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Abstract. Most adult Cystic Fibrosis (CF) patients frequently su�er from Pseudomonas
aeruginosa (PA) infection, which is strongly associated with inammation, lung destruction,
and increased mortality. Diagnosis of PA infection in the primary stage is essential to
initiate the treatment and reduce the risk of chronic infection. Sputum culture is the gold
standard for infection detection, but it is time consuming. The objective of this study was
to suggest and examine a method to determine PA infection status in CF patients based
only on their respiratory sound. Respiratory sounds were recorded from 36 CF patients.
Some features which were generated from Tunable Q-factor Wavelet Transform (TQWT)
components were investigated. The features were fed into Support Vector Machine and
Ensemble classi�er. The proposed method achieved an accuracy rate of 90.3% in identifying
PA infection in CF patients. Furthermore, the probability of categorizing respiratory
sounds as PA CF decreased signi�cantly after the treatment of PA infection (P -value <
0.003). Moreover, the method exhibited a satisfactory performance in the presence of noises
and artifacts. The developed method represents a novel approach to the diagnosis of PA
infection in CF patients based only on respiratory sound signals, which is a necessary and
innovative approach to early diagnosis of PA infection.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Cystic Fibrosis (CF) is the most common autosomal
recessive disorder in white skinned individuals that
a�ects such organs as the lungs and pancreas. Chronic
lung infections, the hallmark of CF, are the principal
cause of morbidity and mortality in CF patients. Thick
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and sticky lung mucus is a common respiratory sign
of CF. Infections of the lungs result in pulmonary
symptoms and pulmonary exacerbation in CF [1,2].
Infections are the key parameters considered by physi-
cians to initiate appropriate preventive and therapeutic
strategies [1].

Approximately 60{75% of adult CF patients fre-
quently su�er from Pseudomonas Aeruginosa (PA)
infections [1]. The PA infection is strongly associated
with inammation, lung destruction [2], and increased
risk of mortality [3{5]. Early detection of PA is
essential to initiation of appropriate therapy and re-
duction of the risk of chronic infection [6]. During the
early stages, PA can be treated using inhaled or oral
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antibiotics (instead of intravenous antibiotics). Nev-
ertheless, the treatment procedure must be monitored
to assess its e�ectiveness. To diagnose infections and
evaluate the treatment e�ciency, airway cell culture is
generally recommended once every 3 months in a stable
state and with the occurrence of acute pulmonary
exacerbation [7]. Although the sputum culture result
is the gold standard for the detection of infection, it is
time consuming; hence, a real-time diagnostic method
can facilitate early initiation of eradication therapy.

Evaluation of the lung sounds, which are pro-
duced during the transition of air through the respira-
tory tract, is a non-invasive method for investigating
lung status [8]. Pulmonary diseases can alter the
airways and cause variations in respiratory sounds.
Identifying and categorizing information about the
time and frequency of lung sounds for the diagnosis
of disease and evaluation during disease follow-up are
challenging without the use of computerized analysis.
Recently, computerized respiratory sound analysis has
been reported as a bene�cial diagnostic tool to identify
lung abnormalities and disorders [9{14].

Many CF patients experience exacerbation in the
presence of PA infection. Decreased lung function,
increased cough, increased sputum, and increased ad-
ventitial lung sounds are indicators of exacerbation.
Even though there is evidence that infection can alter
the airways by increasing mucus and sputum, few
studies have investigated whether respiratory sounds
are a�ected by infections [15{17]. Previous studies have
only focused on the relations between adventitious lung
sounds such as wheeze, crackles, or cough sounds, and
respiratory infections [15,17]. However, a study has in-
vestigated lung sounds originating from lungs infected
by Tuberculosis to discriminate healthy subjects from
Tuberculosis patients [16].

There are few studies that investigated rela-
tions between adventitious lung sounds and infection.
In [15], cough sounds were analyzed to identify res-
piratory infection in pigs. In another study, wheeze
lung sounds were detected to diagnose and monitor
lower respiratory tract infection [17]. The role of
respiratory physiotherapy was examined in lower respi-
ratory tract infections in another study, which caused
a signi�cant reduction in wheeze rates and less sputum
after respiratory physiotherapy [18]. In the literature,
there are several uses of respiratory sound frequency
analysis [19,20] and time-frequency analysis (especially
Wavelet Transform) in the automatic diagnosis of
adventitious respiratory sounds [8].

Rational-Dilation Wavelet Transform (RADWT)
[21] and Tunable Q-factor Wavelet Transform (TQWT)
[22] are kinds of wavelet transform that describe a
signal as an optimum time-frequency representation by
choosing an appropriate Q-factor [22]. It was shown
in [23] that these features resulted in better accuracy

than discrete wavelet transform, PSD, MFCC, and
some other features in the diagnosis of adventitious res-
piratory sounds. In RADWT, the Q-factor is adjusted
using the combined action of three parameters, while
in TQWT, it is speci�ed directly [24]. Recently, high
Q-factor and low Q-factor features have been used in
the diagnosis of adventitious respiratory sounds [23].
Altogether, these studies on the diagnosis of adventi-
tious respiratory sounds, though not directly relevant
to this study, may lead us to the hypothesis that the
features extracted from the mentioned techniques may
be capable of diagnosing a sound beyond the human
auditory judgment, which is consistent with infection
in CF patients.

Structural airway alterations may modify lung
sounds by increasing mucus and sputum which can
be used to discriminate Normal CF from PA CF
patients' lung sounds. Recent studies have demon-
strated that respiratory sounds are a�ected by sputum
conditions [25{27]. Four distinct research works have
been carried out to examine the sputum condition
using respiratory sounds. The �rst research utilized
a frequency domain feature to examine the e�ect of
increased sputum on respiratory sounds [28]. For this
purpose, sound samples of three patients were used
to detect increase in sputum with 85{97% accuracy.
Two other works examined time-frequency features [25]
and discrete wavelet transform features [27] to diagnose
sputum accumulation in the trachea. Using sound
samples of 12 patients, they achieved accuracy rates
of 83.5% and 84.5% employing time-frequency features
and discrete wavelet transform features, respectively.
Recently, another work has utilized sound samples of
14 patients to evaluate features based upon Empirical
Mode Decomposition (EMD) and achieved an accuracy
of 92.02% in the diagnosis of sputum condition [26].
All of these studies, however, depicted the e�ectiveness
of time-frequency features and features from basic
oscillatory portions of signal (EMD of the signal) to
diagnose sputum conditions.

Mucus clusters vibrate due to air transition
produced by respiration. It was mentioned in [25]
that the vibration in time-frequency representation of
respiratory sound signals might be created by small os-
cillations in the signal. Therefore, TQWT analysis can
be used to obtain optimal resonance-based respiratory
sound signal decomposition to detect these oscillations.

This study was done in the CF center of the
children hospital; thus, the participants were only CF
patients. The diagnosis of CF for the participants
were con�rmed based on sweet test and/or genetic
test. The gold standard method for the detection
of PA infection in CF patients is time consuming
(several days); hence, a real-time diagnostic method
may facilitate early initiation of eradication therapy. So
far, there has been no attempt to detect PA infection
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in CF patients using respiratory sounds. The proposed
study is, therefore, an attempt to address this issue
with the aim of detecting PA infection in CF patient by
analyzing only one cycle of respiratory sound instead of
detecting adventitious lung sounds. For this purpose, a
number of features extracted from TQWT components
of respiratory sounds were evaluated in identifying PA
infection in CF patients.

2. Material and methods

The overall structure of the proposed method is illus-
trated in Figure 1. After describing data acquisition
part, each step in Figure 1 is described in detail.

2.1. Data acquisition
Respiratory sounds were acquired from 25 CF patients
(11 females, 14 males) whom were followed up at the
Pediatric Respiratory and Sleep Medicine Research
Center of Children's Medical Center. The diagnosis
of CF for the participants was con�rmed based on

sweet test and/or genetic test. Patients were se-
lected based on their sputum microbiology cultures
according to the following category: 11 patients with
normal ora culture results and 14 patients with PA
infection (in this paper, `Normal CF subjects' and
`PA CF subjects' will be used to refer to normal
ora CF subjects and CF subjects with PA infection,
respectively). Also, respiratory sounds of 11 patients
were recorded one month after antibiotic treatment
and were used to investigate the e�ectiveness of the
proposed method. Demographic data of the patients
are depicted in Table 1. All procedures performed
in studies involving human participants were approved
(IR.TUMS.CHMC.REC.1398.094) by the Ethics Com-
mittee of Children's Medical Center-Tehran University
of Medical Sciences.

Respiratory sounds were recorded with a Littman
3200 digital stethoscope in the extended mode from
20 to 2000 Hz with a sampling frequency of 4000 Hz.
Sound acquisition was performed from two anatom-
ical regions of the lungs; posterior upper right and

Figure 1. The overall structure of the proposed method.
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Table 1. CF participant's information.

Normal CF
(n = 11)

PA CF
(n = 14)

PA CF after treatment
(n = 11)

Gender (female/male) 5/6 6/8 5/6
Age (mean � std) 12.18 � 3.9 15.1 � 5.3 15.5 � 5.7
Height (mean � std) 147.2 � 20.1 149.5 � 17.4 153.7 � 12.3
Weight (mean � std) 36.1 � 12.1 37.3 � 11.6 40.4 � 12.5

left. Over two normal respiratory sound cycles were
recorded from each volunteer in the sitting position.
Informed consent was obtained from all patients or
their parents in case of under ages prior to respiratory
sound recording.

2.2. Preprocessing
As shown in Figure 1, the �rst step is preprocess-
ing, which includes noise and artifact removal and
respiratory cycle separation. Recorded sounds were
contaminated with the cardiac sound artifact, speaking
and coughing noises, and digital stethoscope movement
noise. The dominant frequency of heart sound is
lower than 150 Hz [29]. To remove the cardiac sound
e�ect, band-pass �ltering was applied to the recorded
respiratory sounds in the frequency range of 150{1800
Hz. Respiratory sound cycles damaged by speaking or
coughing noises were excluded from the dataset. Dig-
ital stethoscope movement noises were high amplitude
spikes with very low lengths, which were removed from
the signals based on the method in [30].

The recorded signals had good quality. Three re-
viewers listened to the recorded sounds, independently.
All respiratory sound samples were listened precisely.
Their spectrograms were investigated as well. Samples
that contained speaking noises and special lines related
to the speaking in their spectrogram were omitted
from the study. From 157 available respiratory sound
samples, 21 samples were contaminated with noises
and omitted from the study. Finally, 136 remaining
sound samples were used for the study. Totally, 47,
67, and 22 respiratory sound cycles were achieved
from normal CF, PA CF patients and PA CF patients
after the treatment, respectively. Then, inspiration
and expiration sound segments were separated from
respiratory sound cycles manually.

The proposed method used preprocessed respira-
tory sound signals. However, noisy respiratory sound
signals were utilized to evaluate the functionality of
the proposed method in the presence of noises and
artifacts.

2.3. Feature extraction
The proposed feature extraction method includes the
decomposition of respiratory sound signals into their
TQWT components and the calculation of statistical
parameters from the obtained components (Figure 1).
In TQWT analysis, a two-channel �lter bank is applied

to a signal and then, the scaled version of the �lter
bank is iteratively applied to its low-pass parts. It is
assumed that � and � are scaling parameters of low-
pass H0 (!) and high-pass H1 (!) �lters, respectively,
and 0 � j � J is the index of decomposition level for
a J level TQWT transform.

H0 (!) = 1 j!j � (1� �)�; (1)

H0 (!) = 0 �� � j!j � �; (2)

H1 (!) = 0 j!j � (1� �)�; (3)

H1 (!) = 1 �� � j!j � �: (4)

By analyzing the cascade of several �lters and scalings,
the equivalent frequency response for � � 1 and � � 1
at level j of decomposition can be calculated as H(j)

1 (!)
from Eq. (5) [22]:

H(j)
1 (!) =8>>><>>>:
H1
� !
�j�1

� j�2Q
m=0

H0
� !
�m
�
;

(1� �)�j�1� � j!j � �j�1�
0 for other ! [��; �]

(5)

where H(j)
0 (!) is calculated using Eq. (6):

H(j)
0 (!) =

8<: j�1Q
m=0

H0
� !
�m
�
; j!j � �j�

0 �j� < j!j � �
(6)

The major parameters in TQWT include Q-factor
(Q), redundancy (r), and number of decomposition
levels (J).

Q-factor is the ratio of center frequency to band-
width of a band-pass �lter. It is a measure of number
of oscillations in wavelet. Eq. (7) reveals the relation
between Q and � parameters:

Q =
!c
BW

=
2� �
�

: (7)

Redundancy is the total number of wavelet coe�cients
divided by the length of the signal. The relation
between r and �lter parameters � and � is revealed
in Eq. (8).

r =
�

1� �: (8)
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A signal can be decomposed into a collection of high
Q-factor and/or low Q-factor components; the number
of components is J + 1.

The presence of mucus in the lung and airways
due to PA infection can alter the airway structure in CF
patients, subsequently causing changes in air transition
and lung sounds. If any mucus is stored in a patient's
airway, mucus clusters may vibrate due to air transition
produced by respiration. These vibrations may cause
small oscillations in special parts of respiratory sound,
as mentioned in [25]. Visual evaluation of recorded
respiratory sounds showed that some, but not all, of
the PA infected lungs had these signs.

Therefore, TQWT analysis was used to obtain an
appropriate resonance-based respiratory sound signal
decomposition by selecting appropriate Q-factor to
detect changes related to PA infection in CF patients.
Hence, di�erences between components of respiratory
sounds (obtained from TQWT analysis) were investi-
gated in normal CF and PA CF patients. In this study,
both high and low Q-factor components of respiratory
sounds were evaluated in the detection of PA infection.
However, it can be expected that high Q-factor com-
ponents of respiratory sounds have better performance
than low Q-factor components in distinguishing oscil-
lations related to infection in respiratory sounds as a
result of better frequency selectivity of high Q-factor
wavelet bases. The redundancy factor r controls over-
lapping rate between sub-band frequency responses of
adjacent wavelets in the TQWT method. It is often rec-
ommended to be equal to or greater than 3 in order to
well localize the analysis/synthesis functions (wavelets)
[24,31]. Frequency responses of adjacent wavelets were
investigated using di�erent r values. The r was set to 3
based on some trials and for keeping a kind of balance
in overlapping between wavelets of successive frequency
bands. Q-factor describes the degree of resonance in
a signal and a�ects the oscillatory behavior of the
wavelet, meaning that it is a measure of the number
of oscillations exhibited by the wavelet. Therefore, Q-
factor, which describes the degree of resonance in a
signal, should be selected according to the signal type.
In this study, Q-factors were selected around the values
used in the previous study on adventitious respiratory
sounds using high Q-factor and low Q-factor around 6
and around 2 [23]. Then, high and low Q-factor values
were obtained around these values through trial and
error. Parameter J was selected based on respiratory
sound signal energy distribution in di�erent subbands.
J was selected by increasing the level of decomposition
until energy of the last subband was approximately less
than 1% of the total signal energy.

Decomposition of respiratory sound cycles into
high Q-factor components was done by parameters of
Q = 8, r = 3, and J = 40 and for low Q-factor
components by parameters of Q = 1, r = 3, and J = 9.

Energy distributions of 41 high Q-factor compo-
nents of respiratory sounds in two groups of normal CF
and PA CF subjects are shown in Figure 2. They are
also shown for 10 low Q-factor components in Figure 3.
As can be seen, there are some di�erences between en-
ergy distributions of high and low Q-factor components
of normal CF and PA CF subjects' respiratory sounds
in inspiration/expiration.

After decomposing respiratory sound signals into
high and low Q-factor components, some statistical
parameters were considered in order to create feature
vectors from the extracted components and feed them
to classi�ers (Figure 1).

These parameters were maximum, minimum,
mean, standard deviation, entropy, and energy which
were calculated using Eqs. (9){(14):

max (Mxi) = max (Ski) for k = 1; : : : ; Ni; (9)

min (Mni) = min (Ski) for k = 1; : : : ; Ni; (10)

Mean (�i) =
PN
k=1 Ski
Ni

; (11)

Std (�i) =

sPNi
k=1 (Ski � �i)2

Ni
; (12)

Entropy (Enti) = �XNi

k=1
Skilog (Ski) ; (13)

Energy (Eni) =
1
Ni

XNi

k=1
jSkij2; (14)

where `Ski' is the ith Q-factor component with the
length of Ni and k is the index of samples in each
component.

High Q-factor components no. 34{41 and low
Q-factor components no. 7{10 contained negligible
information after �ltering respiratory signals in the
preprocessing step. Therefore, statistical parameters
were calculated from high Q-factor components no. 2{
33 (32 components) and low Q-factor components no.
1{6 (6 components).

In this step, 32 high Q-factor components were
obtained from inspiration/expiration sounds. One
feature vector was created as FVq (q = 1{32) for high
Q-factor components of inspiration sound, where q is
the number of components.

FVq =

26666664
Mxq
Mnq
�q
�q
Entq
Enq

37777775 : (15)

In the same way, FVq was created for low Q-factor
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Figure 2. Energy distribution of 41 high Q-factor components of inspiration and expiration sounds in two groups of
normal CF and PA CF subjects with median and InterQuartile Range (IQR) calculated across all patients.

Figure 3. Energy distribution of 10 low Q-factor components of inspiration and expiration sounds in two groups of
normal CF and PA CF subjects with median and IQR calculated across all patients.

components of inspiration/expiration sounds (q = 1 �
�6).

As shown in Figure 1, seven feature sets were
generated as a single feature vector or a combination
of di�erent feature vectors as follows:

1. High Q-factor features extracted from inspiration
sound signals (HQ-insp);

2. High Q-factor features extracted from expiration
sound signals (HQ-exp);



2020 A. Karimizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 2014{2028

3. Low Q-factor features extracted from inspiration
sound signals (LQ-insp);

4. Low Q-factor features extracted from expiration
sound signals (LQ-exp);

5. High Q-factor and Low Q-factor features extracted
from inspiration sound signals (HQ-insp and LQ-
insp);

6. High Q-factor and Low Q-factor features extracted
from expiration sound signals (HQ-exp and LQ-
exp);

7. High Q-factor and low Q-factor features extracted
from inspiration and expiration sound signals to-
gether (HQ-insp and LQ- insp and HQ-exp and LQ-
exp).

2.4. Feature selection
In order to reduce the number of features, a feature
selection algorithm was implemented based on Genetic
Algorithm (GA). GA selected the best group of features
by searching for possible feature combinations. It is a
kind of evolutionary algorithms [32] and basic steps of
the implemented algorithm are described as follows:

� Generating random initial population of chromo-
somes. The chromosome length was considered
equal to the total number of features. Chromosome
bits denote whether or not the features were selected
by assigning 1 or 0 to them, respectively;

� Computing �tness for each chromosome using a de-
�ned cost function. GA cost function was proposed
based on the classi�er results. It also contained a
term to control the number of features. More details
are represented in Eq. (16) in the results section;

� Selecting the best chromosomes based on the �tness
selection (a larger �tness value corresponds to a
better or lower cost) can be done using di�er-
ent methods such as stochastic uniform selection,
Roulette wheel selection, etc., among which the
latter is used in this study;

� Applying crossover (single point, two points, and
uniform crossovers) to chromosomes, of which two-
point crossover was used here. In this method,
parent chromosomes are split into three fragments
using two selected random points. Then, produced
fragments are recombined to create new chromo-
somes;

� Applying mutation operators to individuals. Ran-
dom bits of chromosomes were selected in the
mutation. Then, new chromosomes were created by
inverting selected bits (1 changed into 0, and vice
versa);

� Keeping the best individual that was found for the
next generation;

� Repeating crossover, mutation, and selection until a
stopping condition is met.

By implementing the GA algorithm, the best
collection of the features was selected from a subset
of possible combinations of features in a feature set.

2.5. Classi�cation
After selecting appropriate features from each feature
set, the �nal feature vectors were normalized in the
range of [0, 1] to make an e�cient classi�cation. Then,
normalized feature vectors were fed to classi�ers. At
�rst, an SVM classi�er was examined to discriminate
PA CF patients' respiratory sounds from Normal CF
ones. Then, an ensemble decision was proposed based
on the majority voting of the class labels given by
three SVM classi�ers applied to three feature groups.
Features were fed to classi�ers by applying `leave-one-
out' cross-validation method to subjects, meaning that
the classi�er was trained on all features except those of
one subject. Then, the remaining features were used
for test to determine the existence of PA infection based
only on one respiratory cycle. This step was repeated
for all the other subjects.

2.5.1. Support Vector Machine (SVM)
SVM �nds an optimal hyperplane between samples
of two classes that are linearly separable (or can be
separated linearly by moving to another space using a
kernel function) [33]. Assume that xd is the dth sample
and yd is its label (d is the index of samples); SVM tries
to minimize L (Eq. (16)) with respect to ~w and b, where
ad � 0, d = 1; :::;Ks are Lagrange coe�cients:

L =
1
2
~w �

KsX
d=1

adyd (~w~xd + b) +
KsX
d=1

ad: (16)

By computing ~w and b, optimum hyperplane will be
obtained [34].

In this study, a nonlinear SVM classi�er with
radial basis (Gaussian) function kernel with radius 1
was used. Sequential Minimal Optimization (SMO)
was employed to �nd the separating hyper-plane.

2.5.2. Ensemble classi�cation
An ensemble classi�er combines a number of simple
classi�ers to improve the performance of classi�cation.
This combination has been addressed by di�erent
names in the literature, including classi�er fusion,
the mixture of experts, dynamic classi�er selection,
divide-and-conquer classi�ers, etc. [35]. The main
reason for using Ensemble learning is to improve the
generalization ability of classi�er decisions.

In this study, results of applying three SVM
classi�ers to three feature groups were combined to
determine the existence of PA infection in CF patients.
Majority voting was used as a combination method, in
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which if more than one classi�er identi�es a subject as
PA CF or normal CF, the result will be categorized in
that group.

3. Results

The proposed method was applied to the recorded lung
sounds of CF patients with the purpose of �nding ap-
propriate feature sets to diagnose CF patients with PA
infection. Seven feature sets were created and the best
group of features was selected by applying GA to each
feature set. GA parameters were selected as Roulette
Wheel selection function, uniform mutation function,
two-point crossover function, and a generation number
of 500. Cost function E was de�ned as Eq. (17):

E=
q

(1�Acc1)2+(1�Acc2)2 + 0:001�Nf ; (17)

where Acc1 and Acc2 are the sensitivity and speci�city
of PA infection detection, respectively, after applying
the SVM to a group of features and Nf is the number
of features in that group. Some feature extraction
methods assign a rank number to each feature. In those
methods, a special number of features (a �x number)
are selected based on their ranking from the best to
the worst rank. In comparison with those methods,
GA can automatically select an appropriate number of
features. The constraint term in Eq. (17) controls the
number of selected features; this means that when two
feature sets result in the same classi�cation error, the
one with the smaller number of features is given a lower
E value. Some trial-and-error tests were performed to
con�gure the GA for limiting the number of features.
Then, a value of 0.001 was selected as the coe�cient of
the second term in Eq. (17).

GA was implemented 30 times by assigning dif-
ferent values to crossover probability (0.6{0.8) and
mutation probability (0.05{0.1) and creating a di�erent
random initial population.

Figure 4 shows the percentage of selected features
from each feature set no. 1 to 4 (HQ-insp, HQ-exp,
LQ-insp and LQ-exp) in the feature set 5{7. GA
converged to the same kind of results using di�erent
initial populations (di�erent or equal number of LQ and
HQ features). It can be seen in the two top pies that

Figure 4. The percentage of selected features from the
feature sets 1{4 (HQ-insp, HQ-exp, LQ-insp, and LQ-exp)
in the feature sets 5{7.

the percentage of selected HQ features is higher than
that of LQ features in both inspiration and expiration
sounds. Therefore, they may be more e�ective than
LQ features in the detection of PA infection. The
button pie shows that HQ features are superior to LQ
features, and HQ-expiration features are superior to
HQ-inspiration features.

As mentioned before, GA feature selection was
binary; hence, the length of the selected features
can be di�erent in the initial population, which may
also change by crossover and mutation operators.
Therefore, the length of the selected features could
be di�erent in each of the 30 GA implementations.
However, GA feature selection usually converges to
some speci�c feature groups. The means and standard
deviations of selected feature lengths and accuracies
for the seven proposed feature sets are compared in
Table 2. As shown in Table 2, feature set 7, which is a
combination of all features, results in the best average
accuracy by a value of 82:0� 3:2%.

In comparison between HQ-insp and HQ-exp fea-
tures, HQ-exp features provide better average accuracy.
As expected from Figure 4, LQ-insp and LQ-exp
features (feature sets 3 and 4) provide lower average
accuracy than HQ-insp and HQ-exp. However, LQ

Table 2. Mean and standard deviation of feature lengths and (train/test) accuracies for selected features after applying
GA.

HQ-insp HQ-exp LQ-insp LQ-exp HQ-insp &
LQ- insp

HQ-exp &
LQ-exp

HQ-insp &
LQ-insp and

HQ-exp & LQ-exp
No. of features 5.05 � 0.7 4.2 � 1.1 4.7 � 0.6 3.2 � 0.6 4.4 � 1.1 5.2 � 1.1 4.6 � 0.9
Accuracy

(train)
(test)

(87.2 � 2.5)
(72.1 � 4.6)

(84.6 � 2.5)
(73.9 � 4.2)

(76.8 � 1.9)
(72.1 � 0.5)

(76.9 � 3.6)
(69.8 � 0.8)

(84.4 � 2.5)
(72.3 � 3.5)

(87.8 � 4.3)
(74.3 � 5.4)

(89.3 � 3.2)
(82.0 � 3.2)
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features (feature sets 3 and 4) provide lower standard
deviation than HQ features (feature sets 1 and 2). The
smaller number of features in LQ feature sets than
HQ feature sets results in less variation in selected
features, which can be the reason for the lower standard
deviation of the accuracy of LQ features. The average
accuracy of feature set 6 (HQ-exp & LQ-exp) is higher
than that of feature set 5 (HQ-insp & LQ-insp). Fea-
tures that are extracted from expiration sound signals
provide greater accuracy than inspiration sound signals
for HQ features, while this is inverse for LQ features.

The best selected features in the feature sets 1{
7 are shown in Table 3. The proposed method was
applied to respiratory sounds of left and right lungs
separately, which yielded similar results.

As can be seen, the existence of PA infection in
CF patients can be detected based on only one cycle of
their respiratory sound samples recorded from the right
or left side. Therefore, both sound samples were used
together to increase the number of samples. Sensitivity,
speci�city, and accuracy of detecting PA infection for
all the sound samples are reported in percentage in
Table 4.

As shown in Table 4, the best result for the
detection of infection is obtained from the feature set
7 by sensitivity, speci�city, and accuracy of 88.0%,

87.2%, and 87.7%, respectively. The second best
accuracy is obtained from the feature set 6.

PA infection detection is vital to early initiation
of eradication therapy and also, it is essential to reduce
the wrong detection to prevent antibiotic overuse.
To increase sensitivity (PA infection detection) and
speci�city (reduce the wrong detection), an ensemble
classi�cation was applied to feature sets 1{7. The
proposed ensemble classi�er was a combination of three
SVM classi�ers applied to the best three selected
feature groups of each feature set. Table 5 presents
the parameters of sensitivity, speci�city, and accuracy
after applying the ensemble classi�er to seven feature
sets. Besides, the ensemble classi�er was applied to
three selected feature groups of di�erent feature sets
(feature sets 1, 6, 7; feature sets 2, 6, 7; and feature
sets 5, 6, 7).

Table 5 shows that combining the three SVM
increases accuracies in some cases. The increased
accuracies after applying the ensemble classi�er are
shown in bold in the last column of Table 5. Errors of
the three SVM classi�ers are correlated in other cases,
and the ensemble classi�er does not change e�ciently
by combining these classi�ers. The highest accuracy
is obtained from a combination of feature sets 5, 6, 7
and feature sets 1, 6, 7 by accuracy of 90.3%. The

Table 3. Performance results of the best selected features for the feature sets 1{7 for respiratory sounds of left and right
lungs.

Feature set SVM (left+right) SVM (right) SVM (left)
Acc.

(train/test)
Acc.

(train/test)
Acc.

(train/test)
1 HQ-insp (87.7/79.8) (87.7/80.4) (87.8/79.4)
2 HQ-exp (86.7/78.9) (85.9/76.1) (85.7/79.4)
3 LQ-insp (77.8/72.8) (78.2/78.6) (77.7/66.2)
4 LQ-exp (75.9/71.0) (74.7/65.3) (74.4/69.1)
5 HQ-insp & LQ- (82.3/78.9) (82.2/84.7) (82.6/73.5)
6 HQ-exp & LQ-exp (98.1/81.5) (98.2/80.4) (98.2/85.3)
7 HQ-insp & LQ insp and HQ-exp & LQ-exp (92.1/87.7) (92.2/84.7) (92.7/89.3)

Table 4. Performance results of the best selected features for the feature sets 1{7 in percentage.

SVM

Feature set Spec. N
(train/test)

Sens. PA
(train/test)

Acc.
(train/test)

1 HQ-insp (76.7/65.9) (95.4/89.5) (87.7/79.8)
2 HQ-exp (82.9/74.4) (89.4/82.0) (86.7/78.9)
3 LQ-insp (72.4/70.2) (81.8/74.6) (77.8/72.8)
4 LQ-exp (72.1/61.7) (78.6/77.6) (75.9/71.0)
5 HQ-insp & LQ- insp (78.8/72.3) (84.8/83.5) (82.3/78.9)
6 HQ-exp & LQ-exp (97.8/70.2) (98.4/89.5) (98.1/81.5)
7 HQ-insp & LQ insp and HQ-exp & LQ-exp (93.6/87.2) (90.9/88.0) (92.1/87.7)
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Table 5. Sensitivity, speci�city, and accuracy of applying ensemble classi�er to 7 feature sets in percentage.

Feature set SVM1 SVM2 SVM3 Ensemble classi�er

Acc. Acc. Acc. Spec. N Sens. PA Acc.

1 HQ-insp Train 87.7 86.2 86.5 84.9 92.9 89.4
Test 79.8 77.1 77.1 74.4 86.5 81.5

2 HQ-exp Train 86.7 85.7 83.7 87.3 90.2 88.6
Test 78.9 78.9 78.9 80.8 82.0 81.5

3 LQ-insp Train 77.8 76.3 76.3 75.9 76.6 76.3
Test 72.8 72.8 72.8 70.2 74.6 72.8

4 LQ-exp Train 75.9 75.9 75.2 74.7 76.7 75.9
Test 71.0 70.1 70.1 70.1 70.2 70.1

5 HQ-insp & LQ- insp Train 82.3 82.3 89.3 78.6 85.1 82.4
Test 78.9 78.9 72.8 72.3 83.5 78.9

6 HQ-exp & LQ-exp Train 98.1 94.6 88.7 97.8 99.8 99.1
Test 81.5 80.7 79.8 76.5 89.5 84.2

7 HQ-insp & LQ- insp and HQ-exp & LQ-exp Train 92.1 82.4 98.1 93.5 98.1 96.5
Test 87.7 86.8 85.9 87.2 88.0 87.7

8 Feature sets 1, 6, 7 Train 87.7 98.1 92.1 96.7 98.7 97.9
Test 79.8 81.5 87.7 82.9 95.5 90.3

9 Feature sets 2, 6, 7 Train 86.7 98.1 92.1 96.7 97.8 97.4
Test 78.9 81.5 87.7 78.7 94.0 87.7

10 Feature sets 5, 6, 7 Train 82.3 98.1 92.1 96.7 95.5 95.9
Test 78.9 81.5 87.7 85.1 94.0 90.3

Table 6. The probability of being classi�ed as PA CF for features of PA CF patients before and after treatment.

Feature set
Before

treatment
(mean � std )

One month
after treatment
(mean � std )

P-value

HQ-insp & LQ- insp and HQ-exp, & LQ-exp 0.75 � 0.20 0.62 � 0.24 0.003

Feature sets 1, 6, 7 0.87 � 0.09 0.55 � 0.09 < 0:001

Feature sets 2, 6, 7 0.81 � 0.11 0.64 � 0.09 < 0:001

Feature sets 5, 6, 7 0.84 � 0.09 0.57 � 0.11 < 0:001

two mentioned ensemble classi�ers (items 8 and 10 in
Table 5) result in sensitivity rates of 95.5% and 94.0%
and speci�city rates of 82.9% and 85.1%, respectively.
Results show that TQWT features are capable of
diagnosing respiratory cycles with PA infection.

To demonstrate the e�ectiveness of the proposed
method, respiratory sounds of PA CF patients, which
were recorded one month after treatment, were inves-
tigated. For these respiratory sounds, the probability
of being classi�ed as PA CF was computed by the best
selected feature groups in Table 5. These probabilities
were compared with that of classifying PA CF patients
into PA CF class before treatment. To this end, after
training SVM, the posterior probability of assigning a
sample to a class was obtained using the method in

[34]. After that, the existence of signi�cant di�erences
was investigated between the probabilities of these two
groups (CF patients before and after the treatment of
PA infection) using a two-sample t-test with a P -value
of 0.05. The probabilities for assigning respiratory
sounds to PA CF class before and after treatment are
shown in Table 6 for the best ensemble classi�ers of
Table 5.

As can be seen in Table 6, the probability of
identifying respiratory sounds of PA CF subjects as PA
infection after the treatment decreased signi�cantly by
the proposed method.

Feature/parameter selection and training steps
were done using noise-free signals. The performance of
the proposed method was investigated in the presence
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of noises and artifacts using noisy respiratory sound
signals. Three noisy conditions were examined as
follows:

� Raw noisy signals: respiratory sound signals after
discarding speaking and coughing segments without
applying any additional noise removal technique
(raw noisy signals contaminated with digital stetho-
scope movement noises and cardiac sounds);

� Digital stethoscope movement noises: Raw noisy
signals after cardiac sound e�ect removal;

� Cardiac sound e�ect: Raw noisy signals after remov-
ing digital stethoscope movement noises.

The best features in Table 5 were extracted from
these three noisy signals. Then, the accuracy of PA
infection detection was computed. The results are
shown in Table 7.

As shown in Table 7, the presence of digital
stethoscope movement noises and cardiac sounds re-
duced the accuracy by about 10% in comparison
with noise-removed signals. In noisy conditions, the
accuracy was reduced no more than 14%. The results
show that the proposed features are appropriate for
this study and that the performance of the method is
satisfactory in the presence of noise.

The following are the �nal obtained results:

� High Q-factor features are superior to low Q-factor
features in terms of PA detection accuracy since the
former are selected more than the latter in feature
sets, which contain both types of features and result
in better accuracies;

� Based on the comparison between inspiration and
expiration sound features, none of the two is superior
to the other in terms of PA detection accuracy.
Accuracies for HQ expiration features are better
than those for HQ inspiration features and they are
reversed for LQ features;

� The best groups of features represent a combination
of high Q-factor and low Q-factor features in inspi-
ration and expiration (feature set 7);

� Using ensemble decision increased the average accu-
racy of detecting PA infection. The best result of

detecting PA infection is obtained from combining
the three best feature sets by the ensemble classi�er.
Results indicate that normal CF and PA CF pa-
tients' respiratory sound signals are distinguishable
with an accuracy of 90.3%;

� The probability of classifying respiratory sounds as
PA CF is reduced signi�cantly after the treatment of
PA CF subjects by the proposed groups of features;

� Results show that the performance of the proposed
method is satisfactory in the presence of noises and
artifacts.

4. Discussion

As mentioned above, the diagnosis of PA infection in
the primary stage is essential to initiate the treatment
and reduce the risk of chronic infection. The gold
standard method for detecting PA infection is time
consuming. Therefore, a rapid diagnostic method can
facilitate eradication therapy. For the �rst time, this
research has examined the capability of respiratory
sound to diagnose PA infection in CF patients.

Although there are some studies on the topic
of the relationship between increasing sputum and
respiratory sound samples (as summarized in Table
8), there has been no research on the detection of PA
infection in CF patients using respiratory sounds.

As shown in Table 8, 12 frequency features were
used in [28] to discriminate sputum from non-sputum
respiratory sounds with an accuracy rate of 85%{
97%. In [25], 16 features of respiratory sounds in
the time-frequency domain and 14 features in [27]
derived from discrete wavelet transform of respiratory
sounds achieved accuracies of 83.5% and 84.53% in
discriminating sputum from non-sputum states, respec-
tively. In another study, 46 features derived from the
EMD method achieved an accuracy rate of 92.02%
in classifying sputum from non-sputum states. In
this study, TQWT analysis was used. The results of
TQWT analysis are consistent with previous studies
that revealed the e�ectiveness of time-frequency fea-
tures in detecting sputum increase. In comparison
with other investigations [25{28], the proposed method
achieved an acceptable accuracy (90.3%) with the

Table 7. Results of the proposed method in the presence of noises and artifacts.

Without noise Raw noisy signal
Digital

stethoscope
movement noises

Cardiac sound
e�ect

Spec.
N

Spec.
N

Acc.
Spec.

N
Spec.

N
Acc.

Spec.
N

Sens.
PA

Acc.
Spec.

N
Sens.
PA

Acc.

Feature sets 1, 6, 7 82.9 70.2 90.3 68.1 82.1 76.3 70.2 86.5 79.8 72.3 88.0 81.5

Feature sets 5, 6, 7 85.1 74.4 90.3 63.8 88.0 78.1 74.4 85.1 80.7 74.4 86.5 81.5
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Table 8. Some related studies investigating respiratory sounds to diagnose sputum condition.

Study Number of participants Features # Features Accuracy

TQWT features

(Proposed method)

25 patients, 114 respiratory sound

cycles and 11 patients after treatment

(22 respiratory sound cycles)

Features from TQWT analysis of

respiratory sound signals
15 90.2%

Center of gravity

features [28]

3 patients and 128 respiratory

sound samples

Center of gravity in a

frequency domain
12 85%{97%

Time-frequency image

features [25]

12 patients and 272 respiratory

sound samples

Features from time frequency

distribution of respiratory sound

signals

16 83.5%.

Discrete wavelet

transform features [27]
595 sound samples

Features extracted from

discrete wavelet transform
14 84.53%

EMD features [26] 14 patients and 803 sound samples
Features based upon Empirical

mode decomposition
46 92.02%

smaller number of features (15 features). Furthermore,
the proposed method was examined after the infection
treatment and it was e�ective in the investigation of PA
infection treatment. Two methods (EMD features and
center of gravity in frequency domain features), which
had better accuracies than the other methods, were
selected from Table 8. These features were extracted
from recorded respiratory sounds of CF patients. The
numbers of EMD features and center of gravity features
are 46 and 12. GA feature selection was applied
to these two feature sets to select the best features
of each feature set. Results of these two methods
were compared with that of the proposed method.
TQWT features resulted in better accuracies (7th row
in Table 4: sensitivity: 87.2%, speci�city: 88.0%,
and accuracy: 87.7%) than EMD (sensitivity: 79.1%,
speci�city: 72.3%, and accuracy: 76.3%) and center of
gravity features (sensitivity: 55.2%, speci�city: 70.2%,
and accuracy: 61.4%). Results show that di�erences
between spectral properties of lung sounds in PA CF
and normal CF are emphasized when the pulmonary
sounds are decomposed with TQWT �lters. This e�ect
may result from better localization of small vibrations
caused by increasing sputum.

Since infection increases mucus and thickens air-
ways, it was expected that high Q-factor components
could result in better accuracies than low Q-factor
components in di�erentiating between Normal CF and
PA CF respiratory sound cycles. This is due to their
higher resolution than low Q-factor. Consistently,
results demonstrated the expectation and the best
accuracies were obtained from features of high Q-factor
components. Features extracted from both high Q-
factor components of inspiration and expiration sounds
achieved the best accuracy. Moreover, the ensemble
classi�er increased the accuracy.

The results of this study demonstrated that the
respiratory sounds of CF patients were a�ected by
PA infection. Furthermore, the proposed features,
extracted from the TQWT analysis of respiratory
sounds, could detect the changes. Although the
proposed approach was able to detect PA infection in
CF patients, the present study was limited by its small
number of participants. Clinical use of this method
needs further research with a larger number of patients
involving other infections in CF patients. The aim of
this research was to �nd whether PA infection had an
e�ect on lung sounds of CF patients which could be
identi�ed based on the lung sound analysis. Recorded
respiratory sound samples had good quality. Given
the presence of some noises in the recorded sound
signals and noise removal in the preprocessing step,
the e�ects of di�erent noises were investigated in this
study. Results show that the proposed method can
detect PA infection, even in the presence of noise.
In the future, results of this project will be used to
design an automatic system to detect PA infection in
CF patients for the clinical use. Therefore, all the
preprocessing steps for respiratory sound preparation
will be implemented as a package to be used for
all respiratory sound signals, making this work fully
reproducible.

In future work, the proposed method can be
used for monitoring the treatment in CF patients by
recording respiratory sounds in di�erent time intervals
after initiating the treatment. Subsequently, physicians
can follow up a patient's status using the proposed
approach. As another work, the e�ect of other infec-
tions such as Staphylococcus aureus can be investigated
on respiratory sound. Additionally, the results of the
proposed method of detecting PA infection were only
validated for CF patients. One suggestion is to apply
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the proposed method to respiratory sound signals of
other lung diseases such as other lung infections in non-
CF patients. Structural airway alterations in obstruc-
tive disease (such as chronic obstructive pulmonary
disease) may be di�erent from increasing mucus and
sputum in CF patients. Di�erent structural changes in
airways cause di�erent changes in respiratory sounds.
Therefore, the e�ectiveness of the proposed features
can be investigated in the detection of these changes
and discrimination of respiratory disease with obstruc-
tive airway structures from those related to mucus
airway structures.

5. Conclusion

This study proposed an innovative method to detect
PA infection in respiratory sounds. For the �rst time,
some lung sound features were introduced for the
detection of Pseudomonas Aeruginosa (PA) infection in
Cystic Fibrosis (CF) patients. The proposed TQWT-
related features successfully discriminated respiratory
sound signals of PA CF patients from normal CF
ones. The �ndings also revealed that the probability
of classifying respiratory sound signals of CF patients
as PA CF was reduced after the treatment of PA
infection. The proposed method utilized lung sound,
which is a fast, low-priced, and accessible procedure.
Furthermore, it can be helpful in deciding on both
preventive and therapeutic strategies.
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