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Abstract. The constant c4[n] is commonly used in the construction of control charts and
the estimation of process capability indices, where n denotes the sample size. Assuming
normal distribution, the unbiased estimator of the population standard deviation is
obtained by dividing the sample standard deviation by the constant c4[n]. An alternative
expression for c4[n] is proposed and the mathematical induction technique is used to
prove its validity in the present paper. Some desirable properties are described. First,
the suggested expression provides the exact value of c4[n]. Second, it is not a recursive
formula in the sense it does not depend on the previous sample size. Finally, the value
of c4[n] can be directly computed for large sample sizes. Such properties suggest that the
proposed expression may be a convenient solution in computer programming and it has
direct applications in statistical quality control.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

The population standard deviation (�) of a given
variable X is a popular statistic in many disciplines.
For instance, the parameter � has a special relevance
in statistical quality control, since the variability of
production processes is traditionally associated with
the standard deviation of the quality characteristic (see
[1,2]). Accordingly, � is used in di�erent statistical
techniques such as control charts [3{7], process capa-
bility indexes [8{11], acceptance sampling [12,13], etc.
The parameter � is usually unknown in practice and
an estimator with desirable properties is required in
this situation (see [14{17]). Let x1; : : : ; xn denote the
values of X for a random sample with size n. The
usual estimator of � is the sample standard deviationb� = (b�2)1=2, where:
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b�2 =
1

n� 1

nX
i=1

(xi � x)2; (1)

is the sample variance and

x =
1
n

nX
i=1

xi

is the sample mean. The term n � 1 in Eq. (1) is
the Bessel's correction, which is used to achieve an
unbiased estimator, i.e., E[b�2] = �2. Although b�2 is
an unbiased estimator of �2, the Jensen's inequality
[18] can be used to show that b� is a biased estimator
of �. Assuming a normal distribution, the unbiased
estimator of � (see [19{21]) is given by:b�c4 =

b�
c4[n]

;

where the constant c4[n] is de�ned as:

c4[n] =
21=2

(n� 1)1=2
�[n=2]

�[(n� 1)=2]
; (2)

and:
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�[a] =
Z 1

0
xa�1e�xdx

is the Gamma function. An alternative expression for
c4[n] that also provides its exact value is given by:

c4[n]=

8>>>>>><>>>>>>:
c4[2]

(n� 1)1=2
2n�2(n=2� 1)!2

(n� 2)!
if n is even

1
(n� 1)1=2c4[2]

(n� 2)!
2n�3((n� 3)=2)!2

if n is odd

(3)

where c4[2] = (2=�)1=2. Note that c4[n] is a known con-
stant in social sciences, and it has an especial relevance
in statistical quality control. Many references tabulate
the value of c4[n] for di�erent values of n (see [2]).
Various statistical software can be used to compute
c4[n], but its value may not be available in the case
of large samples. This is due to the fact that Eq. (2)
depends on the quotient of two Gamma functions, and
�[a] tends to in�nite as a increases. Similarly, the
value of Eq. (3) cannot be directly obtained for large
sample sizes since the factorial function also tends to
in�nite as its argument increases. For instance, both
Microsoft Excel and the statistical software R (R Core
Team [22]) give a numerical solution of �[a] up to the
value a = 171:6144, which implies that c4[n] based
upon Eq. (2) cannot be computed when n > 343. In
the case of using (3), both Microsoft Excel and R give
a numerical solution of c4[n] up to n = 172. A possible
solution is to use a recursive expression, i.e. the value
of c4[n] may depend on c4[n� 1] or previous values of
n. A recursive expression is given by

c4[n] =
(n� 2)1=2

(n� 1)1=2 c4[n� 1]
: (4)

However, recursive expressions are generally more time
consuming in practice, for example, when program-
ming, as can be seen in Section 3. Alternatively,
approximations may be used in the case of large sample
sizes. Some examples are [19{23]:

c4[n] �= 1� 1
4n
� 7

32n2 � 19
128n3 ;

c4[n] �= 4(n� 1)
4n� 3

:

We present an analytical expression for c4[n] (see
Eq. (7)) that provides its exact value and can be
directly computed for large sample sizes, since it does
not depend on Gamma or factorial functions. Microsoft
Excel and/or R can be easily used to compute the
suggested expression under large sample sizes. Such
programming details are available from the authors.
The suggested expression may be a convenient solu-
tion in computer programming, since it is calculable
for large sample sizes and less time consuming than
recursive expressions.

2. A new expression for the constant c4[n]

First, alternative expressions for c4[n] based on both
even and odd values of n are derived. Second, we
suggest an expression for c4[n] that can be used for
any value of n. Finally, the mathematical induction
technique is used to show the validity of the suggested
expression.

The suggested expression for c4[n] is obtained by
evaluating Eq. (4) at the �rst values of n. For instance,
if we evaluate Expression (4) up to n = 8 we obtain (see
Appendix A for more details):

c4[8] =
c4[2]

(n� 1)1=2
(n� 2)!!
(n� 3)!!

;

where:

n!! =
dn=2e�1Y
i=0

(n� 2i)

is the double factorial of n and d�e is the ceiling
function, i.e. dae gives as output the smallest integer
greater than or equal to a. Thereby, a possible
expression for c4[n], when n is even, is given by:

c4[n] =
c4[2]

(n� 1)1=2

n�2Y
i=2

iIi

n�3Y
i=3

iI
c
i

=
c4[2]

(n� 1)1=2

n�2Y
i=2

iIi

n�2Y
i=2

iI
c
i

=
c4[2]

(n� 1)1=2

n�2Y
i=2

iI
�
i ; (5)

where:

Ii =
�

1 if i is even
0 if i is odd

The indicator variables Ici and I�i are de�ned as

Ici = 1� Ii =
�

0 if i is even
1 if i is odd

and:

I�i = Ii � Ici =
�

1 if i is even
�1 if i is odd

Similarly, if we evaluate Expression (4) up to n = 9,
we obtain (see Appendix A for more details):

c4[9] =
c4[2]�1

(n� 1)1=2
(n� 2)!!
(n� 3)!!

:

Hence, the suggested expression, when n is odd, is given
by:
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c4[n] =
c4[2]�1

(n� 1)1=2

n�2Y
i=3

iI
c
i

n�3Y
i=2

iIi
=

c4[2]�1

(n� 1)1=2

n�2Y
i=2

iI
c
i

n�2Y
i=2

iIi

=
c4[2]�1

(n� 1)1=2

n�2Y
i=2

i�I�i : (6)

In the following, Theorem 1 provides a new
expression for the constant c4[n], which is justi�ed by
Eqs. (5) and (6).

Theorem 1. For a �xed value of n, with n � 4, the
function c4[n] can be expressed as:

c4[n] =
c4[2]I

�
n

(n� 1)1=2

n�2Y
i=2

iI
�
i I
�
n ; for n � 4, (7)

where I�n is de�ned by I�i after substituting i by n.
The proof of Theorem 1 can be seen in Appendix

B. Note that this proof uses the principle of mathemati-
cal induction to demonstrate the validity of Eq. (7). In
addition, note that Eq. (7) is valid for n � 4 due to
the limits of the product operator of this equation, i.e.Qn�2
i=2 can be used, if n � 4.

3. Description of properties and discussion

We now describe some desirable properties for the
proposed expression (7). First, we emphasize that
the suggested expression provides the exact value of
c4[n], i.e. approximations are not considered. Second,
the existing expressions for c4[n] cannot provide its
exact value in the case of large sample sizes, since
they depend on Gamma or factorial functions and
such functions tend to in�nite as their corresponding
arguments increase. However, we can observe that the
suggested expression (Eq. (7)) does not su�er from this
problem and it is calculable for the case of large sample
sizes. In addition, we observe that the suggested
expression (7) is not a recursive formula, since it does
not depend on the previous sample size. Accordingly,
it is expected that the suggested expression will be less
time consuming than recursive expressions. A Monte
Carlo simulation study is now carried out to compare
empirically the computing times of both suggested and

Figure 1. Total time required (in seconds) to calculate
106 times the constant c4 under Expressions (7) and (4)
based on several sample sizes. The X axis shows the
sample sizes (n).

recursive expressions (Eqs. (7) and (4), respectively).
The simulation study is programmed with the sta-
tistical software R and the codes are available under
request. This empirical study consists of calculating
Eqs. (7) and (4) under di�erent sample sizes. This
process is repeated 106 times and the total required
time (in seconds) is computed. Results derived from
this empirical study can be seen in Figure 1. We
observe that the proposed expression for c4[n] is less
time consuming than the recursive expression and the
time di�erence increases as the sample size increases.
For both suggested and recursive expressions, we also
calculate the linear regression models between the
sample size (x) and the total computing time (y), i.e.:

yi = �0 + �1xi + ui;

where ui represents independent and identically dis-
tributed random variables with zero mean. In Table 1,
we can observe the estimation of the regression coef-
�cient (�1) for the proposed and recursive expressions
of c4[n]. For the proposed expression, the value of the
regression coe�cient is b�1 = 0:0479, which is clearly
smaller than the value of b�1 for the recursive expression
(b�1 = 0:1627). In addition, the 95 percent con�dence
intervals for �1 are computed and they are denoted

Table 1. Regression coe�cients (b�1), standard errors (dSE[b�1]), 95 percent con�dence intervals (L and U denote the lower
and upper limits, respectively), and coe�cients of determination (R2) of the linear regression models for the sample size
(n) and the total computing time of the simulation study.

Expression of c4[n] b�1 dSE[b�1] L U R2 (%)

Proposed 0.0479 0.0010 0.0458 0.0501 99.0
Recursive 0.1627 0.0010 0.1606 0.1647 99.9
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as [L;U ], where L and U are, respectively, the lower
and upper con�dence limits. Such con�dence intervals
indicate the existence of a signi�cant di�erence between
the slopes of both linear regression models. This
implies that the di�erence between the computing
time of the proposed and recursive expressions will be
greater as the sample size increases.

The commented properties suggest that the pro-
posed expression (Eq. (7)) may be a convenient solu-
tion in computer programming, since it is calculable
for large sample sizes and less time consuming than
recursive expressions.

4. Conclusion

The popular estimator of the population standard
deviation is based on the constant c4[n] since it allows
the estimator to be unbiased under normality. This
estimator is often used in statistical quality control,
as the standard deviation plays an important role in
this context. For large sample sizes, the constant c4[n]
cannot be computed when Eq. (3) is used because it
depends on the factorial function. Similarly, various
statistical software do not have the value of c4[n] when
the sample size is large. The �rst solution is to use
the recursive expression given by Eq. (4), but it is
more time consuming when programming. The second
solution consists on using existing approximations, but
it is more interesting to use the real values. The main
contribution of this paper is to provide a new analytical
expression for c4[n] that solves this problem and avoids
the mentioned disadvantages of existing solutions.
These properties suggest that the proposed expression
is an optimal solution in computer programming. A
Monte Carlo simulation study compares the computing
time of the suggested and recursive expressions. We
observed a signi�cant di�erence between the computing
time of both expressions, and it increases as the sample
size is larger.
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Appendix A

Expressions (5) and (6) are based on the evaluation
of Eq. (4) up to n = 9. This appendix contains
expressions of Eq. (4) when this equation is evaluated
at n = f3; 4; : : : ; 9g:

c4[3] =
c4[2]�1

21=2 ;

c4[4] =
21=2

31=2c4[3]
=

21=221=2c4[2]
31=2 =

c4[2]
31=2

2
1
;

c4[5] =
31=2

41=2c4[4]
=

31=2

41=2
31=2

c4[2]
1
2

=
c4[2]�1

41=2
3� 1

2
;

c4[6] =
41=2

51=2c4[5]
=

41=2

51=2
41=2

c4[2]�1
2

3� 1

=
c4[2]
51=2

4� 2
3� 1

;

c4[7] =
51=2

61=2c4[6]
=

51=2

61=2
51=2

c4[2]
3� 1
4� 2

=
c4[2]�1

61=2
5� 3� 1

4� 2
;

c4[8] =
61=2

71=2c4[7]
=

61=2

71=2
61=2

c4[2]�1
4� 2

5� 3� 1

=
c4[2]
71=2

6� 4� 2
5� 3� 1

;

c4[9] =
71=2

81=2c4[8]
=

71=2

81=2
71=2

c4[2]
5� 3� 1
6� 4� 2

=
c4[2]�1

81=2
7� 5� 3� 1

6� 4� 2
:

Appendix B

In this appendix we include the proof of Theorem 1.
We use the principle of mathematical induction [24,25]
to demonstrate the validity of the proposed expression
(Eq. (7)). For the base case, we show that Theorem 1
holds for n = 4. By applying the recursive expression
(Eq. (3)) at n = 3 and n = 4, we obtain:

c4[4] =
21=2

31=2c4[3]
=

21=221=2c4[2]
31=2 =

c4[2]� 2
31=2 : (B.1)

From Eq. (7), we also obtain Eq. (B.1) and thus, Eq. (7)
holds for n = 4. For the inductive step, we assume
that Eq. (7) holds for some value n � 4 (induction
hypothesis) and prove that c4[n+ 1] also holds. First,
we assume that n+ 1 is even:

c4[n+ 1] =
c4[2]I

�
n+1

n1=2

n�1Y
i=2

iI
�
i I
�
n+1 =

c4[2]
n1=2

n�1Y
i=2

iI
�
i

=
c4[2]
n1=2

(n� 1)!!
(n� 2)!!

:

Since (n� 1)! = (n� 1)!!(n� 2)!!, we obtain:

c4[n+ 1] =
c4[2]
n1=2

(n� 1)!!2

(n� 1)!
:

Since n!! = 2n=2(n=2)! (see [26]), we obtain:

c4[n+ 1] =
c4[2]
n1=2

�
2(n�1)=2((n� 1)=2)!

�2
(n� 1)!

=
c4[2]
n1=2

2n�1((n� 1)=2)!2

(n� 1)!
:

From Eq. (3) we observe that:
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c4[n+ 1] =
c4[2]
n1=2

2n�1((n� 1)=2)!2

(n� 1)!
;

which proves that Eq. (7) holds when n + 1 is even.
Second, we assume that n+ 1 is odd:

c4[n+ 1] =
c4[2]I

�
n+1

n1=2

n�1Y
i=2

iI
�
i I
�
n+1 =

1
n1=2c4[2]

n�1Y
i=2

i�I�i

=
1

n1=2c4[2]
(n� 1)!!
(n� 2)!!

:

Since (n� 1)! = (n� 1)!!(n� 2)!!, we obtain:

c4[n+ 1] =
1

n1=2c4[2]
(n� 1)!

(n� 2)!!2
:

Since n� 2 is even, using the previous property of the
double factorial:

c4[n+ 1] =
1

n1=2c4[2]
(n� 1)!�

2(n�2)=2((n� 2)=2)!
�2

=
1

n1=2c4[2]
(n� 1)!

2(n�2)=2((n� 2)=2)!2
:

From Eq. (3), we observe that:

c4[n+ 1] =
1

n1=2c4[2]
(n� 1)!

2(n�2)=2((n� 2)=2)!2
;

which proves that Eq. (7) holds when n+ 1 is odd, and
this completes the proof.
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