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Abstract: In this paper，a novel method for obtaining high-quality paths for self-driving cars in 

underground parking lots is proposed. Self-driving cars require fast and accurate planning of 

collisionless path. When the self-driving car arrives at the parking lot, the car downloads the layout 

from the intelligent system of the parking lot and is assigned a parking space, then the location of the 

designated parking space and the car are provided by the intelligent system. A global path is planned 

by the global algorithm according to the location of the parking space and the car. If dynamic or 

unknown obstacles are detected in the process of moving along the global path, the parameters of 

obstacles can be estimated by the obstacle-detection algorithm. According to obtained parameters, 

the local obstacle avoidance path can be planned by the behavioral dynamics method. After 

completing obstacle avoidance, the car will return to the global path and continue to move toward 

the target parking space. Finally, the proposed method is simulated by MATLAB, and the results 

show that the car can safely park in the target parking space. This method simultaneously satisfies 

the smooth and the real-time requirements of path planning. 

Keywords: self-driving car; global path planning; local obstacle avoidance; uncertain dynamic 

obstacle; dynamic environment. 

 

1. Introduction 

At present, the self-driving car has aroused extensive attention among many research 

institutions, and it has also been applied to military, transportation, and other fields [1]. The 

performance of the path planning determines the intelligence of a self-driving car and is one 

of the most important core technologies among the related technologies of the self-driving 

car. The purpose of path planning is to find a continuous and collisionless path from the initial 

position to the target position, and the path must satisfy the environment constraints, real-

time constraints and the kinematic and dynamic constraints of the self-driving car. 

Many traffic situations are existed in urban scenarios, the cluttered parking lot is a 

challenging place to navigate. Domokos Kiss and Gábor Tevesz [2] presented a global 

planning method for car-like vehicles, producing paths with continuous curvature. The 

method uses straight segments, CCin-C-CCout triplets (CC-turns), and elementary paths to 

generate a feasible and human-like solution even in narrow environments. However, it is 

limited to a pre-set environment. Jong Min Kim and Kyung II Lim [3] adopted an improved 

Reeds-Shepp curve algorithm for an effective forward and backward auto-stop system. The 

advantage of the proposed auto-stop system is that the vehicle control system has simple 

command data which lets the vehicle move forward, backward, and laterally and also tracks 

travel distance values. However, obstacle detecting is neglected during the parking process. 
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Guanqun Wang and Tsuneo Naanishi [4] modelled a parking lot with a time-varying graph, 

and the proposed system applies a time varying shortest-path algorithm and dynamically 

tunes arc transit times based on planned vehicle routes as well as traffic flow sensor data. 

Simulation results showed an average travel time reduction of more than 40% for each in the 

best case. However, in the proposed system, when a road is blocked at time t, for the 

simplicity of implementation, the transit time of the corresponding arc is chosen to increase 

at time t by a constant, two times the speed limit of the parking lot. In some cases, this method 

may lead to an over-tuning problem which means the system tunes an arc's transit time to an 

unnecessarily large value so that the time-varying shortest-path algorithm cannot output the 

actual optimal route.  

In response to the above deficiencies, in this paper, a safety navigation method 

integrating global path planning and local obstacle avoidance will be established to make the 

planned path suitable for the self-driving car. The flow chart of the safety navigation method 

is shown in Figure 1. 

 

A great amount of path-planning algorithms have been taken from the self-driving car 

to face the challenges of road networks and driving rules. The most relevant path planning 

algorithms implemented in motion planning for self-driving car are described below. 

The A* algorithm is a graph searching algorithm that enables a fast node search due to 

the implementation of heuristics. Its most important design aspect is heuristic reducing 

computation time. But the planning path is not continuous and has many turns [5,6]. The 

probabilistic road map (PRM) is a graph-based search method that randomly selects N nodes 

in the planning space. The nodes are then connected, the connection lines with the obstacles 

are removed, and a path is obtained [7]. The Dijkstra algorithm finds the shortest path in a 

series of nodes or grid. Suitable for global planning in structured and unstructured 

environments. But the algorithm is slow in vast areas due to the important amount of nodes. 

The search is not heuristic. The resulting path is not continuous. Not suitable for real time 

applications [8-10].  

The above-mentioned path planning algorithms have advantages in solving general 

planning problems, but they must model the obstacles in a deterministic space and these 

constructed models are very complex. Therefore, these algorithms do not satisfy the needs of 

self-driving car path planning in a dynamically complex environment. 

The Rapidly Exploring Random Tree (RRT) is a data structure algorithm. Its unique 

advantages can be directly applied to nonholonomic planning and motion planning. The 

algorithm takes the given initial point as the root node of the random tree and searches quickly 

and efficiently for a feasible space according to the current environment. Therefore, the RRT 

algorithm is a randomized algorithm that can explore large space in a relatively short time, 

which is fast and efficient for the path planning of the self-driving car [11-14]. 

This paper is structured as follows: Section 2 introduces the global path-planning 

algorithm. The local obstacle avoidance algorithm is introduced in Section 3. Simulation 

results and discussion are presented in Section 4. Finally, the conclusion and future work are 

given in Section 5. 

2. Global Path-Planning Algorithm  

In recent years, the RRT algorithm has been widely applied and researched in the field 

of self-driving car path planning. Because its random sampling strategy does not need to 

preprocess the state space and has fast velocity in the process of searching, this algorithm can 

effectively solve the problem of path planning in a complex environment. However, there are 

some defects: (1) the global uniform sampling strategy may lead to unnecessary cost and 

slow convergence rate; (2) the randomness of the algorithm generates an unsmooth path 

which may not be directly executed by the non-holonomic constrained self-driving car.  



  

3 

In view of the defects of the classical RRT algorithm, some scholars have improved the 

algorithm. To improve the search efficiency, Kuffner and LaValle [15] proposed the 

bidirectional search tree (Bi-RRT) algorithm, i.e., two trees are simultaneously generated at 

the initial point and the target point to accelerate the convergence rate of the algorithm. In 

view of the unsmooth path generated by the randomness of the classical RRT algorithm, 

Fraichar and Scheuer [16] used the method of a convolution curve to smooth the path. 

However, the convolution curve method does not have a closed-form solution, so the path of 

the self-driving car cannot promptly and accurately be planned. Lau and Sprunk [17] planned 

the path of a self-driving car using a Quintic Bézier curve, but the curvature continuity of the 

path and the constraints of the self-driving car are neglected. Javad and Mansour [18] utilized 

randomized sampling methods such as the RRT or its derivatives to plan a prior path, which 

aims to solve the disadvantages of the artificial potential field method (APF), which include 

local minima and oscillation. A. H. Qureshi [19-20] introduced APF into the RRT* algorithm 

to accelerate the rate of convergence and to significantly reduce the number of iterations 

compared with the classical RRT algorithm. By combining reachability-RRT and resolution-

complete RRT, Leonard Jaillet [21] improved the success rate of the search, especially the 

narrow channel, and reduced the number of nodes in searching. However, the constraints of 

the self-driving car are ignored by these methods, which may lead to the planned path that 

does not meet the requirements of the car. 

2.1 Improved RRT Algorithm 
To solve the strong randomness of the generating node of the classic RRT, the idea of 

gravitational force in APF [22] is introduced into the classic RRT algorithm (hereinafter 

referred to as A-RRT). The gravitational force guides random trees to grow toward the 

direction of the target point, which is shown in Figure 2. 

 

The core idea of this improvement is to introduce the target gravitational function ( )G n  

into each node n   in the path. n   represents the nth   point of newx   growing from the 

initial point initx  . randx   and goalx   represent the random node and the target point, 

respectively.   represents the search step length. 

In the gravitational function x x x p goal nearG dU d k x x   ,  x represents the current 

position vector of the self-driving car, pk  represents the coefficient of the gravitational field, 

nearx   represents the nearest point, and goal nearx x   represents the absolute value of the 

geometric distance between the node nearx  and the target point goalx . 

According to the above-mentioned growing process of nodes, the target gravitational 

function ( )G n  suitable for RRT algorithm can be constructed as: 

( )
goal near

p

goal near

x x
G n k

x x



  


                        (1) 

When a new leaf node is added through the A-RRT algorithm, the target gravitational 

function will influence the selection of the new node by calculating the gravity from each 

node to the target, and then the random tree is guided toward the target to grow [23]. 

According to Equation (1), the Equation of generating new nodes that introduced the 

idea of gravitation can be obtained as: 

goal nearrand near
new near p

rand near goal near

x xx x
x x k

x x x x

  

    
   

             (2) 

2.2 Constraint Condition 

To make a planned path be effectively applied to the self-driving car, the path can be 
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tracked and then the path must meet the road environment constraints. Assuming lB  and 

rB  as the left and right boundaries of the road, the generated random tree nodes should be 

within the boundaries. The coordinates of the node position should meet Equations (3) and 

(4):  

r y lB t B                                  (3) 

ini x tarP t P                                 (4) 

where iniP  is the initial point of each extension , tarP  is the target point of each extension. 

Considering that a car has geometric shape, the width of the car can be expressed as D . 

Since Equation (3) is the coordinates restriction in the y direction of the nodes, this can be 

expressed as: 

2 2r y lB D t B D                          (5) 

Assuming the center of mass of the self-driving car moving along the planned path, the 

curvature of the planned path cannot change too much to ensure stability during driving. If 

the actual front wheel steering angle has a maximal value max , the connection line between 

the child node bx  and its parent node ax  is a bx x , and the connection line between the 

parent node ax   and its parent node initx   is init ax x  , the angle    between a bx x   and 

init ax x  must satisfy max  . Generally, the   value is between 30 ~40  . Then the angle 

constraint can be expressed as:  

 1 2 1 2 maxarctan ( ) (1 )K K K K                    (6) 

where 1K
 
is the curvature of the straight line a bx x , and 2K

 
is the curvature of the straight 

line init ax x . 

To ensure that extended points do not intersect with obstacles, the method of elliptically 

enveloping obstacle and properly enlarging the safe ellipse is adopted to meet obstacle 

avoidance requirements. If the connection line between the new node and its parent node does 

not intersect with the safe ellipse, then the expanded new point satisfies the obstacle 

avoidance requirement. Taking the five-equal partition point ( , )P x y  on the connection line, 

then the constraint equation can be expressed as: 
2 22 2( ) ( ) ( ) ( ) 1obs obsx x s a y y s b                       (7) 

where ( , )obs obsx y  are the coordinates of the obstacle, s   is the safe ellipse magnification 

coefficient, the half length of the car 2a m , and the half width of the car 1b m . When s 

equals 2  , the safe ellipse just right envelops the rectangular obstacle, Therefore, it is 

necessary to guarantee 2s  from the perspective of security obstacle avoidance.  

2.3 The Process of Smoothing the Path 

The path planned by the classic RRT algorithm usually has a small range of twists and 

turns and is discontinuous. To make the path meet the stability and safety requirements of the 

car while moving, it is necessary to smooth the planned path. The B-spline can locally adjust 

the path without changing the entire path shape. According to the feature of the B-spline, the 

path planned by the classic RRT algorithm can achieve the purpose of the smooth path 

through the method of interpolation. The usually used B-spline is the cubic spline curve. 

The proposed A-RRT algorithm does not need an accurate model of the global 

environment, which can greatly reduce the planning time and improve the real-time 

performance of the algorithm. Furthermore, the cubic B-spline curve is used to smooth the 

path generated by the A-RRT algorithm, which can ensure the curvature continuity of the 

path and satisfy the constraints of the self-driving car.  
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3. Local Obstacle Avoidance Using Behavioral Dynamics  

The environmental information can be detected by the sensors of the self-driving car. 

When detecting a dynamic obstacle, the behavioral dynamics method is used to plan the local 

obstacle avoidance path for the self-driving car, and then the self-driving car begins to avoid 

the obstacle.  

According to the behavioral dynamics theory [24, 25], the target can be represented as 

an attractor and the obstacle can be indicated as a repeller. The attractor can generate a virtual 

attraction between the target and the current position of the self-driving car in the process of 

moving. The repeller can generate a virtual repulsive force between the obstacle and the 

current position of the self-driving car in the process of moving. Firstly, the relationship 

between virtual attraction and behavioral variables can be established by making the target 

of the typical driving behavior an attractor. Secondly, the relationship between virtual 

repulsive force and behavioral variables can be structured by making the obstacle around the 

self-driving car a repeller. Finally, the behavioral dynamics model of self-driving car path 

planning can be established by combining the attraction and the repulsive force model.  

According to traffic rules, the solid line does not allow the vehicle to cross, the dotted 

line can be driven over for a short time, but the car cannot ride on the line for a long time. 

The solid line is defined as strong constraint, and the dotted line is defined as a weak 

constraint. The strong constraint must be avoided while driving the car. The weak constraint 

should not be avoided if the car needs to change lanes or overtake another car while driving, 

and only when the car is being driven in the mode of lane-keeping, for driving safety, must a 

safe distance be kept between the car and lane. 

3.1 Attraction Model 

According to the typical driving behavior of the self-driving car, the relationship 

between the attraction of tending to the target and the behavioral variables including heading 

angle and velocity can be established [26]. 

The behavioral variables of the self-driving car are illustrated in Figure 3.  

 

3.1.1 Heading Angle Attraction Model 

The heading angle attraction model is established by the typical driving behavior of the 

self-driving car. The heading angle   of the self-driving car finally must be consistent with 

the direction of the target. Assuming the direction of the target is the attractor, then the 

heading angle of the self-driving car must satisfy [ / 2, / 2]tar     .The heading angle 

attraction equation of tending to the target can be established according to [27], which can be 

expressed as:  

, ,( ) tan( )tar tar tar tarf f                              (8) 

where ,tar  is the heading angle attraction strength factor, and the magnitude of the virtual 

attraction will be changed by adjusting ,tar  . tar  is the heading angle between the target 

and the self-driving car in the world coordinate system 

, , , ,arctan(( ) ( ))tar tar y veh y tar x veh xP P P P     . , ,( , )tar tar x tar yP P P   and , ,( , )veh veh x veh yP P P   are the 

positions of the target point and the self-driving car in the world coordinate system, 

respectively. 

Figure 4 shows the local coordinate system on the self-driving car. The 'x  -axis 

direction is the moving direction along the axis of the car, and the 'y  -axis direction is 

perpendicular to the axis direction of the car. 'tar   is the angle between the direction of 

vehicle velocity and the 'x  coordinate, which is a behavioral variable. 

 

To ensure the final velocity direction in line with the axis of the car and the parking 
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space, the specified parking space centerline is set as the target pose attractor. 

The pose behavioral dynamics model [28] of the self-driving car can be established as: 

                           ' 'tar     &                                  (9) 

where   is the pose attraction strength factor. 

3.1.2 Velocity Attraction Model 

In the path planning process of the self-driving car, it is necessary to consider the safe 

and dynamic characteristics of the car when establishing the velocity attraction model. The 

velocity of the car must have an upper limit. The contact time can be expressed as /tarT d v , 

where tard  is the distance between the self-driving car and the target point. The contact time 

T  cannot be too big nor too small, and must meet the safe distance of the car. maxT  is the 

maximum of the contact time max ( / )tar sT d D v  , where sD  is the safe following distance. 

Furthermore, the acceleration of the self-driving car v  must be smaller than the acceleration 

of the target car tarv , otherwise, there will be a collision. 

According to [29], the velocity attraction equation of tending to the target can be 

established as: 
2

, , 2

( )
( ) ( ) exp[ ]

2

tar
tar v tar v tar

v

v v
f v v v




                   (10) 

where ,tar v is the velocity attraction strength factor, and the size of the virtual attraction of 

the target point to the self-driving car can be changed by adjusting ,tar v . tarv  and vehD  are 

the expected velocity and the width of the self-driving car, respectively. v is the range of 

the attractor, which can be expressed as: 

arcsin( )s veh
v

veh

D D

D



                        (11) 

When the target is the ahead moving car, then tarv
 
is the velocity of the target car. 

Otherwise, the self-driving car will drive at a constant velocity. The current velocity of the 

self-driving car cv
 
can be achieved according to the inertial navigation system. The distance

S between the self-driving car and the target car can be measured by the millimeter wave 

radar, and the initial velocity ov
 
can be set.  

The velocity of the target car tarv  can be calculated by: 

22tar cv aS v                             (12) 

max

c ov v
a

T


                              (13) 

3.2 Repulsive Force Model 

According to the surrounding environment of the self-driving car, the relationship 

between the repulsive force and the behavioral variables including the heading angle and the 

velocity can be established. 

3.2.1 Heading Angle Repulsive Force Model  

If a static or moving obstacle is detected while moving toward the target point, the self-

driving car must be able to safely avoid the obstacle and safely reach the target point. obs  

represents the repeller, which is the unstable point that turns the influence of an obstacle to 

zero in the behavioral dynamics method. 

According to [30], the repulsive force equation of the heading angle can be established 

as: 
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2

,

, , , , 2

,

( )
( ) ( ) exp( )exp( )

2

obs i

obs i obs i obs i obs obs i

obs i

f Cd
 

   



            (14) 

,

,

,

arctan( )
obs i veh

obs i

obs i veh

P y P y

P x P x






                     (15) 

where 
,obs i represents the heading angle repulsive force strength factor, and the repulsive 

force can be changed by adjusting
,obs i  . C   represents the repulsive coefficient of 

attenuation with increasing distance. 
,obs id represents the distance between the obstacle and 

the self-driving car. 
,obs iP x

  
and 

,obs iP y
  

are the coordinates of the obstacle in the world 

coordinate system. 
,obs i  represents the range of a repeller, which can be expressed as: 

,

,

arcsin( )s veh
obs i

obs i veh

D D

d D






                    (16) 

The heading angle repulsive force equation of multiple obstacles can be written as:  

, ,( )obs obs i obs i

i

F f                          (17) 

3.2.2 Velocity Repulsive Force Model 

In the path planning process, the velocity of the self-driving car is not only related to the 

distance obsd
 
between the current position of the self-driving car and the obstacle, but also 

related to the safe distance sD . Under the premise of guaranteeing the minimal safe distance, 

the linear velocity of the self-driving car decreases with decreasing obsd .  

According to [31], the linear velocity repulsive force equation can be established as: 
2

,

, , , 2

( )
( ) ( )exp[ ]

2

obs i

obs i obs v obs i

v

v v
f v v v




                  (18) 

3.3 Behavioral Dynamics Model 

According to the above established attraction model and repulsive force model of the 

heading angle and velocity, the behavioral dynamics model of the self-driving car can be 

established by the weighting of each attraction and repulsive force. In practical applications, 

each behavior needs to be coordinated and then used for vehicle behavior control.  

Synthesized behavioral dynamics model that includes velocity and heading angle can 

be established as: 

                    
, ( ) ( )v obs obs i tar tarv f w f v w f v  &                    (19) 

                      
obs obs tar tarf F f    &                       (20) 

where obsw  , tarw  , obs   and tar
  

are the weight coefficients of the behavioral dynamics 

model. According to the weight of each behavior in the actual model, the force of each 

behavioral variable can be changed by altering the weight coefficient. To eliminate 

interference so that the target behavior and obstacle avoidance behavior occur simultaneously, 

the four weight coefficients are varying with the situation in the simulation process.  

4. Simulation and Discussion 

To illustrate the effect of the A-RRT algorithm, Figure 5 contrasts the planning results 

of the A* algorithm and the A-RRT algorithm. The initial parameters of the self-driving car 

are CarPos = [165, 20, 90, 5, 8, 90, 1] (initial x coordinate, initial y coordinate, heading angle, 

velocity, perceptive distance, perceptive angle, size of car), and the target position parameters 

are TargetPos = [25, 175, 90] (x and y coordinates of the target parking space). The obstacle 

position parameters are ObstaclePos = [90, 95]. The horizontal length is 200m. MATLAB 
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2014a is used for simulating the hybrid algorithm. The comparison of the results can be seen 

from the graph and the table: 
 

Compared to the A* algorithm, the path of the A-RRT algorithm is smoother, there are 

no frequent large curvature changes. To objectively evaluate the performance of the algorithm, 

two algorithms were planned 30 times in the same experimental scene because of the 

randomness of A-RRT algorithm. Table 1 shows the partial results of the 30 experiments, 

which includes 5 planning time, 5 path length, times of success and mean square deviation 

of path curvature. 

 

According to the results of the simulation experiments in Figure 5 and the data in Table 

1, A* algorithm is better than A-RRT algorithm in planning time and path length, but A-RRT 

algorithm has significant advantages in the aspect of path smoothing and meeting car 

constraints. So the A-RRT algorithm is more suitable for the self-driving car. 
 

Figure 6 illustrates the process of obstacle avoidance. The self-driving car and the 

obstacles are located in initial position at t1 moment. A millimeter wave radar and two 

ultrasonic radars are arranged on the head of the self-driving car. The detection range is 

expressed as a sector, and the angle of the sector is 120°. The car and the dynamic obstacle 

keep their own velocity vector before t3 moment, and the car moves toward the target point 

at the speed of 5km/h. When the dynamic obstacle is detected at t3 moment, it is indicated in 

red, and then the path of obstacle avoidance is planned by the behavioral dynamics method. 

The average time of 20 times obstacle avoidance path planning is 0.072s, and the planning 

time decreases with improving computer configuration. Furthermore, the whole time of 

human from discovery to brain judgement to manipulation of the hands and feet is called the 

reaction time, which is about 0.38s, so behavioral dynamics obstacle avoidance meets the 

requirement of real time.  

Monte Carlo method is a stochastic simulation method that uses random numbers or 

some kind of probability phenomenon to simulate real-world problems. Since the self-driving 

car may randomly stop during parking to the designated parking space, therefore, Monte 

Carlo method can be used to simulate the path between the random initial state and the target 

state. As the path length is proportional to the navigation error of the goal point, the 

navigation path planning problem can be reduced to the shortest path problem from the initial 

state to the target state under the premise of the maximum allowable error. The process of safety 

navigation is shown in Figure 7. 
 

Figure 7(a) shows the environment of the underground parking lot of the Wal-Mart 

International Shopping Center. The area of the underground parking lot is 26,000 m2, and 

there are 800 parking spaces. The size of the parking space is 5.5×2.4 m. Moreover, the width 

of the parking space line and the lane line are 9 cm, and the lane width is 6 m. Figure 7(b) 

shows the layout of the parking lot. Figure 7(c) shows the global and the partial enlarged 

drawing of the planning path. The entrance coordinate of the parking lot is [885, 55], which 

is expressed in green, and it can be used as the initial point. The designated parking space 

coordinate is [658, 110], which is expressed in yellow, and it can be used as the target point. 

The global path can be planned by using the A-RRT algorithm, and then, the proposed 

obstacle detection algorithm is used to estimate the obstacle parameters when the dynamic 

obstacle is detected. The black rectangle represents the dynamic obstacle, the larger rectangle 

that wraps the dynamic obstacle represents the area of potential collision. According to the 

initial point coordinates and foregone values, the parameters of the dynamic obstacle can be 

calculated. The possible radius and the velocity of the dynamic obstacle are in the range of 

0.5-0.8m and the range of 3.5-4m/s, respectively. The estimated parameters of the dynamic 

obstacle are transmitted to behavioral dynamics for obstacle avoidance, for which the self-

file:///D:/è½¯ä»¶/æ��é��å­�å�¸/Dict/7.5.2.0/resultui/dict/
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driving car obstacle avoidance process can be clearly seen in Figure 7(c), and then the self-

driving car returns to the global path. Finally, the self-driving car safely reaches the 

designated parking space. 

5. Conclusion 

For the typical self-driving scene of the parking lot, an efficient trajectory planning 

framework for the self-driving car is presented. The APF is introduced into the classical RRT 

algorithm to accelerate the convergence speed and obtain an optimal solution, the 

convergence rate has accelerated nearly four times, the smoothness and curvature continuity 

of the path have been greatly improved as shown in Table 1, and the improved algorithm only 

requires 68% of original iterations to find a solution. Moreover, constraints of the road and 

the self-driving car were considered during nodes expansion, making the planning path meet 

the self-driving car requirements. The behavioral dynamics method is used to plan an obstacle 

avoidance path based on the dynamic obstacle parameters, and the average time of 20 times 

replanning path is 0.072s, which meets the real-time requirement. The MATLAB 

experimental results show that the hybrid path planning model has the good real-time 

performance and reliability, and the self-driving car along the desired path can safely bypass 

the obstacle and reach the target point. The future work is to apply the method on a real self-

driving car to perform real-life tests and performance measurement. 
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Figure 1. Flow chart of the safety navigation method 

Figure 2. The growing process of nodes 

Figure 3. The behavioral variables of the self-driving car 

Figure 4. The coordinate system of the car 

Figure 5. The chart of algorithm effect comparison 

Figure 6. Obstacle avoidance using the behavioral dynamics method 

Figure 7(a). The underground parking lot  
Figure 7(b). The layout of the underground parking lot 

Figure 7(c). The global and the partial enlarged diagram 
Table 1. Comparison of Simulation Experimental Data 
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Figure 3. The behavioral variables of the self-driving car 

 

 
Figure 4. The coordinate system of the car 

 

 

 
Figure 5. The chart of algorithm effect comparison  
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(a) t1 moment                               (b) t2 moment 

    
(c)t3 moment                            (d) t4 moment 

Figure 6. Obstacle avoidance using the behavioral dynamics method 

 

 

   
         (a)The underground parking lot               



  

15 

     
 (b) The layout of the underground parking lot    (c) The global and the partial enlarged diagram  

Figure 7. The process of safety navigation 

 

Table 1. Comparison of Simulation Experimental Data 

30 experiments A* A-RRT 

Planning Time /s 

0.166 0.181 

0.189 0.237 

0.262 0.284 

0.381 0.464 

0.155 0.152 

the length/m 

130.922 132.423 

131.246 132.68 

129.854 130.262 

130.573 133.025 

130.248 130.883 

Successful Times 30 30 

Mean Square Deviation of 

Path Curvature 
0.138 0.094 

 


