre-
sents how many age intervals the test data set
should be partitioned to. It is conceptually similar
to the number of states in a multistate degradation
model (Moghaddas et al. (2014) [23]). The
number of clusters is an important element of the
ADC framework and a�ects other elements. The
low number of clusters may decrease the model
accuracy, while the crowded clustering not only
does not improve the accuracy but also increases
processing load.

b) Cluster Width (CW ). This element de�nes the
width of each cluster. For simplicity, it may be
assumed that all CWs are equal, but usually, it
is not the best solution. The portions with the low
dynamic and clear trend can be modeled with a low
number of clusters having long widths. However,
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for higher dynamic, more partitions with narrower
width are suitable.

c) Observation time (to). This element refers to the
time points at which the HI of the train data set is
observed for each cluster. Observation time of the
ith cluster is a point between ti and ti�1. Failure
to select appropriate points for observation of train
data may result in poor �tting and unreliable
prediction modules for each cluster.

2.4. Elements selection
ADC structure elements depend on the conditions
of the test data set and should be customized for
a problem. To reach this goal, the elements are
compared using a prognostic measure. Figure 2 shows
the summary of the elements selection approach. Four
phases in the ADC framework are executed, and those
elements which best satisfy the selection criteria are
selected. Di�erent evolutionary optimization methods
such as genetic algorithm, and simulated annealing,
can be used to �nd the optimal elements. The
objective function may be various prognosis measures
like accuracy, Mean Absolute Error (MAE), squared
absolute error. If the fuzzy clustering technique is used,
the parameters of membership functions can also be
determined by the optimization process.

Figure 2. The summary of the elements selection
approach.

3. Case study

To illustrate the outcome of this article on prognostics
and health monitoring, a case study on turbofan en-
gines from NASA's prognostics information repository
is performed [35]. In this section, the e�ectiveness of
the proposed model is focused on.

3.1. Data description
Among numerous datasets collected by NASA's prog-
nostic center of excellence, �ve extremely popular
turbofan engine datasets have been used in more than
70 studies. Among these datasets, dataset #1was
used more (70% of the cases) compared to all other
datasets [36]. The dataset #1 includes two subsets:
1) train data set, and 2) test data set. The whole
data is from a 
eet of engines of the same type.
The train data is composed of multiple units which
operated until failure occurred. Other units operated
until destruction occurred at di�erent levels. The data
consists of 21 measurements listed in Table 1, which
are measured during every 
ight cycle. The goal was
to predict the RUL of test units.

3.2. Health indicator
Considering HI design for a data- driven PHM pro-
cess, di�erent methods are used to map the sensor
information of the system health status. Previously,
the method such as direct use of all sensor data [37],
feature selection [38], and multi-sensors fusion [39]
were the subject of the study of some researchers and
they proposed these methods for mapping the sensor
information. The simplest method is to use available
sensor data without any selection or fusion; for in-
stance, in [40,41] health parameters are 
ow capacity
and isentropic e�ciency. In the feature selection, some
features that are better predictable and can contribute
to prognostic modeling are considered [38]. The data
fusion method is used in numerous researches [13] and
its e�ectiveness has been examined in [42]. However,

Table 1. A list of sensors and measurements [6].

Symbol Description

T24 Total temperature at LPC outlet
T30 Total temperature at HPC outlet
P30 Total pressure at HPC outlet
Nc Physical core speed
Pr Engine pressure ratio (P50 / P2)
Phi Ratio of fuel 
ow to Ps30

BPR Bypass ratio
BE Bleed enthalpy
T50 Total temperature at LPT outlet
Ps30 Static pressure at HPC outlet
farB Burner fuel air ratio
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besides these methods the di�erent fusion methods
have been used such as Principal Component Analysis
(PCA), and multistream deep recurrent neural net-
work [43].

In the present paper, a reconstructed signal from
the fusion of multi-sensors information represents the
HI of the device under study. Data processing and
feature extraction is performed through a method
developed by Diallo [42]. In the �rst step, data
normalization is essential for putting all di�erent types
of sensors readings in the same order of magnitude.
After normalizing, the signal noise must be removed.
In the next step, a fusion of multi-sensors information
is performed and a representative signal is calculated.
The reconstructed signal for each device is called HI.
Finally, the characteristics of two damage indicators
SAD (Sum of Absolute Di�erences) and SSD (Sum
of Square Di�erences) of HI are computed as the
Health Indicator Features (HIF). Di�erent stages of
data processing for four sensors of engine #1 are
indicated in Figure 3. More details are presented in
references [42,44].

3.3. Prognostic measures
To measure the prognosis, the error is de�ned for a
given prediction by Eq. (2):

err = RULt �RULs: (2)

Regarding PHM, sometimes the early prediction
is preferred to late prediction. Therefore, the asym-
metric interval I = [�10;+13] around the true RUL
is considered to evaluate the performance as shown in
Figure 4. The accuracy measure is the percentage of
test units and the RUL estimation of this test units
falls within the interval I [45]. This criterion appear
to be more severe, compared to those de�ned in the
literature [46].

To evaluate the performance of the ADC method
more accurately, Mean Square Error (MSE) and Mean
Absolute Error (MAE) are measured too by equations
(3) and (4) [47]:

emse =
1
N

vuut NX
t=1

err2; (3)

emae =
1
N

NX
t=1

jerrj: (4)

3.4. Implementation of ADC framework
Based on the illustrated framework (Figures 1 and 2)
the steps for ADC algorithm implementation are de-
termined. At �rst, four phases of ADC implementation
are performed with initial values for structure elements.
Subsequently, the optimization is done and the �nal
ADC model is completed.

Figure 3. Di�erent stages of data process for engine
#1 [44].

a) Clustering. The histogram of the prediction start
time (tc) for test units is shown in Figure 5. The
minimum and the maximum values are 31 and 303
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Figure 4. Prognostic measure [45].

Figure 5. Histogram of prediction start time (tc) for test
units.

Table 2. Initial values for structure elements.

Structure elements Initial value

Number of clusters 6
Cluster widths (cycle) [45, 45, 45, 45, 45, 45]

Observation points (cycle) [54, 100, 145, 190, 236, 281]

Table 3. Summary of engines clustering into 6 groups.

Cluster Observation time (to) Age interval

I 54th cycle 31{76 cycles
II 100th cycle 77{122 cycles
III 145th cycle 123{167 cycles
IV 190th cycle 168{212 cycles
V 236th cycle 213{258 cycles
VI 281th cycle 259{303 cycles

cycles. The initial values for structure elements are
listed in Table 2. To select the initial parameters,
CWs are set equal , this is the simplest form to
start the algorithm. Also, the midpoints of clusters
are taken as the observation points. Regarding the
number of clusters, in following sections it is shown
that all prognostic measures stay almost unchanged
for n > 2 for the present case study. Therefore,
a low number of clusters is chosen (6 clusters) to
avoid costly computations. For these initial values,
the clustering scheme is summarized in Table 3.

Figure 6. Health Indicator (HI) signals for train data set
before clustering (dashed lines indicate observation cycles).

b) Reproduction. The train data set was repro-
duced for each cluster. For the �rst cluster, all
engines with lives longer than the respective obser-
vation cycle (54 cycles from Table 3), were stopped
at the 54th cycle. Then data process was performed
and health indicator HItr (1) was extracted. For
the second cluster, all engines with lives longer
than 100 cycles (to2 = 100 from Table 3) were
stopped at the 100th cycle, and similarly HItr (2)
was computed. The scheme is repeated for all
clusters. The HI signals of train data resulted from
multi-sensors fusion before clustering are shown in
Figure 6. The observation times are indicated with
dashed lines. HI signals after clustering are shown
in Appendix B.

Train data set included 100 engines. All en-
gines were used in the �rst cluster, so the respective
HItr(1) vector dimension was 54 � 100 (to1 = 54
cycles, number of reproduction (1) members = 100
engines). For the second cluster, all train data are
used too and the HItr(2) vector was 100 � 100
(to2 = 100 cycles, number of reproduction (2)
members = 100 engines). For the third cluster,
the lives of 4 engines were smaller than 145 cycles;
so the HItr(3) vector was 145 � 96 (to3 = 145
cycles, number of reproduction (3) members=96
engines). Through similar analysis, dimensions of
HI vectors for all clusters are determined and they
are summarized in Table 4.

c) Mapping. The mapping phase was performed
using the neural �tting tool of MATLAB. In this
study a forward Multilayer Perceptron (MLP) with
a backward propagation training algorithm with
neural network structure is proposed. The training
algorithm was Bayesian. The developed ANN
model consisted of two layers with hidden sigmoid
neurons and linear output neurons as shown in Fig-
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Table 4. Summary of six reproductions of train data set.

Reproduction Number of members Vector Dimension

I 100 HItr(1) 54� 100
II 100 HItr(2) 100� 100
III 96 HItr(3) 145� 96
IV 62 HItr(4) 190� 62
V 19 HItr(5) 236� 19
VI 8 HItr(6) 281�8

Table 5. Summary of the formation of the prediction modules.

ANN

Regression
R

values
of net

Input Target

I 27% 2� 100 matrix, representing 2 features of 100 HI signals 1� 100 matrix, representing RULs of 100 engines

II 59% 2� 100 matrix, representing 2 features of 100 HI signals 1� 100 matrix, representing RULs of 100 engines

III 85% 2� 96 matrix, representing 2 features of 96 HI signals 1� 96 matrix, representing RULs of 96 engines

IV 99% 2� 62 matrix, representing 2 features of 62 HI signals 1� 62 matrix, representing RULs of 62 engines

V 99% 2� 19 matrix, representing 2 features of 19 HI signals 1� 19 matrix, representing RULs of 19 engines

VI 99% 2� 8 matrix, representing 2 features of 8 HI signals 1� 8 matrix, representing RULs of 8 engines

Figure 7. Multilayer Perception (MLP) framework.

ure 7. Two features of each HI signal were inputted
to MLP and the output was engine RUL [48,49].
The summary of the formation of six ANNs is
presented in Table 5. The training algorithm for all
networks was Bayesian regularization. Regression
R values indicated the correlation between outputs
and targets of the network. An R-value of 100%
means a close relationship.

d) RUL estimation. The HI signals derived from
the fusion of multi-sensors for the test data set are
shown in Figure 8. Table 6 shows the details of RUL
estimation for 15 engines. For each engine, tc was
considered �rst. Then the appropriate cluster was
determined according to the clustering technique.
For simplicity, a non-fuzzy rule was applied in this
phase: \a unit belongs to a cluster if its tc is
between the minimum and maximum age of that
cluster". Subsequently, the relevant ANN is used
and the RUL is estimated.

The prognostic measures for the ADC method are
presented in Table 7. The initial values for structure

Figure 8. Health Indicator (HI) derived from fusion of
multi-sensors for 100 test data.

elements are used in this method and the measures are
calculated for all 100 test units.

3.5. Optimization
In the previous section, ADC was implemented with
a set of initial values and simple assumptions regard-
ing the framework, and the prognosis measures were
evaluated. In this section, the structural elements
are optimized and the �nal ADC model is built. For
this, an evaluation data set is required. To tune its
Parameters, in middle-phase tests of the algorithm,
this data set was used in place of the main test data
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Table 6. Details of Remaining Useful Life (RUL) estimation for 15 units (initial ADC model).

Engine tc Cluster Estimated RUL Actual RUL Error

1 31 1 110 112 {2
2 49 1 92 98 {6
3 126 3 67 69 {2
4 106 2 104 82 22
5 98 2 113 91 22
6 105 2 109 93 16
7 160 3 99 91 8
8 166 3 101 95 6
9 55 1 160 111 49
10 192 4 72 96 {24
11 83 2 129 97 32
12 217 5 64 124 {60
13 195 4 75 95 {20
14 46 1 95 107 {12
15 76 1 102 83 19

Table 7. Summary of prognostic measures for
Age-Dependent Clustering (ADC) model with initial
values.

Measure Value

Accuracy (%) 53
MAE 14.9
MSE 1.9

set. The evaluation data set includes train data set,
therefore the train units are stopped some cycles before
failure, where the prediction should initiate.

It is possible to optimize whole elements si-
multaneously which leads to numerous possible sets
of elements and prolonged run time. However, to
minimize optimization time, the optimum number of
clusters was determined at �rst and subsequently, the
other elements were optimized. For this purpose, the
prognosis measures were calculated while the number
of clusters was changed and all other conditions and as-
sumptions remained unchanged. As shown in Figure 9,
all prognostic measures remained almost unchanged
for n > 2 for the present case study. Therefore,
a low number of clusters was chosen (for instance
4 clusters) to avoid costly computations in the next
optimization steps. Subsequently, the CW and the
observation points (to) are optimized by a GA. For
this computation, the OPTIMTOOL of MATLAB was
used. The objective was to maximize the accuracy. The
optimized variables are listed in Table 8. The optimal
clustering scheme is summarized in Table 9.

3.6. Clustering technique
To rectify clustering, the fuzzy technique was used [50].

Figure 9. Prognostic measures via number of clusters.

Table 8. Optimized values for structure elements.

Structure elements Best value

Number of clusters 4

Cluster widths (cycle) [44 49 70 104]

Observation cycles [53 100 159 208]

Trapezoidal-shaped membership functions were used
for clustering. The fuzzy clustering scheme used in the
present paper is shown in Figure 10.

3.7. Results and discussion
The prognostic measures for di�erent methods are
summarized in Table 10. All indexes of ADC mod-
els were better than ANN without clustering. The



A. Mahmoodian et al./Scientia Iranica, Transactions B: Mechanical Engineering 28 (2021) 1245{1258 1253

Table 9. Summary of optimum clustering scheme.

Cluster Observation cycle (to) Age interval

I 53th cycle 31{75 cycles
II 100th cycle 76{125 cycles
III 159th cycle 126{196 cycles
IV 208th cycle 199{303 cycles

Figure 10. The fuzzy clustering scheme used in the
present paper.

prognosis measures were improved signi�cantly with
clustering, although the core algorithm in ADC models
was still ANN. This may be followed from the following
reasons: 1) Probably, some young units were used for
the prognosis of an aged or a middle-aged unit, without
age-based clustering, and 2) It may be that the life
prediction of a young unit was performed according

to data mining of some old units. Both of these
cases lead to the accuracy reduction. It is worthy of
consideration that the method herein developed was
the ANN, however, this does not imply that the method
presented in this study is limited to ANN, rather it
has the capability to be applied in other estimation
methods to improve the results.

To our knowledge, the full testing dataset is
considered in a few number of studies. Some ex-
amples of the application of full testing dataset are
the EVIPRO algorithm [51], similarity-instance- based
approach [52], and RULCLIPPER algorithm [46] in
which the prognosis was measured by accuracy criteria.
To evaluate the e�ectiveness of the ADC algorithm, a
comparison with other approaches was performed as
indicated in Table 11. The accuracy of the proposed
ADC approach was better than other approaches.
Figure 11 shows the prognosis results of 100 engines
for the optimized ADC model with fuzzy clustering
method.

Finally, prognosis results of engines in di�erent
cycles are studied. The actual RUL value and the RUL
estimate for engines #97�100 are shown in Figure 12.
The results showed that the RUL estimate was rea-
sonably close to the actual remaining life (especially in
older ages). In general, the results indirectly supported
the hypothesis that, the age clustering method leads to
acceptable results in prognosis.

4. Conclusion and summary

Based on Age-Dependent Clustering (ADC), this study
proposes a prognosis algorithm. A four-phase prognosis

Table 10. Summary of prognostic measures.

Method Remark Accuracy (%) MAE MSE

ANN Without clustering 29 27.5 4.17
Initial ADC model Simplest form 53 14.9 1.9

Optimized ADC model Non-fuzzy clustering 65 14.9 2
Final ADC model Fuzzy clustering 71 12.8 1.8

Table 11. Comparison of accuracy for di�erent methods.

Method Remark Correct (%) Early (%) Late (%)

Fuzzy optimized ADC model Tested on 100 test units 71 23 6
Ramasso [45] Tested on 100 test units 67 Nan Nan

Non-fuzzy ADC model Tested on 100 test units 65 19 16
Khelif et al. [52] Tested on 100 test units 54 18 28

Ramasso et al. [51] Tested on 100 test units 53 36 11
Javed et al. [46] Tested only on 15 test units 53 27 20

Xu et al. [13] Sensor selection proposed by the authors 44 19 37
Xu et al. [13] Sensor selection used in [51] 50 19 31
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Figure 11. Results of engine prognostics with fuzzy
optimized Age-Dependent Clustering (ADC) model.

framework was introduced. In the �rst phase, cluster-
ing of test data set was performed, then reproduction
of train data set for each cluster was done, afterward
neural �tting tool was used to build n prediction
modules using reproduction sets of train data, and

�nally, cluster selection and Remaining Useful Life
(RUL) estimation of each test unit was completed by
using the relevant prediction module. Initially, simple
assumptions were used to determine the elements of
the ADC model. Subsequently, the optimization of the
initial prognosis model was considered. The e�ect of
the increasing number of clusters was also studied. A
genetic algorithm was applied to optimize the width
of clusters and observation points and �nally, fuzzy
clustering technique was used to increase prognosis
accuracy.

The accuracy of the initial ADC model in which
the simple assumptions were used (53%) was better
than the classic methods (29%), although the core
algorithm in both cases was Arti�cial Neural Network
(ANN). This is one of the important results of the
present study that proves the e�ectiveness of the ADC
concept. In the present study, the ANN was used
as the core prediction tool. The ADC idea can be
used and combined with di�erent classic prognostics
methods. The core prediction tool may be any of the
other existing methods.

The ADC model optimization caused its results to
be improved (65% and 71% accuracy for non-fuzzy and
fuzzy optimized ADC). The aim of this study was to
maximize accuracy through optimization process and
the results indicated acceptable accuracy compared to
other methods.

One advantage of this algorithm is that the core
prediction tool is a conventional method and the ADC
algorithm recti�es this method with more reliable
results. Another advantage of the proposed method
follows from its reliability characteristic which enables
us to apply it in real situations.

Nomenclature

tc Start time of prediction for a system
CW Cluster Width
tr (related to) train data set
to Certain observation points at which

the health indicator is observed for
each cluster in the training phase

N Number of clusters
HI Health Indicator
ANN Arti�cial Neural Network
PM(i) Prediction Module for the ith cluster
RUL Remained Useful Life
ADC Age- Dependent Clustering
PHM Prognostics and Health Monitoring
MAE Mean Absolute Error
MSE Mean Squared Error
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Figure 12. Prognosis results of engines #97� 100 in di�erent cycles.
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Appendix A

The example illustrated in Figure A.1 indicates that
the train is reproduced 3 times for 3 age clusters (n=3)

Figure A.1. Illustration of reproduction of a train data
set to 3 clusters.
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Figure B.1. Health Indicator (HI) signals for train data after clustering.

Appendix B

Here, signals after clustering are shown in Figure B.1.
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