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Abstract. In this paper, a gain-scheduled three-loop autopilot is designed for the pursuit
system that can satisfy the mixed H2=H1 performance and time-domain constraints. The
gain-scheduled autopilot problem was �rst converted into a state-feedback control problem
for Linear Parameter Varying (LPV) systems and then, a control method was proposed
using the Linear Matrix Inequality (LMI) approaches. The new approaches could satisfy
the mixed H2=H1 performance and regional pole placement constraints and ensure no
constraints on system matrices. The �nal gain-scheduled autopilot which can promise
greater stability and performance for the entire parameter range was calculated using
the interpolation of the �nite number of �xed controllers. Simulation results showed the
e�ciency of the proposed method in designing the three-loop autopilot.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

The main objective of a pursuit autopilot is to track the
commands received from the guidance computer with
high performance [1]. To this end, the autopilot should
provide a fast response to intercept an agile target
as well as ensure the desired robustness under the
e�ect of unmodeled dynamics, noises, and disturbances
[2,3]. In fact, the pursuit model has a wide variation
in its parameters. Accordingly, a robust autopilot
that maintains stability and satis�es complicated con-
straints on the closed-loop response is a challenging
control problem [4].

The pursuits can be modeled as a Linear
Parameter-Varying (LPV) system with the autopilot
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design [5{7]. LPV systems are characterized by time-
varying parameters and their controllers are generally
scheduled in real time based on the measured parame-
ters [8{10]. A robust gain-scheduled controller is usu-
ally applied to control LPV systems such as the robust
Proportional-Integral-Derivative (PID) design [11,12],
H1 controllers [13{16], linear fractional methods [17],
andH2 controllers with pole placement constraints [18].
These methods ensure both stability and performance
through Linear Matrix Inequality (LMI) approaches
[19]. Furthermore, the estimators can be used for
identifying and canceling the disturbance and coupling
e�ects on the pursuit dynamic [20{22].

It has been found that the mixed H2=H1 control
strategy is highly e�ective for robust purposes in the
case of LPV systems under bounded external noise
and disturbance inputs [23{29]. The mixed H2=H1
methods combine the quadratic performance and dis-
turbance attenuation. However, these methods typi-
cally o�er a good transient response for an Linear Time
Invariant (LTI) system, not LPV system. Therefore, a
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Figure 1. Block diagram of a standard three-loop autopilot.

good idea for designing a gain-scheduled controller is to
combine robust methods with time-domain constraints
(i.e., the pole placement) [30]. The gain-scheduled
methods that ensure time-domain characteristics for
LPV systems can be found in [31,32]. However,
the methods suggested in [31,32] cannot materialize
high robust performance. In [28], the mixed H2=H1
performances and closed-loop poles constraints were
taken into account to study the problem of state-
feedback controller design for an LPV. However, it was
assumed that the input matrices needed to be �xed.
Therefore, the method given in [28] cannot be applied
to a pursuit model because the input matrix of the
pursuit model is generally non-�xed. In this paper, the
problem of designing the LPV state feedback controller
without any constraints on system matrices was studied
to achieve robustness and stimulate the desired closed-
loop time-domain response. Furthermore, the mixed
H2=H1 control strategy and regional pole constraints
were applied. The novelty of the proposed method
lies in its applicability to designing a gain-scheduled
autopilot for a pursuit system. The proposed controller
is static and scheduled in real time by the interpolation
of the �xed static controllers in every vertex of the pa-
rameter box. In addition, the interpolation technique
of the proposed method utilizes the convex concept
to guarantee the robustness and performance of the
closed-loop LPV system. Furthermore, the static LTI
controllers are designed o�ine and then, interpolated in
real time using the measured parameters. Therefore, it
has simple implementation with respect to the dynamic
gain-scheduling controllers.

An autopilot can be designed based on feedback
topology from the normal acceleration and angular
velocity that are nominated as two-loop autopilots
[33]. Nevertheless, a good structure called standard
three-loop autopilot was proposed in [34,35]. The
three-loop structure is faster than the two-loop one
in terms of tracking acceleration. Furthermore, it is
more robust than the two-loop topology [36]. As shown
in Figure 1, in the three-loop topology, the de
ection
angle is calculated from the weighted error acceleration,
angular velocity, and integral of angular velocity [37].
The integral of angular velocity is used to increase the
stability margin [35]. This con�guration guarantees
high performance and robustness; therefore, it is ap-

propriate that a pursuit system should be controlled by
di�erent parameters [35]. Several methods have been
proposed to design and consider the standard three-
loop autopilot in [38{41] in which the pursuit system
was considered as an LTI system and the autopilot
could not guarantee the stability of the LPV system.
However, in this paper, the nonlinear pursuit system
was converted into an LPV model. Then, the gain-
scheduled controller was calculated through the LMI
technique. The main objective of this study is to
propose a method to obtain the static autopilot gains,
as shown in Figure 1.

In addition, this paper contributes to convert-
ing the standard three-loop autopilot problem into
a standard state-feedback problem. Therefore, the
pursuit model is considered an LPV system to propose
the gain-scheduled static state-feedback controller that
can guarantee both H2=H1 performance and regional
pole constraint. Finally, this method is employed to
calculate the three-loop gains and their e�ciency was
illustrated through simulation results.

This paper is organized as follows. In Sec-
tion 2, the preliminaries, notation, and de�nitions
are presented. In Section 3, the LPV mathematical
model of the conventional pursuit and the procedure of
converting the problem of the standard three-loop au-
topilot into the state feedback control formulation are
described. Then, the static gain-scheduled controller
design is explained in Section 4. Finally, in Section 5,
the proposed techniques are discussed to calculate the
three-loop autopilot gains and the obtained simulation
results are presented.

2. Preliminaries, notation, and de�nitions

Consider a continuous-time polytopic system described
by the following state-space equations:

_x (t) = A (� (t))x (t) +B1 (� (t))w (t)

+B2 (� (t))u (t) ;

z1 (t) = C1 (� (t))x (t) +D11 (� (t))w (t)

+D12 (� (t))u (t) ;
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z2 (t) = C2 (� (t))x (t) +D22 (� (t))u (t) ;

y (t) = x (t) ; (1)

where x(t) is the state vector, u(t) is the control input,
w(t) is the exogenous input or the unknown distur-
bance input, and z1(t) and z2(t) are the controlled
outputs. The main objective of this paper was to design
the three-loop autopilot in order that the closed-loop
pursuit system (Eq. (1)) would satisfy the following
conditions:

1. The closed-loop poles are located in the desired
region of the complex plane.

2. The performances of H2 and H1 are simultane-
ously guaranteed or:

kT1k1 =




z1 (t)
w (t)





1 < 
;

kT2k2 =




z2 (t)
w (t)






2
< 
: (2)

Remark 1. The H2 control problem stabilizes the
system internally and minimizes the H2 norm. By
minimizing the H2 norm of the system, both the
control inputs and state variables can be controlled
[42]. Therefore, the H2 performance guarantees good
performance of the closed-loop system by imposing
limitation on control and state signals [43]. However,
H1 control is to �nd an admissible controller such that
the in�nity norm of the transfer function Tz1w can be
minimized [42]. Equivalently, the H1 control problem
is used to enhance the robustness of the design [43].
Therefore, the mixed H2=H1 control is used to achieve
higher design robustness as well as better performance
on the control and state signals.

In the following, some required preliminary lem-
mas are given.

De�nition 1 [44]. The parameter dependence is
a�ne. In other words, the state space matrices
of the system, fA (� (t)) ; B (� (t)) ; C (� (t)) ; D (� (t))g,
can be written as a�ne in terms of �(t). Polytope is
a convex hull of a �nite number of matrices Ni with
similar dimensions, i.e.:

Co fNi : i = 1; 2; :::; rg :=(
rX
i=1

�iNi : �i � 0;
rX
i=1

�i = 1

)
: (3)

De�nition 2 [45]. Time-varying parameter �(t) varies
according to the vertices, (�1; �1; :::; �r), in a polytope,

� (t) 2 � := Co f�1; �1; :::; �rg =(
rX
i=1

�i�i : �i � 0;
rX
i=1

�i = 1

)
: (4)

The vertices show the external values for the
parameters. The state-space matrix of the system
whose parameters change in a polytope is a polytopic
system, i.e.:�

A (� (t)) B (� (t))
C (� (t)) D (� (t))

�
2 Co��

Ai Bi
Ci Di

�
: i = 1; 2; :::; r

�
;�

Ai Bi
Ci Di

�
:=
�
A (�i) B (�i)
C (�i) D (�i)

�
; � (t) 2 �: (5)

Lemma 1. Consider the LTI system described by:

_x (t) = Aclx (t) +Bclw (t) ;

z (t) = Cclx (t) +Dclw (t) ; (6)

where x(t) is the state, w(t) is the exogenous input,
z(t) is the controlled output, and Acl is stability. By
de�ning the transfer function T (s) of realization as
T (s) = Ccl(sI �Acl)�1Bcl + Dcl and the symmetric
positive de�nite matrices X1 and X2, kT (s)k1 � 
1
if and only if there exists X1 such that the following
inequality holds:0@ATclX1 +X1Acl � �

BTclX1 �
1I �
Ccl Dcl �
1I

1A < 0; (7)

and kT (s)k2 � 
2 if and only if there exist X2 and
the auxiliary variable Z so that the following LMIs are
feasible:

Dcl = 0;
�
ATclX2 +X2Acl �

BTclX2 �
2I

�
< 0;�

X2 �
Ccl Z

�
> 0; trace (Z) < 
2: (8)

Lemma 2 [45]. Consider the closed-loop system
_x (t) = ~Ax (t). The eigenvalues of the system matrix
~A 2 <n�n are in the LMI region:�

s 2 C
����� IsI��� Q �

ST R

��
I
sI

�
< 0
�
; (9)

if and only if there exists a de�nite solution X > 0 such
that:�

I
~A
 I

��� X 
Q �
X 
 ST X 
R

��
I

~A
 I
�
< 0;
(10)

where P :=
�
Q S
ST R

�
is the given LMI region in the

complex plane, matrix I is an identity matrix, and 

is the Kronecker product. By applying this lemma,
the pole placement problem in the desired region of
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the complex plane would be transformed into LMI
problems. In Table A.1 of Appendix A, some standard
regions of the complex plane that can be converted to
the LMI formulation are presented.

Remark 2. Lemmas 1 and 2 that can guarantee the
quadratic performance of an LPV system are employed
to derive LMI conditions for designing a gain-scheduled
autopilot. The quadratic performance is equivalent
to internal stability of an LPV system if there exists
a �xed quadratic Lyapunov function for the entire
parameter range [28,44]. Therefore, the Lyapunov
matrices X1, X2, and X are assumed �xed.

Lemma 3 [45]. The matrix F has a�ne dependency
in terms of x as follows:

F (x) =
�
F11 (x) F12 (x)
F21 (x) F22 (x)

�
< 0; (11)

where F11(x) and F22(x) are square matrix. F (x) is
negative de�nite if and only if:�

F22 (x) < 0
F22 (x)� F21 (x) (F11 (x))�1F12 (x) < 0 (12)

or:�
F22 (x) < 0
F11 (x)� F12 (x) (F22 (x))�1F21 (x) < 0 (13)

Through this lemma, the nonlinear matrix in-
equalities (12) or (13) can be converted into LMI
(Eq. (11)). This lemma is known by Schur complement
lemma.

Lemma 4 [45]. If matrix M is a square and W is
nonsingular, the product of W �MW is a congruence
transformation of the matrix M . For Hermitian matrix
M , this transformation does not change the number
of positive and negative eigenvalues of M . Indeed, if
M < 0, W �MW < 0, and vice versa.

3. The pursuit model and its application to
designing a standard three-loop autopilot

In [46], a pursuit system was modeled using the
perturbation method. In this model, while the roll-

stabilized system is taken into account, the coupling
e�ects among channels were ignored; in addition, the
pursuit dynamics, roll, yaw, and pitch channels are
separately considered and the equation of each axis is
obtained. This paper aimed to provide the autopilot
design over the pitch axis. The model of the pitch
channel is given by:�

_� (t)
_q (t)

�
=
�� N�

V (t) 1
M� Mq

� �
� (t)
q (t)

�
+
�� N�

V (t)
M�

�
� (t) ;

az (t) =
�
N� 0

� �� (t)
q (t)

�
+ [N�] � (t) ; (14)

where q(t), �(t), �(t), and az(t) are the pitch rate, angle
of attack, de
ection of pitch control, and normal accel-
eration, respectively. M and N denote the moment
and forces applied to the pursuit, respectively. The
dimensional derivatives N�, N�, M�, Ma, and M� are
given in proportion to the non-dimensional derivatives
Cm�, CN�, CN�, Cmq, and Cm� by:

N� =
�qS
m
CN�; N� =

�qS
m
CN�;

M� =
�qSd
Iy

Cm�; Mq =
�qSd2

2IyV (t)
Cmq;

M� =
�qSd
Iy

Cm�; (15)

where V (t), d, S, m, Iy, and �q are the velocity, pursuit
diameter, maximum cross-section, pursuit mass, mo-
ment of inertia, and dynamic pressure, respectively. �
is the air density obtained by:

�q =
1
2
� V 2 (t) : (16)

Based on Eqs. (14){(16) and the height appearing
indirectly in the model due to the parameter �, the
pursuit is considered a model that varies according
to 
ying conditions such as velocity and height. The
autopilot structure in Figure 1 is a state feedback
controller. In this respect, the block diagram shown in
Figure 1 is added to System Model (14) and then, the
closed-loop system is represented, as shown in Figure 2.

Figure 2. Block diagram of a standard three-loop autopilot with the pursuit model.
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For the closed-loop system shown in Figure 2, the
gain K0, used for achieving DC gain 1, can easily be
calculated as follows:

K0 =
�

1 +
1

KA V (t)

�
: (17)

According to Eq. (17), using the three-loop struc-
ture enjoys an advantage, i.e., independency of the gain
K0 from the pursuit system. The value of pursuit
velocity, V (t), is large and if the gain is large enough,
the gain KAV (t) in the command acceleration can be
ignored. According to Figure 2, by de�ning qv (t) �=
az(t)
V (t) , the point A is:

A =
KA (az (t)�K0azc (t)) + q (t)

s

=
�K0KAazc (t) +KA qv (t)V (t) + q (t)

s
: (18)

Also, Eq. (18) can be rewritten into:

A =
�K0KAazc (t)

s
+
KA qv (t)V (t)

s�
1 +

1
KA V (t)

�
+
q (t)� qv (t)

s
: (19)

Now, given that _� (t) = q (t)� qv (t) in the block
diagram of the closed-loop system shown in Figure 2,
Eq. (19) will be:

A =
�K0KAazc (t)

s
+
KA qv (t)V (t)

s�
1 +

1
KA V (t)

�
+

_� (t)
s

=
�K0KAazc (t)

s

+
KA qv (t)V (t)

s

�
1 +

1
KA V (t)

�
+ � (t)

=
�K0KAazc (t)

s
+
KA az (t)

s�
1 +

1
KA V (t)

�
+ � (t) : (20)

Hence, from Eq. (20), Figure 2 can be incorpo-
rated in Figure 3.

Suppose that the gain of KAV (t) in Figure 3 is
large; then, the gain 1 + 1

KA V (t) would be almost equal
to one and Figure 4 can be derived from Figure 3
through simple mathematical operations, where:

Kq = KB ; K� = KBWI ; Kz = KAKBWI : (21)

In Figure 4, the standard three-loop autopilot is
a state feedback controller with an integrator in the
acceleration path to remove the tracking error. In the
following, the design procedure of the state space of
the open-loop system is presented. Based on the block
diagram of Figure 4, the state space of the open-loop
system is described by:

Figure 3. Reconstruction of the standard three-loop autopilot with the system model.

Figure 4. Block diagram of the pursuit system and the state feedback in the standard form.
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24 _� (t)
_q (t)

_xz (t)

35 =

24� N�
V (t) 1 0
M� Mq 0
N� 0 0

3524 � (t)
q (t)
xz (t)

35
+

24� N�
V (t)
M�
N�

35 � (t) ;

24y1 (t)
y2 (t)
y3 (t)

35 =

241 0 0
0 1 0
0 0 1

3524 � (t)
q (t)
xz (t)

35 ; (22)

where xz(t) is a state variable obtained from the
integrator element. By designing the controller for the
state-space model (Eq. (22)), the following controller
will be achieved:

� (t) =
�
K� Kq Kz

� 24 � (t)
q (t)
xz (t)

35 : (23)

As a result, if the state feedback controller
(Eq. (23)) is designed for the open-loop system
(Eq. (22)), the standard three-loop autopilot can be
implemented by Eq. (21), as shown in Figure 2. The
following discusses how similar the nonlinear tail-
controlled pursuit model given by Nichols et al. [47]
is to the presented state-space model (Eq. (14)) and
whether it can be modeled as an LPV system. The
pursuit model is taken from [47]:

_� (t) = K�M (t)Cn (� (t) ; � (t) ;M (t)) cos (� (t))

+q (t) ;

_q (t) = KqM2 (t)Cm (� (t) ; � (t) ;M (t)) ;

az (t) = KzM2 (t)Cn (� (t) ; � (t) ;M (t)) ; (24)

where the variables az(t) and q(t) can be measured us-
ing accelerometer and gyroscope, and the aerodynamic
coe�cients are de�ned by:

Cn (� (t) ; � (t) ;M (t)) = sign (� (t))�
anj� (t)j3 + bnj� (t)j2 + cn

�
2� M (t)

3

�
j� (t)j

�
+dn� (t) ;

Cm (� (t) ; � (t) ;M (t)) = sign (� (t))�
amj� (t)j3+bmj� (t)j2+cm

�
�7+

8M (t)
3

�
j� (t)j

�
+dm� (t) ; (25)

where M(t) is the Mach number. Model (24) presents
a pursuit model at an altitude of 2000ft and the values
for the parameters in Eqs. (24) and (25) are presented
in Table B.1. For design purposes, in the following,
�rst, the similarity of the nonlinear Model (24) to
Model (14) is elaborated. To this end, the following
can be substituted:

sign (� (t)) j� (t)j ;

M (t) =
V (t)
�s

; (26)

where vs is the speed of sound and the aerodynamic
coe�cients (Eq. (25)) can be rewritten as:

Cn (� (t) ; � (t) ;M (t)) =
�
anj� (t)j2 + bn j� (t)j

+cn
�

2� M (t)
3

��
� (t) + dn� (t) ;

= ~Cn � (t) + dn� (t)

Cm (� (t) ; � (t) ;M (t)) =
�
amj� (t)j2 + bm j� (t)j

+cm
�
�7 +

8M (t)
3

��
� (t) + dm� (t)

= ~Cm � (t) + dm� (t) : (27)

By using the aerodynamics parameters (Eq. (27)) and
assuming the angle of attack being small, the pursuit
system (Eq. (24)) is obtained as:�

_� (t)
_q (t)

�
=
�
K�M (t) ~Cn 1
KqM2 (t) ~Cm 0

� �
� (t)
q (t)

�
+
�
K�M (t) dn
KqM2 (t) dm

�
� (t) ;

az (t) =
�
KzM2 (t) ~Cn 0

� �� (t)
q (t)

�
+
�
KzM2 (t) dn

�
� (t) ; (28)

or:�
_� (t)
_q (t)

�
=
�� N�

V (t) 1
M� 0

� �
� (t)
q (t)

�
+
�� N�

V (t)
M�

�
� (t) ;

Az (t) =
�
N� 0

� �� (t)
q (t)

�
+ [N�] � (t) ; (29)
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with:
N� = �KzM2 (t) ~Cn; N� = �KzM2 (t) dn;

M� = KqM2 (t) ~Cm;M� = KqM2 (t) dm;

Kz = K��s; Az (t) = �az (t) : (30)

According to Eq. (29), the pursuit model (Eq. (24)) is
similar to System (14). Therefore, the problem of the
standard three-loop autopilot design is equivalent to a
state feedback controller technique that can be applied
for System (29) and then, implemented as the standard
three-loop structure. Now, the model is converted into
an LPV model. If j� (t)j � 20� and 1 � M (t) � 2:5,
by de�ning the following parameters:

� 1 = KqM2 (t)
�
amj� (t)j2 + bm j� (t)j

+cm
�
�7 +

8M (t)
3

��
;

� 2 = M2 (t) ; (31)

the space model in Eq. (29) can be modeled using the
least square optimization technique, as shown in the
following LPV system:�

_� (t)
_q (t)

�
=
�
A 11�1 (t) +A 12�2 (t) 1

A 21�1 (t) 0

� �
� (t)
q (t)

�
+
�
B 11�2 (t) +B 12

B 21�2 (t)

�
� (t) ;

Az (t) =
�
C 11�1 (t) + C 12�2 (t) 0

� �� (t)
q (t)

�
+ [D 11�2 (t)] � (t) ; (32)

where:
A11 = 0:58; A21 = 57:29; B11 = �0:0098;

C11 = 14; D11 = �1:3; A12 = �0:031;

B21 = �14:54; B12 = �0:037; C12 = �7:4: (33)

Table 1 shows the system units. Model (32) can
be used for autopilot design in Section 5.

However, since the pursuit model is an LPV
model, it is necessary to derive a controller to achieve
better stability and performance for the system pa-
rameters. In the next section, the procedure of
the controller design (Eq. (23)) for the LPV system
(Eq. (22)) is elaborated in detail.

Table 1. Units of the model variables.

�(t) q(t) �(t) Az(t)

rad rad/sec rad g

4. Gain-scheduled H2=H1 design with
regional pole placement constraints

In this section, the gain-scheduled static state feedback
is proposed by implementing the mixed H2=H1 per-
formance and time-domain constraints and taking the
open-loop LPV system (Eq. (1)) into consideration.

Theorem 1. Consider the LPV System (Eq. (1)).
There exists a gain-scheduled static controller that
guarantees the quadratic H2=H1 index 
 and the time-
domain speci�cation if and only if matrices L = LT , Z2,
and 8 i = 1; 2; :::; r exist such that:

L > 0;

�ii < 0; i = 1; 2; :::; r;

�ij + �ji < 0; i < j = 1; 2; :::; r; (34)

!ii < 0; i = 1; 2; :::; r;

!ij + !ji < 0; i < j = 1; 2; :::; r;

	k
ii < 0; i = 1; 2; :::; r; k = 1; 2;

	k
ij + 	k

ji < 0; i < j = 1; 2; :::; r; k = 1; 2;

trace (Z2) < 
; (35)

where �ij , !ij , 	1
ij , and 	2

ij are calculated by Eqs. (36)
and (37) as shown in Box I.

P :=
�
Q S
ST R

�
; R �= T; U�1 TT ; U > 0 (38)

represents the desired time-domain constraints. Then,
the �xed controllers are readily obtained in every vertex
as follows:

Ki = YiL�1; 8i = 1; 2; :::; r: (39)

Finally, the following polytopic LPV controller is
proposed:

K =
rX
i=1

�iKi; �i � 0;
rX
i=1

�i = 1; (40)

where �i satisfying Eq. (40) must be calculated in real
time by the measured parameters.

Proof. First, the gain-scheduled static controller that
guarantees the time-domain constraints is proved and
then, its mixed H2=H1 performance is added. Given
the open-loop system (Eq. (1)) with w(t) = 0 through
Lemma 2 and the control input u (t) = K (� (t))x (t),
the eigenvalues of the closed-loop system, ~A (� (t)) =
A (� (t))+B2 (� (t))K (� (t)), are located on the de�ned
complex plane by Matrix P if and only if there exists



764 H. Behrouz et al./Scientia Iranica, Transactions B: Mechanical Engineering 28 (2021) 757{772

�ij =
�
L
Q+ (AiL
 S +B2jYi 
 S)T + (AiL
 S +B2jYi 
 S) �

AiL
 TT +B2jYi 
 TT �L
 U
�
; (36)

!ij =

0@(AiL+B2jYi)
T + (AiL+B2jYi) � �
BT1i �
I �

C1iL+D12jYi D11i �
I

1A ;

	1
ij =

�
(AiL+B2jYi)

T + (AiL+B2jYi) �
BT1i �
I

�
;

	2
ij = �

�
L �

C1iL+D22jYi Z2

�
: (37)

Box I

a matrix X > 0 so that the matrix Inequality (10) can
be feasible. Matrix Inequality (10) is equivalent to:

X 
Q+
�
X ~A (� (t))

�T 
 ST +
�
X ~A (� (t))

�
 S
+
�

~AT (� (t))X ~A (� (t))
�
R < 0: (41)

This inequality is nonlinear due to ~A (� (t)). Therefore,
�rst, this inequality is regarded as a linear inequality
of ~A (� (t)). By assuming R � 0 and the properties of
Kronecker product as:

(A
B) (C 
D) (E 
 F ) = (ACE 
BDF ) : (42)

the nonlinear term in Eq. (41), ~AT (� (t)) X ~A (� (t)),
is:�

~AT (� (t))X ~A (� (t))
�
R

= ~A
�
T (� (t))XX�1X ~A (� (t))

�
R
=
�

~AT (� (t))X 
 T� (X 
 U)�1�
X ~A (� (t))
 TT� : (43)

Then, by using Eq. (43) and Schur complement, In-
equality (41) is:�

N1 �
X (A (� (t)) +B2 (� (t))K (� (t)))
 TT �X 
 U

�
< 0; (44)

where:

N1 =X 
Q+(X (A (� (t))+B2 (� (t))K (� (t))))T


ST +X (A (� (t)) +B2 (� (t))K (� (t)))
 S:
(45)

Now, an LMI formulation is required to evaluate
the controller in each of the parameter vertices. There-
fore, through the congruence transformation with the
matrix W as:

W =
�
X�1 
 I 0

0 X�1 
 I
�
; (46)

and Lemma 4, Matrix Inequality (44) is equal to:

N =
�
N11 �
NT

12 N22

�
< 0; (47)

where:

N11 = X�1 
Q+X�1AT (� (t))
 ST

+X�1(B2 (� (t))K (� (t)))T 
 ST
+A (� (t))X�1 
 S +B2 (� (t))K (� (t))X�1


S;
N12 = X�1AT (� (t))
 T +X�1(B2 (� (t))K (� (t)))T


T;
N22 = �X�1 
 U: (48)

Now, by considering the polytopic system (Eq. (1))
with w(t) = 0, Controller (39), and the change of
variables, we have:

L = X�1;

Yi = KiL; 8i = 1; 2; :::; r: (49)

Inequality (47) is equivalent to the following LMI's.
rX
i=1

rX
j=1

�i�j�ij < 0; (50)
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where �ij is given in Eq. (36). LMIs (50) are satis�ed in
case of the feasibility of Eq. (34). Therefore, the time-
domain performance can be ensured by Inequalities
(34). In the following, Robust Inequalities (35) will
be proved. In this regard, through the augmented
system (Eq. (1)) and Lemma 1, the H2=H1 constraints
are satis�ed if and only if Inequalities (7) and (8)
are feasible. Equivalently, controller K(�(t)) guaran-
tees the H2=H1 constraints instantaneously by the
quadratic performance 
 = 
1 = 
2 if there exists a
symmetric positive de�nite matrix X = X1 = X2. Let
u (t) = K (� (t))x (t); therefore, Inequalities (7) and (8)
can be presented as follows:0@ M11 � �

BT1 (� (t))X �
I �
C1 (� (t)) +D12 (� (t))K (� (t)) D11 (� (t)) �
I

1A
< 0; (51)�
M11 �

BT1 (� (t))X �
I
�
< 0

�
�

X �
C2 (� (t)) +D22 (� (t))K (� (t)) Z2

�
< 0

trace (Z2) < 
; (52)

where:

M11 = (A (� (t)) +B2 (� (t))K (� (t)))TX

+X (A (� (t)) +B2 (� (t))K (� (t))) : (53)

Inequalities (51) and (52) are nonlinear with respect
to K(�(t)) and X. Now, by applying the congruence
transformation of Inequalities (51) and (52) with:

W1 =

0@X�1 0 0
0 I 0
0 0 I

1A ;

W2 =
�
X�1 0

0 I

�
; (54)

and by considering the polytopic system (Eq. (1)),
Controller (39), and the change of variables (Eq. (49)),
these inequalities will be as follows:

rX
i=1

rX
j=1

�i�j!ij < 0;
rX
i=1

rX
j=1

�i�j	1
ij < 0;

rX
i=1

rX
j=1

�i�j	2
ij < 0; trace (Z2) < 
; (55)

!ij , 	1
ij , and 	2

ij are given in Eq. (37) shown in Box
I. LMIs (55) would be guaranteed if Condition (35) is
satis�ed. Consequently, the theorem is proved.�

Remark 3. The suggested methods in Theorem
1 employ a simple technique to convert Nonlinear
Inequalities (50) and (55) into Linear Inequalities (34)
and (35). This technique has also been used in
Refs. [48,49]. However, other suggested algorithms
such as the mentioned technique in [50] can be utilized.

Remark 4. Theorem 1 proposes the LPV Con-
troller (40) which requires �i in real time among
the measured parameters. In case the number of
parameters is large, �nding a closed formula to derive
�i from the parameters is di�cult; however, an e�-
cient algorithm has been proposed to calculate �i in
[51]. Therefore, this issue is not considered a limiting
problem in Theorem 1.

Theorem 1 presents the gain-scheduled Con-
troller (40) for the LPV system (Eq. (1)) obtained by
the interpolation of multiple �xed static controllers in
every vertex. However, one �xed controller can also be
designed for the LPV system as the following corollary
of Theorem 1.

Corollary 1. If the design of one �xed controller is
desired, the parameter vector must be considered as
an uncertain vector. According to the LPV controller
(Eq. (39)) and Inequalities (34) and (35), if the same
controllers are reconsidered in every vertex, one �xed
controller, considering Yi = Y , can be concluded if and
only if LMIs (34) and (35) are feasible.

Corollary 1 is employed to calculate a �xed con-
troller that enjoys simple implementation. However, in
case the range of the parameters is large or the high
performance is preferred, LMIs (34) and (35) may be
infeasible. Equivalently, a �xed controller does not
exist. In this situation, the gain-scheduled controller
can be designed using Theorem 1.

5. The standard three-loop autopilot design
for a pursuit

In this section, a standard three-loop autopilot is pro-
posed to track commanded acceleration by considering
the nonlinear tail-controlled pursuit model given by
Nichols et al. [47]. The pursuit LPV model in Section 3
is employed so that the state feedback problem can be
used in three-loop autopilot design using Theorem 1.
Furthermore, to provide a reasonably realistic Mach
pro�le in the next simulation results, Mach number is
considered an exogenous signal by:

_M (t) =
1
�s

�
� jAz (t)j sin (j� (t)j) +AxM2 (t)

cos (� (t))
�
; M (0) = M0; (56)

where Ax is proportional to the drag coe�cient and
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its value can be found in Appendix B. In this section,
at �rst, one �xed autopilot is designed through Corol-
lary 1. By assuming Mach number and the angle of
attack ranges as:

�20� � � (t) � 20�; 1 �M (t) � 2:5; (57)

and considering Eq. (31), the range of the parameters
�1 and �2 through a linear search for all possible values
of Eq. (57) would be as follows:

�2:47 � �1 � �0:131; 1 � �2 � 6:25: (58)

Furthermore, the augmented state-feedback
structure is proposed in Figure 5 to design the
autopilot where:

w (t)=[Azc; Noise;Disturbabce] ; z1 (t)=[ze; zu] ;

z2 (t) = ze;

and the weighting functions are selected based on
classical H1 synthesis as follows:

We = 0:5; Wn = 0:1; Wd = 0:1; Wu = 1:5: (59)

The weighting We determines the desired speed
required for tracking the problem and steady-state
error of the closed-loop system. Preferably, We should
be selected large, but it is quite impossible because the
open-loop pursuit system is a non-minimum phase [52].
Therefore, this weight is set large enough to 0.5. The
weights Wn and Wd are selected for robustness require-
ments on the measured noise and the input disturbance
to a maximum amplitude of 0.1, respectively. The
weightWu imposes constraints on the control de
ection
to limit the actuator �n angle smaller than 40 degrees.

Now, the desired area in the complex plane is
given by:

Re fzg � �0:35; Re fzg � �100; x:

tan (65) < � jyj : (60)

Condition (60) limits the closed-loop poles to
ensure a minimum decay rate of {0.35, maximum
decay rate of {100, and minimum damping ratio of
� = cos (65) = 0:43. Based on Corollary 1, �rst,
one �xed autopilot is obtained by solving LMIs (34)
and (35) for the 
ight envelope (Inequalities (58)).
The autopilot can guarantee the quadratic performance
index 
 = 1:36.

K =
�
K� Kq Kz

�
=
�
7:02 1:23 0:82

�
: (61)

If the gain-scheduled autopilot considering the time-
domain (60) is designed by solving LMIs (34) and (35)
for the 
ight envelope (Eq. (57)), four �xed autopilots
that ensure higher quadratic performance 
 = 1:02 can
be obtained as follows:

K1 =
�
K�1 Kq1 Kz1

�
=
�
07:16 1:26 1:27

�
;

K2 =
�
K�2 Kq2 Kz2

�
=
�
12:26 1:26 1:37

�
;

K3 =
�
K�3 Kq3 Kz3

�
=
�
06:99 1:19 0:76

�
;

K4 =
�
K�4 Kq4 Kz4

�
=
�
07:41 0:96 0:80

�
: (62)

Therefore, by determining the vertex numbers, as
presented in Table 2, and applying Controllers (62),
LPV Controller (40) is derived by interpolation gains in
real time. In the following, a closed formula is proposed
to calculate these interpolation gains. By de�ning:

x =
max (�1)� �1

max (�1)�min (�1)
;

y =
max (�2)� �2

max (�2)�min (�2)
; (63)

Figure 5. The proposed augmented structure for a mixed H2=H1 design with time domain constraints.

Table 2. Vertex values of the parameter box (Eq. (58)).

Parameter
vector

Vertex 1 Vertex 2 Vertex 3 Vertex 4

[�1 �2] [�2:47 1] [�0:131 1] [�2:47 6:25] [�0:131 6:25]
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the coe�cients �i are selected using the following
equations so that the polytope condition (Eq. (4)) on
� (t) =

�
�1 �2

�
is satis�ed.

�1 = xy; �2 = (1� x) y; �3 = (1� y)x;

�4 = (1� x) (1� y) : (64)

Figures 6{8 present the simulation results of using
the autopilot gains (Eqs. (61) and (62)) and the
interpolation gains (Eq. (64)), assuming that Noise =
0:1 sin (100�t), M0 = 2:5, and the disturbance pro�le
shown in Figure 9.

As observed in Figure 6, the tail-controller pursuit
model is a non-minimum phase system. Controlling
such systems is di�cult. However, the proposed
method satis�es a good performance in acceleration
tracking capability with su�ciently fast time response,
noise/disturbance attenuation, proper amplitude of
angle of attack and angular velocity, and tail de
ection.
Furthermore, because the time-domain and frequency-
domain constraints are similar for both �xed and
multiple autopilots and LMIs (34) and (35) are feasible
for both of them, the time-domain of the closed-
loop responses will be close, as seen in Figures 6

Figure 6. The acceleration response and tail de
ection
(solid line: �xed autopilot; dashed line: gain scheduled
autopilot).

Figure 7. The angle of attack and the angular velocity
(solid line: �xed autopilot; dashed line: gain scheduled
autopilot).

to 8. Nevertheless, the performance 
 of multiple
controllers is smaller than the other ones. Furthermore,
to check satisfaction of the pole placement constraints
(Eq. (60)), the closed-loop system should be considered
as a LTI system. Therefore, the closed-loop pursuit sys-
tem has been simulated with autopilot gains (Eqs. (61)
and (62)) by considering the scenario given in Figure 6.
The location of the closed-loop poles is plotted in
Figure 10 for 70 �xed points.

Figure 10 validates the pole placement constraints
given in Eq. (60) by Autopilots (61) and (62). However,
a �xed autopilot cannot be designed if the desired area
in the complex plane is selected as:

Re fzg � �1:25; Re fzg � �85;

x: tan (65) < � jyj : (65)

Equivalently, LMIs (34) and (35) will be infeasible.
However, the gain-scheduled controller satis�es the
performance index 
 = 1:5 by the following controllers.

K1 =
�
K�1 Kq1 Kz1

�
=
�
06:56 1:15 1:70

�
;

K2 =
�
K�2 Kq2 Kz2

�
=
�
15:56 1:89 2:29

�
;

K3 =
�
K�3 Kq3 Kz3

�
=
�
09:40 1:06 1:06

�
;

K4 =
�
K�4 Kq4 Kz4

�
=
�
07:04 0:60 0:90

�
: (66)

Consequently, the gain-scheduled controller is more
achievable than the �xed one. A mixed H2=H1
pitch autopilot was designed using the LPV control
techniques in [51]. In [51], the plant was characterized
by a Linear Fractional Transformation (LFT) represen-
tation. Therefore, a multi-channel LFT/LPV control
method was applied. By considering Model (14), the
augmented LFT/LPV interconnection shown in Fig-
ure 11 was chosen (the value of parameters in Figure 11
was given in [51]). Furthermore, the system parameter
�(t) was used for the interpolation procedure. Finally,
the full-order controller FL (K (s) ;�K (��)) guaran-
tees the H1 and H2 performance indices 3 and 15,
respectively. However, the proposed static autopilot
in Eq. (62) guarantees the value of 1.02 for both H1
performance and H2 performance.

To make a comparison between the proposed
autopilot and the suggested controller in [51] in the
time-domain, the pole-placement constraints (65) were
de�ned in Eq. (67) to track step commands with the
time constant no more than 0.35 second, maximum
overshoot of 10%, and a steady-state error less than 1%.
These criteria were considered in [51]. Consequently,
they can be compared in the time domain. If the
following area in the complex plane is selected:

Re fzg � �2:25; Re fzg � �158;

x: tan (65) < � jyj ; (67)
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Figure 8. The time-varying parameters (solid line: �xed autopilot; dashed line: gain scheduled autopilot).

Figure 9. The disturbance pro�le.

the following autopilot guarantees the robust H2=H1
index 
 = 2:99:

K1 =
�
K�1 Kq1 Kz1

�
=
�
37:46 2:78 9:59

�
;

K2 =
�
K�2 Kq2 Kz2

�
=
�
39:94 2:79 9:84

�
;

K3 =
�
K�3 Kq3 Kz3

�
=
�
18:91 1:31 3:34

�
;

K4 =
�
K�4 Kq4 Kz4

�
=
�
17:71 1:09 3:83

�
: (68)

Figures 12 and 13 present the step response while
applying Autopilot (68) and the suggested autopilot
in [51].

As shown in Figures 12 and 13, the proposed
static method had a better time-domain performance
than the method suggested in [51]. In addition, the
design procedure suggested in [51] was more di�cult
than the proposed method. As a result, the proposed
method can ensure better performance in the time
domain and frequency domain as well as in both
simpler design procedure and static topology.

6. Conclusion

In this paper, the design problem of standard three-
loop autopilot was converted into a standard static
state-feedback control problem. Furthermore, a theo-
rem based on Linear Matrix Inequality (LMI) approach
was proposed that could guarantee both the mixed
H2=H1 performance and regional pole placement
constraints for the Linear Parameter Varing (LPV)

Figure 10. The validation of time domain constraints (�:closed loop poles; dashed line: time domain constraints).
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Figure 11. Control structure and synthesis interconnection [51].

Figure 12. The acceleration response and tail de
ection parameters (solid line: Autopilot (66); dashed line: suggested
autopilot in [51].

Figure 13. The angle of attack and the angular velocity (solid line: Autopilot (66); dashed line: suggested autopilot in
[51]).

systems. The simulation results showed that in case the
range of varying parameters was not large, a �xed static
autopilot could be used for guaranteeing the mixed
H2=H1 performance and desired time-domain con-
straints. However, when the range of the parameters
was notably large, a gain-scheduled autopilot would be
required.
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Appendix A [45]

The LTI system _x (t) = Ax (t) is asymptotically stable
if and only if all eigenvalues of A lie in the left half of the
complex plane, C�. By de�ning a stability region as a
subset Cstability � C if � 2 Cstability and considering
Cstability as convex, the typical examples of common
region stability set are summarized in Table A.1.

Appendix B [47]

The details of the model parameters have been shown
in Table B.1.

Table A.1. Time-domain characteristics using Linear Matrix Inequalities (LMIs).

Cstability Region

C� Open left half of the complex plane P =
�

0 1
1 0

�
C No stability requirement P =

��1 0
0 0

�
fs 2 C jRe (s) < ��g Guaranteed damping P =

�
2� 1
1 0

�
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Table A.1. Time-domain characteristics using Linear Matrix Inequalities (LMIs) (continued).

Cstability Region

fs 2 C j jsj < r g circle centered at origin P =
��r2 0

0 1

�

fs 2 C j�1 � Re (s) < �2 g Vertical strip P =

0BB@2�1 0 �1 0
0 �2�2 0 1
�1 0 0 0
0 1 0 0

1CCA
fs 2 C jRe (s) tan (�) < � jIm (s)j g Conic stability region P =

0BB@ 0 0 sin (�) cos (�)
0 0 � cos (�) sin (�)

sin (�) � cos (�) 0 0
cos (�) sin (�) 0 0

1CCA
Table B.1. Details of the pitch-axis pursuit model.

K� = 0:7P0S=m�s
Kq = 0:7P0Sd=Iy
Kz = 0:7P0S=m
P0 = 973:3 l bs/ft2 Static pressure at 20,000 ft
S = 0:44 ft2 Surface area
m = 13:98 slugs Mass
�s = 1036:4 ft/sec Speed of sound at 20,000 ft
d = 0:75 ft Diameter
Iy = 182:5 slug.ft2 Pitch moment of inertia
Ca = �0:3 Drag coe�cient
Ax = 0:7P0SCa=m
an = 0:000103 deg�3 am = 0:000215 deg�3

bn = �0:00945 deg�2 bm = �0:0195 deg�2

cn = �0:1696 deg�1 cm = 0:051 deg�1

dn = �0:034 deg�1 dm = �0:206 deg�1
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