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Abstract. Due to the importance of routing order pickers, there has been extensive
research in the area of routing to warehouses. However, there are still some prominent
factors that should receive more attention, as they may lead to unsatisfactory services
and considerable operational costs if ignored. In real-world applications, warehouse
con�guration, width of aisle, and controlling the vehicle congestion in the aisles greatly
inuence the e�ciency of the routing process. Therefore, this paper proposes a mixed-
integer programming model, which aims to minimize maximum delivery time by �nding
the shortest pickup and delivery routes for all goods with all vehicles. Since the problem
is NP-hard, a Simulated Annealing (SA) metaheuristic approach is designed to solve the
model with large-size problems. This research contributes to the picker routing literature
by considering dynamic congestion, narrow and wide aisles, and pickup times and proposing
a metaheuristic algorithm. The validity and e�ciency of our proposed model are proven
by solving some various generated benchmark problems. In summary, the developed route
planning mathematical model works e�ectively for any two-dimensional rectangular layout
and the collision prevention constraints are incorporated in the mathematical model.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Warehouses play an important role in supply chain
management systems. Because of the rapid growth
in market competition, supply chains require better
Material Handling Systems (MHSs) that can keep
up with the everyday growing demands. Receiving,
storage, order picking, sorting, packing, and delivery
of goods are the main activities done in a warehouse;
but what connects all these activities together is the
routing activity. The routing activity takes about half
of the typical distribution time of an order picker [1,2].
Vehicle movement or travel is a loss and does not
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add value. The travel time is an increasing function
of travel distance [3]. Therefore, travel distance is
often considered as the main objective in the warehouse
optimization models. The warehouse routing problem
deals with the sequence of items on the pick list and
determines which vehicle should pick and deliver which
item. The warehouse routing problem is a particular
case of the Travelling Salesman Problem (TSP) known
as Steiner Travelling Salesman Problem (STSP). The
main di�erence between the two problems is that not
all the nodes (pick locations) have to be visited in a
single tour in STSP and that some nodes can be visited
more than once [4]. The STSP problem is generally
not solvable in polynomial time (unless P = NP ).
Therefore, the application of heuristic or metaheuristic
approaches is required to solve the routing problem in
a more reasonable time.

The routing process is signi�cantly inuenced by
the storage policy. There are mainly �ve routine
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storage policies in warehouses: random storage, class-
based storage, dedicated storage, closest open location
storage, and full turnover storage [4]. All the storage
policies have their own advantages and disadvantages
regarding the routing problem, and based on the
nature of the inventory control system and warehouse
con�guration, each policy can be adopted to store items
in racks [5].

The order picking process consists of classifying
and scheduling orders so that the operators can pick all
the demanded items as quick and convenient as possible
subject to resource constraints such as labor and
machines (see [6]). It is important to know whether the
picking activity is done by machines or humans. The
majority of warehouses apply picker-to-part systems,
where the order picker (humans) walks or drives along
the aisles to pick items [7]. Order picking systems
are mainly divided into three groups: single-order
picking, zone picking, and batch picking [8]. When
orders are large, each order can be picked individually.
However, it is possible to reduce travel times by picking
a set of orders in a single tour when orders are small.
This way of picking orders is known as batch picking.
Gademann and Van de Velde [9] demonstrated that the
order-batching problem with the objective function of
minimizing the total travel time was NP-hard when
the number of orders per batch was greater than 2.
Many studies have focused on developing heuristic
methods to solve the order-batching problem. As a
result, two popular order-batching heuristics have been
proposed: seed algorithm and saving algorithm. Chen
and Wu [10] developed a new model for proximity
batching based on binary integer programming to
maximize the total association of batches using the
data mining approach. Another type of order batching
is the time-window order batching where the orders
arriving during the same time interval (time window)
are grouped as a batch. Le-Duc and De Koster [11]
considered variable time-window order batching with
stochastic order arrivals for the manual order picking.
The results from the simulation experience represented
high accuracy and simplicity in practice. In the zone
picking method, the order picking area can be divided
into several zones where each order picker is assigned
to a speci�ed zone. Little literature on this area is
available. Parikh [12] addressed two key issues in the
order-picking system design: selection between batch
and zone order picking strategy, and con�guration of
storage system. Peterson [13] showed that the average
travel distance within each zone depended on the
number of aisles per zone, aisle length, and number of
items on the pick list. Several heuristic algorithms for
assigning Stock Keeping Units (SKUs) to zones can be
found in the studies of Jane [14] and Jewkes et al. [15].

Due to the complexity of warehouse routing prob-
lem and the lack of optimal solutions in some special

cases, many heuristics have been proposed to solve the
problem [9]. S-shape heuristic, return mode, midpoint
method, and largest gap method are among the most
classical heuristics proposed in the literature for single-
block warehouses (see [16]). Petersen [5] performed a
number of numerical experiments to compare the rout-
ing methods in single-block warehouses. Roodbergen
and De Koster [17] compared the heuristics with the
optimal solution for 80 warehouse cases including the
aisles varying between 7 and 15, cross aisles varying
between 2 and 11, and the pick-list size between 10
and 30. The results represented that a combination of
all the classical heuristics would give the best solutions
for about 93% of the warehouses.

There are few researchers who have focused on
the warehouse routing problem while considering the
vehicle congestion, and those who have considered
the congestion during the routing process assume that
all the aisles in the warehouse have equal widths to
simplify their models. Congestion is known as a
situation in a warehouse where vehicles (order pickers)
cannot move by their de�ned speed or as the movement
of vehicles at the same time, which will lead to collision.
Therefore, the vehicles should wait for other vehicles
to move away or should choose di�erent routes when
they happen to face each other. The major factors
that cause congestion in a warehouse are intersections
(where aisles meet cross aisles), number of vehicles
using the same aisle in the same time interval, pick-
up and drop-o� operations, location and density of
items on the pick list, and aisle width [18]. Among
the mentioned factors, the aisle width has a prominent
inuence on the congested warehouses, especially in
narrow aisles when two or more vehicles attempt to
pass at the same time and one has to move back to
allow the other one to pass.

In general, congestion cannot be predicted in
advance. Although researchers have determined dif-
ferent criteria to predict the congestion so that it
can be reduced as much as possible in practice, the
formal studies in this area are still limited. The
following review includes the formal discussions of
tra�c congestion in the manufacturing facilities. Smith
and Li [19] addressed queuing the congestion and
modeled the material handling aisle network as a single
server focusing on minimizing the total number of
customers. Chiang et al. [20] pioneered developing
the Quadratic Assignment Problem (QAP) to model
workow interference. It was only included between
the pairs of ow. The unit interference cost of having
cross ow was quanti�ed as 1 and the opposing ow was
quanti�ed by the parameter !. They later extended
their work by adding distance objective to the work
ow interference objective (see [21]). Herrmann et
al. [22] studied the path design problem in material
handling as a �xed-charge capacitated network design
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model. The model limited the ow through a link to a
bound to help reduce the congestion. Bakkalbasi [23]
quanti�ed the congestion e�ect as a number called con-
gestion or tra�c factor. He argued that the blocking
time caused by congestion should be considered when
determining the eet size. Vosniakos and Davies [24]
introduced an index that was the percentage of the
time the track segments were blocked because of vehicle
obstruction. The index de�ned the network congestion.
Kim and Tanchoco [25] also measured the congestion
by de�ning an index as the actual travel time divided
by the shortest travel time if there was no conges-
tion. Following their idea, Beamon [26] developed a
method for measuring the congestion in MHS. Zhang
et al. [18] discussed workow congestion in MHS and
modeled the rerouting problem as a multi-commodity
ow problem. Also, they developed a simulation model
to explicitly consider various workow interruptions.
Pan and Wu [27] studied an approximation method
based on the queuing network to �nd the throughput
time and waiting time of an order picking system
with multiple pickers and aisle congestions. Hong
at al. [28] developed a model by integrating the
batch sequence selection with the routing and batching
decisions to control the picker blocking. Kim and
Lee [29] considered a dynamic inbound ordering and
shipment scheduling problem for multiple products
that were transported from a supplier to a warehouse
by common freight containers. Gokhan Ozden [30]
developed a warehouse layout optimization system that
calculated the routing distances and performed heuris-
tic optimization over a comprehensive set of layout
design parameters. For multi-block layouts, Scholz and
Wascher [31] integrated di�erent routing algorithms
into an iterated local search approach for batching
to demonstrate the bene�ts gained from solving the
order batching and picker routing problems in a more
integrated way. Chen et al. [32] developed a routing
algorithm to address the newly observed limitations
imposed by ultra-narrow aisles and access restriction.
Hojaghania et al. [33] proposed a novel MINLP for on-
line batching to improve the performance of warehouse,
which in turn resulted in reducing the response time
and idle time. The mentioned model was solved using
two algorithms of bee colony and ant colony. Tajima
et al. [34] modeled an order picking operation in which
two or more pickers were operating simultaneously.
In this research, the behavior of the pickers was
modeled using multi-agent systems. Zuniga et al. [35]
proposed a model that improved the order picking by
making simultaneous decisions on the storage location
assignment and the picker-routing problem considering
the precedence constraints based on the product. Cano
et al. [36] formulated the STSP models considering
multiple pickers, heterogeneous picking vehicles, mul-
tiple objectives, and due windows. As more companies

seek cost saving in their warehouses, the problem of
routing order pickers in a warehouse becomes a bigger
concern for the whole supply chain management �eld
and developing more e�cient models will be a forward
step towards better customer satisfaction. So far, many
papers have studied order picking processes to some
extent, but there is still a gap between practice and
academic research.

There are very few papers that include aisle
con�guration and vehicle congestion, simultaneously,
within the warehouse routing problem. Pai's work [37]
is one of the very good attempts to propose models
for such problems and inspired us to write this paper
and develop a novel model by solving the approaches
for routing order pickers considering the dynamic form
(time-integrated) of congestion, aisle width, and pick
up/delivery time of goods. In spite of the fact that
the Pai's work provided the primary motivation, it
needed some major modi�cations to make the whole
model more practicable. The motivation for this work
comes from an insight into two considerations. The
primary motivation is the lack of a comprehensive
methodology for collision prevention in warehouse,
while the secondary motivation is ignoring narrow and
wide aisles in the route planning models. To plan
picker routing in the practical sizes, we also designed
a Simulated Annealing (SA) process and adjusted it
to the speci�c features of the problem. Finally, we
made a comparison and performed bene�t analysis
on the proposed algorithm. In summary, this paper
contributes to the picker routing literature in the
following respects: (a) A mixed-integer programming
model of the problem is developed considering dynamic
congestion, narrow and wide aisles, and pickup times;
(b) An SA algorithm is proposed to solve the problem;
and (c) A validation approach is proposed for the
problem.

The rest of the paper is organized as follows: In
section 2, the model formulation is presented. Section 3
discusses the solving approaches used for the model.
In Section 4, the computational results are presented
and analyzed. Section 5 discusses the conclusions and
future research for the proposed model.

2. Modeling

The following assumptions are made to develop the
model proposed for the problem:

� The warehouse con�guration is a two-dimensional
rectangle and the assumed warehouse dimension
is small (like the manufacturing material handling
problem);

� Each rack within the warehouse can be used to store
only one item;
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� The rack locations and the number of locations are
�xed and identical;

� There are a �xed number of both narrow and wide
aisles in the warehouse;

� The number of material handling vehicles (pickers)
is known and �xed;

� All vehicles are of the same type and are capable of
picking up and dropping o� all items;

� All vehicles can move in both directions in all aisles
and they cannot move in cater-corner directions in
wide aisles;

� The information on requested demands, number of
items on the pick list, and location of the items is
known in advance;

� The capacity of depot (input/output point) is as-
sumed to be unlimited;

� The waiting time for picking orders is considered as
one time unit for all items on the pick list;

� The queuing process is not considered inside the
model;

� In the mathematical model, a discrete time horizon
is considered.

2.1. Model formulation
In this section, the model formulation is presented.
Before that, the set of indices, parameters, and decision
variables used in the model are described.

Indices

i Index of grid set (a grid network
represents the warehouse) (i = 1; :::; I)

j Index of vehicle set (j = 1; :::; J)
t Index of time sets (t = 1; :::; T )
Si If grid i (i is an element of set Si)

belongs to an aisle, it is the set of
grids to which the vehicles can move in
the next time instant.
If grid i belongs to a rack, it is the
grid adjacent to the rack grid where
the vehicle should go and pause for the
de�ned pickup waiting time in order to
pick up the target item in grid i

O Set of rack grids in which the target
items to be picked exist

Dep Delivery grid for the picked-up items
(subset of set I)

Parameters

M A very large positive number
" A very small positive number

cj Capacity of vehicle j
LT Waiting time needed to pick up an

item

The �nal values ofM and " are chosen by the trial-
and-error method during the coding process. The val-
ues are o�ered based on the results from similar works
and the time required to solve the problem as well.

Decision variables

Pijt = 1 If vehicle j meets grid i at time t;
otherwise, Pijt = 0

Lijt = 1 If vehicle j picks up an item at grid i
at time t; otherwise, Lijt = 0

Dijt = 1 If vehicle j drops o� an item picked
up at grid i in the depot at time t;
otherwise, Dijt = 0

Fijt Delivery time of item at grid i to the
depot by vehicle j at time t

f1
ijt Pickup time of item at grid i by vehicle

j at time t

The model is formulated as follows:

Objective: Minimize W

W �
JX
j=1

TX
t=1

fijt 8i 2 O; (1)

fijt �MDijt 8i 2 O; 8j; 8t; (2)

fijt � t 8i 2 O; 8j; 8t; (3)

fijt � t�M(1�Dijt) 8i 2 O; 8j; 8t; (4)

f1
ijt �MLijt 8i 2 O; 8j; 8t; (5)

f1
ijt � t 8i 2 O; 8j; 8t; (6)

f1
ijt � t�M(1� L

ijt
) 8i 2 O; 8j; 8t; (7)

TX
t=1

fijt � " �
TX
t=1

f1
ijt 8i 2 O; 8j; 8t; (8)

JX
j=1

Pijt � 1 8i; 8t; (9)

Pkjt + Pilt + Pij(t+1) + Pkl(t+1) � 3

8i; 8j; 8t; k 2 Si; l 2 J; l 6= j; (10)X
l2Si

JX
j=1

Pljt � 3 8i; 8t; (11)
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X
k2Si

Pkj(t+1) � Pijt � 0 8i; 8j; 8t; (12)

Lijt �
IX

k2Si
Pkjt 8i 2 O; 8j; 8t; (13)

Dijt � P(Dep)jt 8i 2 O; 8j; 8t; (14)

IX
i=1

Pijt = 1 8j; 8t; (15)

X
i2O

tX
k=1

Dijk + Cj �X
i2O

tX
k=1

Lijk8j; 8t; (16)

JX
j=1

TX
t=1

Lijt = 1 i 2 O; (17)

JX
j=1

TX
t=1

Dijt = 1 i 2 O; (18)

LTX
b=0

Pkj(t+b) � L�kjt(LT + 1) 8k 2 O; 8j; 8t; (19)

Pijt; Lijt; Dijt = 0 or 1; fijt; f1
ijt � 0: (20)

� Constraint related to the objective function.
Constraint (1) ensures the minimization of maxi-
mum delivery times of all goods. In other words,
the objective function is adopted with the following
formulation:

Minimize W = max
i2O

� JX
t=1

TX
t=1

fijt
�
:

� Constraints related to pickup and delivery
time. Constraints (2), (3), and (4) together ensure
that fijt = t if item i picked up by vehicle j is
delivered to the depot at time t; otherwise, fijt = 0.
Constraints (5), (6), and (7) also in combination
ensure that f1ijt = t if item i is picked up by vehicle
j at time t; otherwise, f1ijt = 0. Constraint (8)
states that the delivered item is de�nitely picked up
in advance by the same vehicle. In equation (8), to
change the greater sign into an equal or greater sign,
parameter " is subtracted.

� Constraints related to vehicles (congestion
control and collision avoidance). Constraint (9)
states that each grid is occupied by up to one vehicle
at any time. Constraint (10) requires that if two
vehicles occupy adjacent grids at any time instant,
they will not switch their positions in the next time
instant. Constraint (11) restricts the number of ad-
jacent vehicles in wide aisles to 3 so that the collision
risk of vehicles is limited as much as possible.

� Constraint related to movement feasibility.
Constraint (12) represents the feasibility and
continuity of the problem. In each successive time
instant, a vehicle should either stay at its current
position or move to the next feasible adjacent grid.

� Constraints related to vehicle positioning.
Constraint (13) ensures that when item i is picked
up by vehicle j, vehicle j is de�nitely in a grid in
the aisle adjacent to the grid in which the item
should be picked. Constraint (14) ensures the
availability of vehicle j in the depot when dropping
o� item i. Constraint (15) states that all grids are
occupied by up to one vehicle at any time instant.

� Constraint related to vehicle capacity. Con-
straint (16) requires that the number of items picked
up by any vehicle should not violate its capacity.

� Constraints related to pickup and delivery.
Constraint (17) states that an item is picked
up exactly once by one vehicle. Constraint (18)
states that a previously picked up item is dropped
o� exactly once in the depot. Constraint (19)
represents the waiting time for picking up an item.
It states that the vehicle will stay for a de�ned
pickup waiting time at the grid adjacent to the grid
whose item should be picked.

Finally, Constraint (20) represents the domain
of the decision variables.

2.2. Graphical representation and sample
generation

Due to unavailability of benchmark problems in the
literature, some sample problems are generated to
include the diversity of samples. Figure 1 depicts the
con�guration of a sample problem.

In Figure 1, the warehouse is divided into 36 grids
with each grid representing aisles (in light blue), racks
(in dark blue), or depot (in red). There are one wide
aisle and one narrow aisle. In the narrow aisle, the
order picker vehicle is able to retrieve items from both
sides of the aisle without changing position, but in the
wide aisle, the vehicle needs to move (physically) from
one side to the other to pick items on both sides of
the aisle. Also, there is a cross aisle connecting the
wide and narrow aisles together. There are three other
columns consisting of the racks into which the items
are stored. The vehicles are not supposed to move to
the grids named as racks and can only move in the
grids named as aisle and depot grids. To pick up an
item in a rack, a vehicle should move to its adjacent
grid (see Si). After a vehicle reaches the desirable
grid to pick up an item, it should wait as long as its
waiting time. For example, if the vehicle in grid 12
wants to pick up the item in grid 3, it should move to
grid 10 and wait as long as the determined waiting time
needed to pick up the item. It should then move to grid
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Figure 1. Representation of the sample problem.

31 (depot) and deliver the picked item. Furthermore,
this paper assumes that each vehicle has to drop o�
the �rst item it picks up and then continue to go for
picking up another item. In other words, the capacity
of vehicles is considered as one item for each vehicle in
the model so that the movement of the vehicles in the
warehouse is maximized. This means that one vehicle
cannot pick up all the items on its way to the depot
without letting other vehicles to move for obtaining
the items on the pick list. The intensi�cation of vehicle
movements increases the chance of blocking or colliding
of the vehicles, and the dynamic vehicle movement is
required to demonstrate that our proposed model is
undoubtedly a collision-free model.

In the next section, the computational results
derived from running the model are given by some
sample problems.

2.3. Model experiments
To evaluate the model, some experimental problems
were tested on the model. Since there were no
benchmark problems in the literature, some random
problems were generated. For generating the samples,
we tried to have di�erent warehouse dimensions, dif-
ferent numbers of aisles and vehicles, di�erent types of
aisles, and di�erent numbers of items on the pick list.
The proposed model was solved using CPLEX solver
by GAMS23.8.2 software on a computer equipped with
Core i3 3.1 GHz CPU and 4 GB RAM running a
Windows 7 operating system. The results are shown
in Table 1.

Figure 2. Representation of the warehouse con�guration
for problems 7, 8, and 9.

In all the generated sample problems, the width
of the wide aisles was twice that of the narrow aisles.
Therefore, only one vehicle could thoroughly pass along
a narrow aisle if another vehicle was coming in the
opposite direction; but at least two vehicles could
pass along each other in wide aisles. In most of
the problems, the initial position of the vehicle was
considered in the depot when there was one vehicle,
and for more than one vehicle, the grids next to the
depot were occupied with other vehicles, respectively,
for the initial positions of other vehicles. Empirically,
the maximum allowed time (upper bound for the
algorithm or Tmax) was also considered as twice the grid
size. Figure 2 presents the warehouse con�guration of
generated problems 7, 8, and 9.

As is seen in the results, there is no certain
way to identify the parameters inuencing the problem
complexity and solution time. However, what can be
found from the results is that the solution time is
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Table 1. Model results for sample problems (exact approach).

Problem characteristics Exact results

No. Warehouse
dimension

Grid
size

No. of
vehicles

No. of
items to

be picked

No. of
rack

columns

No. of
narrow
aisles

No. of
cross
aisles

Grid no. of
items in

the pick list

Objective
value

Solution
time
(sec.)

1 3*3 9 1 1 1 0 1 1 7 0.106
2 3*3 9 1 2 1 0 1 1-4 12 0.236
3 3*3 9 1 3 1 0 1 1-4-7 15 0.375
4 5*4 20 1 3 3 2 1 3-10-11 26 6.57
5 5*4 20 2 3 3 2 1 3-10-11 15 13.49
6 5*4 20 3 3 3 2 1 3-10-11 13 209.1
7 6*4 24 1 3 3 1 1 4-12-13 31 19.27
8 6*4 24 2 3 3 1 1 4-12-13 15 40.96
9 6*4 24 3 3 1 1 1 4-12-13 13 213.64
10 6*6 36 1 3 3 3 2 11-15-19 39 186.37
11 6*6 36 2 3 3 3 2 11-15-19 20 124.51
12 6*6 36 2 3 3 3 2 11-15-19 22 1178.38
13 6*6 36 3 3 3 3 2 11-15-19 15 42.21
14 6*6 36 4 2 3 3 2 11-15 15 39.13
15 8*6 48 1 1 4 4 2 9 21 0.903
16 8*6 48 1 2 4 4 2 9-21 36 11.79
17 8*6 48 1 3 4 4 2 21-31-35 27 49.75
18 8*6 48 1 3 4 4 2 9-21-31 37 228.447
19 8*6 48 1 3 4 4 2 9-21-35 43 583.21
20 8*6 48 1 4 4 4 2 9-21-31-35 47 17124

a factor dependent on grid size, number of vehicles,
initial position of vehicles (e.g., problems 11 and 12),
and number and location of items on the pick list. The
only certain factor that de�nitely increases the solution
time is the problem size. As the time required to solve
instances of the problem grows in a non-polynomial
way with the size of the instances, the problem is
called NP-hard. It requires heuristic and metaheuristic
approaches for solving the proposed model to gain
good solutions in a reasonable amount of time. A
metaheuristic approach is suggested as a solution in the
next section. All the generated samples solved by the
exact algorithm in this section will be solved by the
proposed metaheuristic approach in the next section
based on the SA and the results will be discussed and
analyzed.

3. Proposed solution method

Although the exact methods are capable of solving
problem instances of small and medium sizes, in large-
size problems, the heuristic or metaheuristic solving
approach is required for creating good solutions with
respect to run time. SA algorithm, as a solution
approach in combinatorial optimization, is suitable to
avoid local optimum solutions by accepting the worse
solutions, ensuring that the solutions obtained are
not stuck in local optima. Furthermore, SA is used
to search the solution space in an e�ective manner.
Simplicity of implementation, good adaptability of the

algorithm to our model, and the way to represent
solution structure were among the most important
reasons that we chose the SA algorithm among all the
available metaheuristics in the literature. Furthermore,
SA is a local search algorithm and can work with the
models with many constraints, which is a potential
for our model. Metropolis et al. [38] proposed an
algorithm for analyzing the changes in the temperature
of solid materials. Later, Kirkpatrick et al. [39] and
Cerny [40] used the Metropolis's idea of cooling the
materials gradually for minimizing the objective (cost)
by applying the simulation approach. SA is a robust
general technique, which is widely and successfully
used to solve NP-hard problems [41]. In the following
subsections, we will show how this process (proposed
SA) works.

3.1. SA algorithm process
The following steps are needed to reach the �nal
solutions in the SA algorithm:

� Generation of the initial solution;
� Updating temperature;
� Determining length of Markov chain (SA is modeled

as a sequence of solutions);
� Generating neighborhood solutions;
� Fitness evaluation and assigning penalties to infea-

sible solutions;
� Stopping rule to reach the �nal solution.
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The overall structure of coding SA is described below:

� Initial temperature (T0) is selected;

� Solution S0 is chosen randomly from the solution
space as the initial solution;

� � = F (S1)�F (S0) is calculated where F (S1) is the
new solution and F (S0) is the initial solution;

� If � < 0, then S1 = S0;

� If � � 0, then 0 < x < 1 is randomly generated
and if x < exp(��

b:T ) where x is a random number,
b is the Boltzmann constant and T is the current
temperature;

� The counter number of iterations in the current
temperature is added by one number;

� If the counter number does not exceed Markov chain
length, the previous steps are repeated; otherwise,
the next step is taken;

� Temperature is updated by Tk+1 = �Tk. Parameter
� is called the cooling rate;

� The best obtained solution is considered as S0.

3.2. Representation of solution
An e�ective coding process has a signi�cant e�ect on
the performance of the SA algorithm. We employed a
multi-row structure to represent the initial solution and
the �nal solution obtained by the algorithm. The �rst J
rows represent the moving routes of all vehicles and the
J+1th row represents the assignment of vehicles to the
target items of the pick list. Take problem 8 depicted
schematically in Figure 2 as a sample to elaborate on
the representation of routing and picking solutions. In
this problem, there are two vehicles and three items on
the pick list. The initial locations of vehicles are grids
24 and 23. As shown in Figure 3, the �rst two rows
depict the initial routes of �rst and second vehicles,
respectively. The third row states that the �rst vehicle
(shown by 1001) should pick up one target item located
in grid 13. As a result, it should move to grid 14 that is
the grid adjacent to grid 13. The third row also states
that the second vehicle (shown by 1002) should pick
up two target items on grids 4 and 12. Therefore, it
should move to grids 5 and 11, respectively, to pick up
each one. All of the other cells in the third row are
�lled by zero. The number of integers in each row is
assumed to be as much as parameter Tmax in the model,
which guarantees that the �nal solution does not exceed
the upper bound considered for each problem in the

model. The �nal solution of the algorithm has the same
structure to the initial solution shown in Figure 3.

Set Si should also be de�ned for all grids so that
warehouse con�guration (aisles, racks, and depot) is
de�ned in the C++ language, because the constraints
are very dependent on the warehouse con�guration.
Set Si is de�ned by a matrix having six columns for
all problems, where the number of rows is equal to
the problem size. Each row represents a grid of its
own rank. The last column in each row represents
the maximum number of allowed moves in the grid.
When all the allowed moves for the particular grid
are �lled, the rest of the cells are �lled with zero.
Figure 4 presents the set Si for problem 8 in which
the initial routing solution was discussed previously in
this section. The problem size in this problem is 24.
Therefore, the number of rows is 24. Each row shows
its relative grid number in the warehouse layout. For
instance, the ninth row highlighted in orange shows
grid 9 and the allowed moves from the grid. As can
be seen from Figure 2, the vehicle can move up to four
allowed directions from the grid and is allowed to go to
grid 3, 8, or 15 or stay in its current grid, namely grid 9.
The maximum allowed moves from the grid are shown
in the sixth column and the locations of the allowed
moves are shown in the �rst columns and the rest are
�lled with zero. The rows whose total cells are �lled
with zero represent the racks with no items to be picked
from, and the rows whose sixth columns are �lled with
number 1 are those where the vehicle will pick up the
item on its adjacent grid when reaching the grid.

3.3. Tuning the SA parameters
The performance of the SA algorithm is very sensitive
to parameter setting. Therefore, it is very necessary
to tune the parameters to their best values. We
suggested values 100, 200, and 400 for the initial
temperature and values 0.001, 0.01, and 0.1 for cooling
temperature. For cooling rate, the values 0.99, 0.98,
and 0.97 were evaluated. For the number of iterations
at each temperature, the values 3000 n, 5000 n, and
700 n were used with n representing the grid size.

In order to �nd the most suitable parameters for
our problem, a subset of randomly generated problems
was chosen and the following process was undergone:

� To �nd the best parameter for the initial tempera-
ture, all other parameters are set to their minimum
value and the initial temperature values 100, 200,
and 400 are evaluated for the problem;

� Then, the best value of initial temperature that

Figure 3. Representation of the initial solution to problem #8.
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Figure 4. Representation of the warehouse grid layout (set Si) for problem #8 in C++ code.

results in better solutions is �xed for the rest of the
parameter evaluation;

� Next, the same process is done for the cooling
temperature, while the initial temperature value is
set from the previous step and other parameters are
again set to their minimum levels;

� The best value of cooling temperature that results
in better solutions is set as the cooling parameter;

� This continues until all parameters are set.

After evaluating various combinations of the parame-
ters for the set of problems, the value of 200 for the
initial temperature, 0.001 for the cooling temperature,
0.98 as the cooling rate, and 5000 n as the number
of iterations in each temperature were set for the
parameters.

3.4. Neighborhood structure generation
In order to �nd better solutions and make sure that
the algorithm searches the solution space as much as
possible so that it does not skip possible good solutions,
two di�erent neighborhood structures are proposed:
neighborhood structure for vehicle routing and swap-
ping neighborhood structure. Before describing each
structure, it should be noted that both structures pre-
suppose that the routing solutions for each vehicle
should be collision-free. This means that the data in
each column should never be the same at any time
instant. It is also noted that each vehicle can carry
only one item at a time, which means that one vehicle
has to deliver the �rst picked up item before being able
to pick up another target.

3.4.1. Neighborhood structure for routing
This structure helps us improve the vehicle routing
solution. It aims to �nd the shortest routes of picking
up and delivering the goods for vehicles. The structure
works as follows:

Step 1: A vehicle is chosen randomly;
Step 2: One of the grids the vehicle passes in Step 1
is chosen;
Step 3: A new random route is generated from the
grid.

Figure 5 shows how the neighborhood structure works
for problem #8. There are two vehicles in this problem
(two rows) and three items to be picked (grids 14,
11, and 5 in the third row). The upper �gure is a
routing solution for the problem stating that the �rst
vehicle should pick up and deliver one target and the
second one has two targets to pick up and deliver. As
mentioned above, in this problem, the second vehicle is
chosen randomly and grid 24 is chosen randomly in its
initial routing. As represented in the �gure below, a
new routing structure is then generated from the grid.

3.4.2. Swapping neighborhood structure
This structure aims to change the assignment of goods
among vehicles. Due to the initial location of any
vehicle at any time instance, it is important to change
the assignment of goods among vehicles. This helps
�nd better solutions by searching all kinds of solution
alternatives for assigning goods to vehicles, because at
any time instant, the vehicles have di�erent distances
from di�erent goods. This structure works as follows:



3464 A. Eydi et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 3455{3469

Figure 5. Neighborhood structure generation for problem #8.

Figure 6. Swapping structure generation for problem #8.

Step 1: A random number equal to or greater than 1
and equal to or smaller than the summation of goods
and vehicles is chosen. The chosen number is equal
to i (1 � i � number of vehicles + number of target
items);

Step 2: Another random number is chosen by the
same rule as step 1. The chosen number is equal to
j (1 � j � number of vehicles + number of target
items);

Step 3: The numbers in grids i and j are swapped;

Step 4: This continues until all the i = j cases are
produced.

Figure 6 presents this structure for problem #8. There
are two vehicles and three target items in this problem.
Two numbers are produced between 1 and 2+3 and
are named as i and j, respectively. In this problem,
i = 24 and j = 4. Swapping grids 2 and 4 in the
third row change the assignment of items 14 and 11 to
di�erent vehicles. Totally, this structure either changes
the assignment of two items with each other or changes
the assignment of vehicles with items. In general, no
possible assignment is ignored by this structure.

3.5. Initial solution generation
Like other metaheuristics, the SA also needs an initial
solution in its initial temperature and the more accu-
rate the solution, the faster the algorithm in �nding
better solutions.

Step 1: One of the target items on the pick list is
selected randomly;

Step 2: One of the vehicles is selected randomly and
assigned to picking up the item chosen in Step 1;

Step 3: A feasible routing solution is made based on
the set Si and the location of other vehicles using the
greedy approach;

Step 4: After reaching the desired grid to pick up
the item, the vehicle is paused as long as the de�ned
waiting time in order to pick up the target item;

Step 5: Another feasible routing solution is made to
the depot for the vehicle based on the set Si and the
location of other vehicles using the greedy approach;

Step 6: The above procedure is repeated for the next
item on the pick list until all items are delivered to
the depot.

3.6. Fitness function evaluation
The �tness function objective of the proposed SA
algorithm in the model is to minimize the maximum
delivery time of all goods for all vehicles. In this paper,
in order to avoid infeasible solutions, some penalties are
included in the �tness function of the SA algorithm.
The penalties used in the algorithm are as follows:

� If an item on the pick list is never picked up;

� If an item is picked up, but is not delivered to the
depot;

� If any vehicle carries items more than its capacity
(unit capacity);

� If two or more vehicles occupy the same grid at the
same time instant (collision).

If any of the mentioned cases happens, 100 time units
are added to the objective function. Adding such a
penalty makes sure that none of the above will ever be
considered in the solution.
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3.7. Stopping criterion
There are some routine methods as the stopping cri-
terion in the SA algorithm such as setting a limited
number of iterations until a better solution is obtained
and cooling temperature schedule. Generally, the
cooling schedule plays an important role in the quality
of solutions in the SA algorithm. Therefore, among
the mentioned stopping criteria, we used the cooling
temperature schedule.

4. Computational results

The SA algorithm was coded in C++ language and
was run using the same personal computer by which
the exact algorithm was previously run. The entire
20 previously generated problems were solved by our
proposed SA algorithm; each one was run 20 times
so that the average solution, worst solution, and best
solution were taken for every problem. The results are
given in Table 2.

4.1. Comparison between exact approach and
the SA algorithm

In this section, the exact results obtained from GAMS
software are compared with our proposed SA results
coded in C++ language. The accuracy of the results
and the time each algorithm reaches its best result
are analyzed. Table 3 presents the results of exact
algorithm and SA algorithm altogether. It also presents

the solution times for each problem. The optimality
gap is calculated by the formula (BP�BF )�100

BF , where
BF is the result value of exact algorithm and BP is the
result value of the SA algorithm.

The gap results show that the SA metaheuristic
approach works quite well for most of the problems
and some problems are totally gap-free. Furthermore,
those problems whose gaps are not equal to zero have a
reasonable amount of gap, which generally happens in
such problems. The optimality gap results represent
the e�ciency of the proposed SA algorithm for our
model.

In Figures 7 and 8, we compare both the results
and solution times between the exact and SA algo-
rithms, respectively. It is undoubtedly accepted that
exact solutions outweigh SA solutions, but as seen in
Figure 7 and the optimality gap states as well, the SA

Figure 7. Comparison of the results between the exact
and SA algorithms.

Table 2. Computational results of the SA algorithm.

Problem characteristics Objective function of the SA algorithm

No. Warehouse
dimension

Grid
size

No. of
vehicles

No. of
items to

be picked

Grid no. of
items in

the pick list

Upper
bound
(Tmax)

Best
Solution

Worst
Solution

Average of
the solutions

Solution
time
(sec.)

1 3*3 9 1 1 1 12 7 7 7 7
2 3*3 9 1 2 1-4 18 12 12 12 9
3 3*3 9 1 3 1-4-7 18 15 15 15 10
4 5*4 20 1 3 3-10-11 30 26 26 26 38
5 5*4 20 2 3 3-10-11 30 16 16 16 38
6 5*4 20 3 3 3-10-11 30 13 14 12.6 65
7 6*4 24 1 3 4-12-13 35 31 31 31 55
8 6*4 24 2 3 4-12-13 35 15 16 15.8 74
9 6*4 24 3 3 4-12-13 35 16 16 16 99
10 6*6 36 1 3 11-15-19 45 39 39 39 103
11 6*6 36 2 3 11-15-19 45 22 32 23.2 137
12 6*6 36 2 3 11-15-19 45 23 23 23 135
13 6*6 36 3 3 11-15-19 45 16 18 16.5 181
14 6*6 36 4 2 11-15 45 16 17 16.9 204
15 8*6 48 1 1 9 30 21 21 21 100
16 8*6 48 1 2 9-21 40 36 36 36 115
17 8*6 48 1 3 21-31-35 40 27 27 27 118
18 8*6 48 1 3 9-21-31 40 37 37 37 119
19 8*6 48 1 3 9-21-35 45 43 43 43 125
20 8*6 48 1 4 9-21-31-35 45 48 48 48 130
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Table 3. Comparing the results of the exact algorithm and the SA algorithm.

Problem characteristics Exact results SA Metaheuristic

No. Warehouse
dimension

Grid
size

No. of
vehicles

No. of
items to

be picked

Objective
value

Solution
time
(sec.)

Objective
value

Solution
time
(sec.)

Optimality
Gap
(%)

1 3*3 9 1 1 7 0.106 7 7 0
2 3*3 9 1 2 12 0.236 12 9 0
3 3*3 9 1 3 15 0.375 15 10 0
4 5*4 20 1 3 26 6.57 26 38 0
5 5*4 20 2 3 15 13.49 16 38 6.67
6 5*4 20 3 3 13 209.1 13.6 65 4.61
7 6*4 24 1 3 31 19.27 31 55 0
8 6*4 24 2 3 15 40.96 15.8 74 5.34
9 6*4 24 3 3 13 213.64 16 99 23.07
10 6*6 36 1 3 39 186.37 39 103 0
11 6*6 36 2 3 20 124.51 23.2 137 16
12 6*6 36 2 3 22 1178.38 23 135 4.54
13 6*6 36 3 3 15 42.21 16.5 181 10
14 6*6 36 4 2 15 39.13 16.9 204 12.67
15 8*6 48 1 1 21 0.903 21 100 0
16 8*6 48 1 2 36 11.79 36 115 0
17 8*6 48 1 3 27 49.75 27 118 0
18 8*6 48 1 3 37 228.447 37 119 0
19 8*6 48 1 3 43 583.21 43 125 0
20 8*6 48 1 4 47 17124 48 130 2.12

Figure 8. Comparing solution times between the exact
and SA algorithms

approach produces very good solutions in a reasonable
amount of time. Figure 8 presents the major time
savings obtained by the SA algorithm in comparison
with the exact algorithm Figure 8 uses a logarithmic
scale). It can be found that in larger-size problems, the
exact algorithm is practically useless, because it takes
a very long time to reach a solution and, therefore, the
SA algorithm should be used instead.

5. Conclusion

The problem of routing order pickers in a warehouse
has always been a big concern for the whole supply
chain management and developing more e�cient mod-
els will be a forward step towards better customer
satisfaction. The problem consists in a two-dimensional

rectangular warehouse assuming small warehouse di-
mension. In this paper, a mixed-integer linear pro-
gramming model with the objective of minimizing the
maximum delivery time of all goods was proposed. The
model worked by �nding the shortest routes for the
pickup and delivery of all goods. In addition, two
important factors, namely aisle width and congestion,
were considered in the routing process. The developed
model was able to answer two important questions
about picker routing in warehouse:

1. Does the proposed routing method work e�ectively
for any type of warehouse layout?

2. Does the proposed model prevent vehicles from
colliding during the trip?

To evaluate the model, we solved it by GAMS software
for some generated instances. The results proved its
rapid growth as problem size increased and showed that
its solving time increased in a non-polynomial way by
problem size expansion. Therefore, the picker routing
problems were considered as NP-Hard problems. In
order to obtain faster solutions in a reasonable amount
of time for large-size problems, we developed a meta-
heuristic method based on the Simulated Annealing
(SA) algorithm. The results were compared with the
optimal solutions and they proved to improve the
performance of the proposed algorithm. The other
point is that in realistic warehouse situation, the orders
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arrive continuously over time and the problem needs
to be solved using a rolling horizon framework. For
further work, the following ideas can be studied by
researchers that tend to develop this work:

� Applying the proposed model to a real case study
and evaluating the e�ciency of the model and its
solving approach;

� Solving the model in a multi-depot warehouse;

� Studying the model by using each rack to store
multiple items;

� Combining the routing method with storing method,
especially the zoning storage method for an inven-
tory programming model;

� Developing the model using various vehicles and
various vehicle capacities;

� Solving the model with other heuristics and meta-
heuristics and comparing the results with the ones
used in this paper. In terms of solution approaches,
the interested readers can refer to [42{45];

� Studying the order picking problem under online
routing schedule;

� Modifying the model for the case in which the
information on the requested demands is unknown.

Abbreviations

TSP Travelling Salesman Problem
MHS Material Handling System
SA Simulated Annealing
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