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Abstract. This article presents a review of selected articles about structural engineering
applications of Machine Learning (ML) in the past few years. It is divided into the following
areas: structural system identi�cation, structural health monitoring, structural vibration
control, structural design, and prediction applications. Deep neural network algorithms
have been the subject of a large number of articles in civil and structural engineering. There
are, however, other ML algorithms with great potential in civil and structural engineering
that are worth exploring. Four novel supervised ML algorithms developed recently by the
senior author and his associates with potential applications in civil/structural engineering
are reviewed in this paper. They are the Enhanced Probabilistic Neural Network (EPNN),
the Neural Dynamic Classi�cation (NDC) algorithm, the Finite Element Machine (FEMa),
and the Dynamic Ensemble Learning (DEL) algorithm.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Machine Learning (ML) is a key Arti�cial Intelligence
(AI) technology that is impacting almost every �eld
in a signi�cant way from image recognition, e.g., pupil
detection [1], multi-object tracking [2], video surveil-
lance [3], multi-target regression [4], thermal infrared
face identi�cation [5], and human activity recogni-
tion [6], to various brain and neuroscience applications,
e.g., building functional brain network [7], motor im-
agery brain-computer interface [8,9], mapping scalp to
intracranial EEG [10], seizure detection [11], diagnosis
of the Parkinson's disease [12], and characterization of
the modulation of the hippocampal rhythms [13].

*. Corresponding author. Tel.: +52 (1) 427 274 12 44
E-mail address: jamezquita@uaq.mx (J.P.
Amezquita-Sanchez)

doi :10.24200/sci.2020.22091

In general, an ML system consists of three
components: inputs comprising a dataset of sig-
nals/images/features, the ML algorithm, and output
which is associated with the phenomenon studied (see
Figure 1). ML algorithms can be classi�ed into three
broad categories:

a) Supervised learning such as Support Vector Ma-
chine (SVM) [14], various neural network models,
statistical regression, Random Forest (RF) [15],
fuzzy classi�ers [16], and Decision Trees (DTs);

b) Unsupervised learning such as various clustering al-
gorithms, e.g., k-means clustering and hierarchical
clustering [17], autoencoders, self-organizing maps,
competitive learning [18], and deep Boltzmann
machine;

c) Reinforcement learning such as Q-learning, R-
learning, and Temporal Di�erence (TD) learn-
ing [19].
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Figure 1. Components of an ML system.

The �rst journal article on civil engineering appli-
cation of neural networks was published in 1989 [20].
Amezquita-Sanchez et al. [21] presented a review of
research articles on neural networks in civil engineering
published from 2001 to 2016. This article presents
a review of selected articles on structural engineering
applications of ML in recent years since 2017. It is
divided into the following topics where most of the
ML research in structural engineering is published:
structural system identi�cation, structural health mon-
itoring, structural vibration control, structural design,
and prediction applications. In addition, four novel
supervised ML algorithms developed recently by the
senior author and his associates with potential appli-
cations in civil/structural engineering are introduced.

2. Structural system identi�cation

Structural System Identi�cation (SSI) is an important
topic in structural engineering as it allows constructing
a mathematical model of a structural system from a set
of input-output measurements generated by dynamic
time series signals [22]. Perez-Ramirez et al. [23]
presented a methodology for identi�cation of modal
parameters of structures using ambient vibrations and
Synchrosqueezed Wavelet Transform (SWT). Jiang et
al. [24] introduced a fuzzy stochastic neural network
model for nonparametric identi�cation of civil struc-
tures using the nonlinear autoregressive moving aver-
age with exogenous inputs model through the combina-
tion of two computational intelligence techniques, i.e.,
fuzzy logic and neural networks. The proposed model
was validated using a 1:20 scaled model of a 38-storey
concrete building and a benchmark 4-story 2 � 2 bay
3D steel frame.

Denoising a signal for an e�ective SSI scheme
can represent a challenging task because this process
can also inadvertently remove frequency components

associated with the structural behavior. Amezquita-
Sanchez et al. [25] presented a robust methodology for
identi�cation of modal parameters of large smart struc-
tures based on the adroit integration of the multiple
signal classi�cation algorithm, the empirical wavelet
transform, and the Hilbert transform [26] and applied it
to calculate the natural frequencies and damping ratios
of a 123-story super high-rise building structure, the
Lotte World Tower, the tallest building in Korea (see
Figure 2), subjected to ambient vibrations. The results
showed that the proposed approach could identify the
natural frequencies and damping ratios of large civil
structures with high accuracy.

For a more robust SSI strategy capable of deal-
ing with the inherent noise, nonlinearities, and un-
certainties present in the acquired samples, Perez-
Ramirez et al. [27] combined the empirical mode de-

Figure 2. Lotte World Tower in Seoul, Korea.
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composition [28{30], a recurrent neural network model,
Bayesian training [31], and mutual information for
response prediction of civil structures subjected to
extreme loadings. The e�ectiveness of the proposed
approach was validated using the experimental data
of a 1:20-scaled 38-story high-rise building structure
subjected to arti�cial seismic excitations and ambient
vibrations and a �ve-story steel frame subjected to
di�erent levels of the Kobe earthquake.

Yao et al. [32] reported blind modal identi�cation
using limited sensors and a modi�ed sparse component
analysis. Yuen and Huang [33] introduced a Bayesian
Frequency-domain substructure Identi�cation. Yuen
et al. [34] described self-calibrating Bayesian real-time
system identi�cation. Tian et al. [35] discussed system
identi�cation of pedestrian bridges using particle
image velocimetry.

3. Structural Health Monitoring (SHM)

Structural Health Monitoring (SHM) continues to
be the subject of intensive research in structural
engineering. It can be divided into two categories
of image-based SHM employing the computer vision
technology and vibration signal-based SHM based
on the signals obtained during dynamic events.
The latter in turn can be divided into two general
approaches: parametric system identi�cation (modal
parameters identi�cation) and non-parametric
system identi�cation. ML algorithms have been used
extensively in both types of SHM.

3.1. Vibration signal-based SHM
SHM based on the non-parametric system identi�-
cation approach consists of two main stages of fea-
ture extraction/selection and classi�cation. The fea-
ture/patterns identi�ed in the �rst step are employed
for designing and training a machine learning algorithm

with the goal of determining the health condition of the
structure in an automated manner.

Kosti�c and G�ul [36] combined an autoregressive
model with exogenous inputs with a Multi-Layer Per-
ceptron Neural Network (MLPNN) for damage detec-
tion of a simulated footbridge structure at varying
temperatures. Pan et al. [37] evaluated three time-
frequency methods, Wavelet Transform (WT), Hilbert-
Huang Transform (HHT), and Teager-Huang Trans-
form (THT) for identifying features in measured signals
in combination with SVM using a simulated cable-
stayed bridge.

Incipient or light damage represents a challenge
for identi�cation. Yanez-Borjas et al. [38] proposed
the fusion of statistical indices and a decision tree for
detecting damage due to corrosion in a 3D 9-bay and
169-member truss-type bridge subjected to dynamic
excitations. The authors reported that the proposal
could identify light damage due to external corrosion,
causing 1 mm reduction in the bar element diame-
ter. Amezquita-Sanchez [39] integrated the Shannon
entropy index with a decision tree for evaluating the
measured responses of a 1:20 scaled model of a 38-
storey concrete building structure under di�erent levels
of damage produced by cracks.

The aforementioned works have exhibited ad-
vances in SHM; however, they require a hand-crafted
feature extraction approach to e�ective classi�cation in
the subsequent step [40]. In recent years, deep learning
algorithms such as Convolutional Neural Networks
(CNNs) have been employed for automatic feature ex-
traction in SHM. In these methods, feature extraction
and classi�cation steps are performed in a single step
to avoid the exhaustive tests between features and
classi�ers (see Figure 3) [41,42]. Abdeljaber et al. [43]
explored a 1D-CNN for determining the condition of a
benchmark 4-story 2� 2 bay 3D steel frame subjected
to ambient vibrations. Krishnasamy and Arumulla [44]

Figure 3. (a) Traditional machine learning and (b) deep learning.
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combined a second-order blind identi�cation with WT
and autoregressive time series models for detecting
minor incipient damage such as subtle cracks in a beam
subjected to dynamic excitations.

The e�ective training of supervised ML ap-
proaches requires a large set of data from healthy
and damaged structures. To overcome this limitation,
unsupervised ML-based methods have been proposed
recently because they do not require labeling the train-
ing data from di�erent damage scenarios. Ra�ei and
Adeli [45] presented a novel unsupervised deep learning
model for global and local health condition assessment
of structures using ambient vibration response through
integration of SWT, fast Fourier transform, and deep
restricted Boltzmann machine. The model extracts
features from the frequency domain of the recorded
signals automatically.

Ibrahim et al. [46] compared the classi�cation per-
formance of three machine learning algorithms, SVM,
K-Nearest Neighbor (KNN), and CNN, for evaluating
the health condition of two simulated four- and eight-
story building structures subjected to earthquakes.
They reported that CNN outperformed SVM and KNN
in terms of accuracy for damage detection. Zhang
et al. [47] discussed vibration-based structural state
identi�cation by a one-dimensional CNN. Huang et
al. [48] presented a multitask sparse Bayesian learning
for SHM applications.

Wang et al. [49] described shear loading detection
of through bolts in bridges using a percussion-based
one-dimensional memory-augmented CNN. Naranjo-
Perez et al. [50] presented a collaborative machine
learning-optimization algorithm to improve the �nite
element model updating of structures. Their proposal
consists of the harmonic search and active-set algo-
rithms, multilayer perceptron neural networks, and the
principal component analysis, where advantages such
as the computation time, robustness and e�ectiveness
of an actual steel footbridge model are obtained. From
this work, it is observed that the combination of several
machine-learning algorithms and other mathematical
tools can lead to more powerful solution methods.

Wang and Cha [51] combined a deep auto-
encoder, an unsupervised deep learning method, with a
one-class SVM for vibration-based health monitoring of
a laboratory-scaled steel bridge. The authors reported
an accuracy rate of 91% for light damage detection.
Sajedi and Liang [52] discussed the vibration-based
semantic damage segmentation for SHM.

3.2. Image-based SHM
Cha et al. [53] presented the autonomous structural
visual inspection using region-based deep learning
for detecting di�erent types of damage. Gao and
Mosalam [54] employed a deep transfer learning for
image-based structural damage recognition. Zhang et

al. [55] described a context-aware deep convolutional
semantic segmentation network for detecting cracks in
structures. Wu et al. [56] discussed pruning CNNs
for e�cient edge computing in health condition as-
sessment of structures. Nayyeri et al. [57] described a
foreground-background separation technique for bridge
crack detection.

Deng et al. [58] employed CNN for concrete crack
detection with handwriting script interferences. Pan
and Yang [59] described a post-disaster image-based
damage detection of reinforced concrete buildings using
dual CNNs. Liu et al. [60] reported an image-based
crack assessment of bridge piers employing Unmanned
Aerial Vehicles (UAVs) and 3D scene reconstruction.
Jiang and Zhang [61] also discussed a real-time crack
assessment using deep neural networks and wall-
climbing UAVs.

Athanasiou et al. [62] outlined a machine learning
approach to crack assessment of reinforced concrete
shells using multifractal analysis as a feature extractor.

4. Vibration control of structures

Dynamic loadings such as tra�c, wind, and seismic
activity generate vibrational responses that can neg-
atively a�ect the integrity of a structure. In order to
decrease this negative impact, many e�orts on research
and technology development for structural vibration
control have been proposed.

Figure 4 presents the four classes of vibration
control technologies and a tabular summary of sys-
tems proposed in each category. Ying and Ni [63]
reviewed applications of the magnetorheological visco-
elastomer materials in structural vibration control. Lu
et al. [64] reviewed various non-linear dampers. Deng
and Dapino [65] reviewed magnetostrictive materials
for structural vibration control such as Terfenol-D and
Galfenol (alloy of iron and gallium). Elias and Mat-
sagar [66] reviewed vibration control of structures using
passive Tuned Mass Dampers (TMD) for wind- and
earthquake-excited structures. Rahimi et al. [67] also
reviewed the application of TMDs for vibration control
of structures including the theoretical backgrounds for
various types of TMDs and practical and economic
aspects.

Computational intelligence approaches such as
neural networks, fuzzy logic systems [68], and ge-
netic algorithms [69] and their combination have
played a signi�cant role in the development of
adaptive/intelligent control algorithms. Wang and
Adeli [70] presented a self-constructing Wavelet Neural
Network (WNN) for nonlinear adaptive control of
structures based on integration of a self-constructing
wavelet neural network developed speci�cally for struc-
tural system identi�cation with an adaptive fuzzy
sliding mode control approach. The authors note
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Figure 4. Classi�cation of di�erent vibration control systems.

\the algorithm is particularly suitable when the physical
properties such as the sti�nesses and damping ratios of
the structural system are unknown or partially known
which is the case when a structure is subjected to
an extreme dynamic event such as an earthquake as
the structural properties change during the event." A
unique aspect of the algorithm is that the structural
identi�cation and control are performed simultane-
ously, which makes it adaptive and more suitable for
real-life structures. A fuzzy compensation controller
reduces the chattering and adaptive laws based on Lya-
punov functions for �nding the unknown parameters of
the WNN provide control stability.

An adaptive WNN controller was introduced by
Chen and Liang [71] to improve the performance of a
pneumatic isolation system. Bui et al. [72] discussed a
fuzzy controller for structural vibration control. Wang
et al. [73] described a fuzzy �nite-time stable compen-
sation control considering di�erent actuator failures.
Fu et al. [74] described a fuzzy-neural network control
for a magnetorheological elastomer vibration isolation
system.

From the reviewed works, it is observed that
neural network- and fuzzy logic-based approaches are
the most common solutions for vibration control; yet,
their combination yields more powerful results since the
advantages of both computing approaches are exploited
synergistically. For instance, neural networks provide
the capability to deal with non-linear properties of dif-

ferent dynamic systems and fuzzy logic allows dealing
with the information uncertainty usually existing in
real-world problems.

Rahmani et al. [75] employed a reinforcement
learning, Q-learning, method for controlling the vi-
bration of a moment frame subjected to seismic load-
ing. Lu et al. [76] proposed a vibration identi�cation
method based on a CNN to �nd the optimal parameters
of Linear Quadratic Regulator (LQR) algorithm for
vibration control of a single-degree-of-freedom linear
system subjected to dynamic excitations. The authors
note that the integration of CNN with LQR improves
the performance of the LQR algorithm with �xed
parameters; however, it requires collecting a large
amount of vibration input data and its e�cacy of real
structures needs to be investigated.

5. Structural design

Application of machine learning in engineering design
was pioneered by Adeli and Yeh [77] three decades
ago. Ra�ei et al. [78] presented a novel approach
to concrete mixed design using the patented neural
dynamics optimization model of Adeli and Park [79]
and a classi�cation algorithm used as a virtual lab to
predict whether desired constraints are satis�ed in each
iteration of the design or not. The authors tested the
model using three di�erent classi�cation algorithms:
SVM, Probabilistic Neural Network (PNN), and En-
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hanced Probabilistic Neural Network (EPNN) to be
described later. They reported EPNN with the highest
accuracy.

Zheng et al. [80] proposed using neural network
learning to accelerate the time-consuming 3D form
�nding and topological design of compression-only shell
structures with planar faces.

6. Prediction applications

Greco et al. [81] used a genetic algorithm to predict
seismic collapse of frame structures. Asteris and
Nikoo [82] employed an arti�cial bee colony-based
neural network to predict the fundamental period of
in�lled frame structures using a number of stories and
spans, the span length, the in�ll wall panel sti�ness,
and the percentage of openings as the input of the
neural network model. Luo and Paal [83] described
a locally weighted SVM model to predict the drift
capacity of reinforced concrete columns for seismic
vulnerability assessments.

Deep learning approaches have also been reported
for prediction tasks. Nie et al. [84] used a CNN
for stress �eld prediction in cantilevered structures.
Nguyen et al. [85] employed a deep neural network with
high-order neuron to predict the compressive strength
of foamed concrete where a cross-entropy cost function
is used to enhance the model performance. Luo
and Kareem [86] presented deep convolutional neural
networks for uncertainty propagation in random �elds
and statistical characterization of the system responses
under various spatially varying properties.

Oh et al. [87] employed a CNN to estimate
the response of tall buildings due to wind loading.
Similarly, Oh et al. [88] employed a CNN to predict the
seismic responses of building structures. The viability
of the CNN was validated using numerical simulation
and experimental data obtained on a 3-story concrete
structure subjected to seismic excitations. Zhang et
al. [89] evaluated a deep learning approach called
Long Short-Term Memory (LSTM) network [90] for
nonlinear structural response prediction of a 6-story
hotel building located at San Bernardino, California,
subjected to seismic excitations. In addition, an
unsupervised learning algorithm, K-means clustering,
was employed to cluster the seismic inputs for:

1. Generating the most informative datasets for train-
ing the LSTM,

2. Improving the prediction accuracy with limited
data.

They reported an accuracy rate of 90% for predict-
ing the structural response. Gulgec et al. [91] also
discussed the application of deep learning to strain
estimation from acceleration data for fatigue.

7. New supervised learning algorithms

Deep neural network algorithms such as CNN have
been the subject of a large number of articles in
civil and structural engineering so much so that their
applications are becoming almost routine. There are,
however, other new and powerful supervised learning
or classi�cation algorithms with great potential in civil
and structural engineering that are worth exploring.
Four of them developed by the senior author and his
associates are reviewed in this section.

7.1. Enhanced probabilistic neural network
Ahmadlou and Adeli [92] proposed a supervised clas-
si�er called Enhanced Probabilistic Neural Network
(EPNN) to improve the accuracy and robustness of
PNN by means of local decision circles with the purpose
of incorporating the non-homogeneity often existing in
a training population. They demonstrated that EPNN
was superior to PNN by applying it to three di�erent
benchmark classi�cation problems: iris data, diabetic
data, and breast cancer data. Since then, EPNN
has been demonstrated to be a powerful classi�cation
algorithm for diagnosis of various neurological disorders
such as Parkinson's disease [93] and Mild Cognitive Im-
pairment (MCI) [94] and prediction of sudden cardiac
arrest [95]. To the best of the authors' knowledge, there
is only one structural engineering application of EPNN,
as described in Section 5.

7.2. Neural dynamic classi�cation algorithm
Starting with the patented neural dynamics optimiza-
tion model of Adeli and Park [79], Ra�ei and Adeli [45]
introduced a new supervised classi�cation algorithm,
called Neural Dynamic Classi�cation (NDC), with the
goal of uncovering the most e�ective feature spaces
and �nding the optimum number of features required
for accurate classi�cation. The algorithm is capable
of solving highly complicated classi�cation problems
by employing a new feature space with large margins
between clusters and close proximity of the classmates
and a set of transformation functions. They compared
the new classi�cation algorithm with the Probabilis-
tic Neural Network (PNN), EPNN, and SVM using
multiple standard benchmark problems. They note
\NDC yields the most accurate classi�cation results
followed by EPNN. A beauty of the new algorithm
is the smoothness of convergence curves which is an
indication of robustness and good performance of the
algorithm."

So far, NDC has been used successfully to solve
two complicated structural engineering problems, that
is, development of an earthquake early warning sys-
tem [96] and damage detection in high-rise building
structures [97].
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7.3. Finite element machine for fast learning
Recently, Pereira et al. [98] proposed a new super-
vised pattern classi�er, called Finite Element Machine
(FEMa), with its research ideology and theoretical
basis in the Finite Element Method widely used in nu-
merical analysis and solution of numerous engineering
problems. In this model, \each training sample is the
center of a basis function, and the whole training set
is modeled as a probabilistic manifold for classi�cation
purpose." The algorithm is parameterless and does
not require a training step, which can be a great
advantage when the dataset is large, that is so-called
the Big Data problems. FEMa has been shown to
yield competitive results for classifying 23 di�erent
public benchmark datasets (e.g., breast data, wine
data, diabetes data, among others) compared with nine
other pattern classi�ers such as DT, Bayesian [99],
KNN, RF, Optimum-Path Forest (OPF), SVM with
Radial Basis Function, SVM with a sigmoid function,
and EPNN. The authors believe that FEMa has great
potentials and should be explored for civil/structural
engineering applications.

7.4. Dynamic ensemble learning algorithm
As noted in this article, many di�erent ML algorithms
have been developed over the past three decades.
Ensemble ML methods employ multiple learning al-
gorithms to achieve more accurate results than those
obtained using any of the constituent learning algo-
rithms [100{102]. Rokibul Alam et al. [103] presented
a Dynamic Ensemble Learning (DEL) algorithm for
designing an ensemble of neural networks. According
to the authors, \DEL algorithm determines the size
of ensemble, the number of individual NNs employing
a constructive strategy, the number of hidden nodes
of individual NNs employing a constructive-pruning
strategy, and di�erent training samples for individual
NN's learning." They introduced the concept of
negative correlation learning to enhance the diversity
in learning. The e�cacy of the model has been veri�ed
by application to four medical and seven non-medical
benchmark problems and datasets.

8. Conclusions

There has been a signi�cant interest in the application
of ML algorithms in structural engineering in recent
years. Some of the recent structural engineering
applications of ML algorithms were reviewed in this
paper. The most common ML approaches used in
structural engineering included SVM and deep learning
algorithms such as CNN and LSTM. The latter has
captured the imagination of structural engineering
researchers in the past four years. There are, however,
other ML algorithms with great potential in civil and
structural engineering that are worth exploring. Four

novel supervised ML algorithms developed recently by
the senior author and his associates with potential
applications in civil/structural engineering were intro-
duced in this paper.
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