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Abstract. Solving complex engineering problems using meta-heuristics requires powerful
operators to maintain su�cient diversi�cation as well as proper intensi�cation during the
search. Standard Imperialist Competitive Algorithm, ICA, delays search intensi�cation by
propagating it via a number of arti�cial empires that compete each other until one concurs
with the others. An Enhanced Imperialist Competitive Algorithm (EICA) is developed here
by adding an evolutionary operator to the standard ICA followed by greedy replacement in
order to improve its e�ectiveness. The new operator introduces a walking step directed from
the less signi�cant �t with a �tter individual in each pair of the search agents together with a
random scaling and pick-up scheme. EICA performance is then compared with ICA as well
as genetic algorithm, particle swarm optimization, di�erential evolution, colliding bodies
optimization, teaching-learning-based optimization, symbiotic organisms search in a set of
�fteen test functions. Second, a variety of continuous and discrete engineering benchmarks
and structural sizing problems are solved to evaluate EICA in constrained optimization. In
this regard, a diversity index and other convergence metrics are traced. The results exhibit
a considerable improvement on the algorithm using the proposed features of EICA and its
competitive performance, compared to other treated methods.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Optimal design is a rewarding task in several engi-
neering �elds. These problems are categorized into
continuous and discrete types due to the nature of
design variables. In addition, real-world requirements
usually bring about a number of constraints to be
satis�ed. They increase the complexity of engineering
problems and raises the need to develop more e�cient
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algorithms to solve them. Nevertheless, no-free-lunch
theorem states that no single algorithm is best suited
for and capable to solving all problems [1].

Meta-heuristic algorithms constitute a class of
optimization methods that can reveal a near-optimal
solution in a practical time period. Up to date, several
meta-heuristic methods have been developed due to
some natural, biological, cultural, or human-based
behaviors to explore the search space [2,3]. Among
them, the present study concerns Imperialist Competi-
tive Algorithm (ICA) [4] that has already been applied
in several �elds of engineering problems [5]. ICA
is distinguished from similar evolutionary algorithms
by applying the searching method in a number of
interacting subpopulations (empires) which will �nally
collapse into one empire. The best individual within
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each empire is called imperialist, while others are
known as colonies. In its basic form, ICA employs
two crucial operators called assimilation and compe-
tition. Assimilation deals with the colonies within each
empire, while competition operator forces one colony
from the weakest empire to move to the best. Such
a process is slow to converge and vulnerable to being
trapped in local optima [6].

Consequently, several investigators have pre-
sented basic ICA variants to improve it. Talatahari
et al. [7] modi�ed the assimilation operator in two
folds: application of orthogonal vectors and use of four
chaotic maps instead of common random generators.
As a result, their developed OICA and CICA led
to greater robustness than ICA. Chaotic maps were
employed by Bahrami et al. [8] to improve ICA. Some
other investigators have utilized revolution operator to
increase diversity of each empire during assimilation
[9{11]. Atashpaz-Gargari [4,9] also combined empires
with too close imperialists and lowered the frequency
of competition to prevent premature convergence. Jain
and Nigam [11] hybridized Genetic Algorithm, GA,
through assimilation, while Khorani et al. [12] sug-
gested recursive implementation of ICA and GA to
make use of both during optimization. Karimi et
al. suggested an electromagnetism-inspired algorithm
to replace assimilation in ICA [13]. Lin et al. [6]
enhanced the interaction between di�erent empires
through their IEICA method rather than improving
only assimilation operator. They utilized information
sharing between all empires once by o�ering an Ar-
ti�cial Imperialist (ICAAI) via weighted-sum over all
imperialists and applying crossover on each pair of
imperialists (ICACI) [6].

Meta-heuristics enjoy diversi�ed stochastic op-
erators to overpass local optima and use some in-
tensi�cation strategies to re�ne the search for global
optimum. Proper performance of a meta-heuristic
method relies on balancing these features during the
search. A common approach to achieving such a goal
is to hybridize powerful features of distinct algorithms
in a new framework [14]. In this regard, the present
work investigates the improvement of ICA by applying
two distinct solutions; �rst, a new walking phase is
embedded to ICA to increase diversi�cation in the
assimilation part; then, a greedy selection is utilized
to accelerate the search re�nement capability. The
proposed algorithm is here-in-after called Enhanced
Imperialist Competitive Algorithm (EICA).

The rest of this article paper is organized as
follows. Section 2 describes ICA in brief. Theoretical
basis and algorithm of EICA are presented in Section 3.
Performance of EICA is then evaluated by treating
some continuous test functions in Section 4 and well-
studied constrained problems in Section 5. Discussion
of the numerical results via comparison with a set

of other well-known meta-heuristics will conclude the
present study.

2. Imperialist Competitive Algorithm (ICA)

Since 2007 when Imperialist Competition or Colonial
Competitive Algorithm was �rst introduced [4], it has
been successfully applied to a variety of engineering
problems [15{23].

ICA simulates the interaction between a weaker
country known as colony and its possessing imperialist
within several subpopulations called empires. In other
words, the most powerful colony in each empire is its
relevant imperialist. The power of an empire depends
mostly on the imperialist and partially on their other
colonies.

An imperialist tends to absorb not only the
colonies in its empire but also the ones in the other
empires. The former constitutes a local search, while
the latter may result in global search. Such imperialists
compete with each other to take control of colonies in
other empires. Consequently, some weak empires will
collapse during optimization, while more powerful ones
will become larger.

Such a process is repeated for the remaining em-
pires. The movement of colonies toward their relevant
imperialists as well as the competition among empires
and the collapsing mechanism will hopefully cause all
countries to converge into one empire. This �nal empire
will possess all the other countries, among which the
best colony reveals the optimal solution. Procedure
of the aforementioned ICA in a �tness maximization
problem is briefed as follows where the �tness is taken
as opposed to the cost:

Step 1. Initialize Nimp number of empires over
randomly positioned Npop countries. Evaluate �tness
of all countries and identify the �ttest empire as its
imperialist.
Step 2. For every empire do.
Step 3. For each colony in the current empire,
perform Steps 4 and 5.
Step 4. Walking Phase I: Take the current colony
in the direction between the colony and its relevant
imperialist by:

Xc;new = Xc +Xnew; (1)

Vnew = (� � rand� 1) + (Ximp �Xc); (2)

where Xc and Xc;new are the current and new
positions of the colony, respectively. � is a control
parameter greater than 1 and Ximp stands for the
empire position. The function rand generates random
numbers between 0 and 1 with a uniform distribution.
The term �1 is added to the basic formula in ICA to
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allow some portion of colonies to get away from the
imperialist [24]. The other portion, however, should
be greater to guide most of the colonies toward their
best. It is utilized by taking a larger value for �, say
4, as recommended in the literature [6].

- Evaluate Xc;new. ReplaceXcwith Xc;new if Xc;new
is better.

Step 5. Update the imperialist in each empire by
identifying its �ttest colony.

Step 6. Compute the total �tness and power of each
empire by the following relations:

Timp=fitness(Ximp)+k �
NimpP
i=1

fitness(Ximp)

Nimp
;
(3)

NTimp = Timp �max(Timp); (4)

Pimp =

���������
NTimp

NimpP
i=1

NTimp

��������� ; (5)

where k is a positive number less than 1 and Nimp de-
notes the number of empires. For every empire, Pimp
is its power, whereas Timp andNTimp denote the total
�tness and its normalized value, respectively.

Step 7. Transfer the worst colony from the weakest
empire to the empire that has the most likelihood
based on Pimp.

Step 8. Eliminate the powerless empires.

Step 9. Loop from Step 2 until termination crite-
rion is satis�ed, that is, completing the prescribed
Number of Function Evaluations (NFE).

According to ICA algorithm, its control parame-
ters are NFE, Npop, Nimp, k, and �.

3. Enhanced Imperialist Competitive
Algorithm (EICA)

ICA can be distinguished from several other meta-
heuristics due to its special approach to employing
dynamic-size subpopulations and collapsing all of them
into one empire. In other words, it provides delayed
transfer of the distributed search among subpopu-
lations into the intensifying search within the �nal
empire. Having several control parameters facilitates
�ne tuning of the algorithm at the expense of extra
computational e�ort as a practical challenge.

An EICA is developed here that embeds a new

walking phase to the standard ICA. Through this
walk, a colony moves toward (or backward from)
another randomly picked-up colony (the neighbor) in
the same empire, provided that the neighbor is �tter
(or less �t) than that. In doing so, a candidate
colony is generated for possible replacement. Such an
operator acts as a real-type crossover between these
agents upon applying randomized weighting factors.
Therefore, it is expected that the e�ectiveness of
the algorithm be improved. Furthermore, the newly
generated colony takes the place of the current one if
it is �tter. Such a greedy replacement helps intensify
the search for better positions and improves the al-
gorithm e�ciency. Figure 1 reveals the owchart of
the proposed EICA which is detailed in the following
steps:

Step 1. Initialization: Generate Npop randomly
positioned countries and distribute them via Nimp =
Npop=5 empires. Evaluate the �tness of all countries
and identify the �ttest of each empire as the imperi-
alist of it.
Step 2. For every empire, perform Step 3.
Step 3. For each colony in the current empire, repeat
Steps 4 to 6.
Step 4. Walking Phase I:
- Move any colony except the imperialist by the

following relation:

Xc;new=Xc+(4� rand�1)+(Ximp�Xc): (6)

- Evaluate Xc;new and replace Xc with Xc;new if
Xc;new is better.

Step 5. Walking Phase II:
- Randomly select a neighbor colony, XNb;
- If XNb is �tter than Xc, then s = +1; otherwise,
s = �1. Generate candidate Xc;new by:

Xc;new = Xc + rand� s+ (XNb �Xc): (7)

- Evaluate Xc;new. Then, replace Xc with Xc;new if
Xc;new is better.

Step 6. If there is a colony with lower cost (�tter)
than the imperialist, exchange their position within
the corresponding empire.
Step 7. Compute the total power Timp, normalized
total power NTimp, and likelihood probability Pimp
for all empires by Eqs. (8) to (10):

Timp = fitness(Ximp) + k �
NimpP
i=1

fitness(Ximp)

2Nimp
;

(8)

NTimp = Timp �max(Timp); (9)
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Figure 1. Flowchart of the proposed Enhanced Imperialist Competitive Algorithm (EICA).

Table 1. Unimodal benchmark functions.

Function Dim Range

f1(x) = (x1 � 1)2 +
dP
i=2

i(2x2
1 � xi�1)2 5 [{10,10]

f2(x) =
d�1P
i=1

[100(xi+1 � x2
i )

2 + (xi � 1)2] 5 [{5,10]

f3(x) = (
dP
i=1

xi2)2 5 [{100,100]

f4(x) =
dP
i=1
jxi5 � 3xi4 + 4xi3 + 2xi2 � 10xi � 4j 5 [{10,10]

f5(x) =
dP
i=1

xi4 5 [{10,10]

Pimp =

���������
NTimp

NimpP
i=1

NTimp

��������� : (10)

Step 8. Transfer the worst colony from the weakest
empire to the empire with the highest likelihood
based on Pimp.

Step 9. Eliminate the powerless empires.

Step 10. Repeat Step 2 until termination criterion

is satis�ed, that is, reaching a prescribed number
of iterations, MaxIter, or a prescribed number of
objective function evaluations, NFE.

4. Unconstrained numerical examples

In order to test the performance of the proposed
method for optimization of continuous problems, a
set of 15 benchmark functions was selected. They
include unimodal, multimodal, and �xed-dimension
multimodal functions [25], as described in Tables 1, 2,
and 3, respectively.
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Table 2. Multimodal benchmark functions.
Function Dim Range

f6(x) = �20 exp(�0:2

s
( 1
d

dP
i=1

xi2))� exp(
s

( 1
d

dP
i=1

cos(2�xi))� 20 + exp(1) 30 [{32.7,32.7]

f7(x) =
dP
i=1

xi2
4000 �

dQ
i=1

cos( xip
i
) + 1 30 [{600,600]

f8(x) = � dP
i=1

sin(xi) sin ((ixi2)=�)20 30 [0,�]

f9(x) =
dP
i=1

xi6(2 + sin( 1
xi

)) 30 [{1,1]

f10(x) = 1� cos(2�
dP
i=1

xi2) + 0:1

s
dP
i=1

xi2 30 [{100,100]

Table 3. Fixed-dimension multimodal benchmark functions.

Function Dim Range

f11(x) = � cos(x1) cos(x2)exp(�(x1 � �)2 � (x2 � �)2) 2 [{100,100]

f12(x) = (
5P
i=1

i cos((i+ 1)x1 + i))(
5P
i=1

i cos((i+ 1)x2 + i)) 2 [{5.12,5.12]

f13(x) = sin(x1) exp (1� cos(x2))2+
cos(x2) exp (1� sin(x1))2 + (x1 + x2)2

2 [�2�, 2�]

f14(x) = sin(x1 + x2) + (x1 � x2)2 � (3=2)x1 + (5=2)x2 + 1 2 �1:5 � x1 � 4
�3 � x2 � 3

f15(x) = (exp(�x1)� x2)4 + 100(x2 � x3)6 + (tan(x3 � x4))4 + x1
8 4 [{1,1]

Table 4. Speci�c control parameters of the treated algorithms rather than Npop and Number of Function Evaluation
(NFE).

Algorithm Control parameters Algorithm Control parameters
PSO c1 = 1, c2 = 2, c3 = 2 CBO {
GA Pm = 0:1, b = 2 TLBO {
ICA � = 4, k = 0:5 SOS {
DE { EICA {

In this section, Npop and NFE are set to 50 and
2000, respectively. Performance comparison for Parti-
cle Swarm Optimization (PSO), GA, ICA, Di�erential
Evolution (DE), Colliding Bodies Optimization (CBO),
TLBO, SOS, and the proposed EICA is made, where
the last �ve are considered parameter-less methods. To
achieve more reliable results, 30 independent runs are
performed for each benchmark problem.

For such mathematical test problems, the �tness
is de�ned as opposed to the corresponding cost func-
tion, f , so that the problem formulation is given below:

Maximize fitness(X) = � f(X): (11)

During optimization, any design vector X is
forced to fall within the range L � X � U denoting
the lower and upper bounds on design variables, re-
spectively.

Intrinsic parameters of PSO include c1, c2, and
c3 as the inertial, cognitive, and social factors, respec-
tively. They arise in the following velocity-updating
relation according to standard PSO:

Vnew = c1:V + rand� c2(Xpb�X) + rand

�c3(Xgb�X); (12)

whereXpb introduces the previous best position of each
particle with the current position, X, and velocity, V .
Xgb stands for the global best over all Xpb's. The new
position for every particle is thus calculated as follows:

Xnew = X + Vnew: (13)

The employed control parameters are given for each
algorithm in Table 4. ICA parameters are used as
suggested in [6].
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Table 5. Comparison of the best results of the treated test functions over di�erent algorithms.

Test function PSO GA ICA DE CBO TLBO SOS EICA

F1 25.79 3.46 1.82 1.50 604.47 7.56 4.52 1.00

F2 62.31 1.98 15.35 1.04 1.28 29.40 1.23 1.00

F3 1005513.00 119.42 20.32 14.74 218488.18 4995.08 54.20 1.00

F4 25.53 5.14 5.92 1.37 844.66 17.18 1.46 1.00

F5 19303.56 30.13 102.45 6.38 238718.13 12120.76 78.69 1.00

F6 1.73 1.00 1.15 2.11 2.55 1.07 2.12 1.00

F7 3.51 1.00 2.18 2.80 3.99 1.91 2.77 1.00

F8 1.02 1.15 1.02 1.19 1.48 1.00 1.06 1.15

F9 445.07 148.42 1.40 19272.51 1.00 2.35 28444.00 1.00

F10 2.14 1.34 1.43 2.66 1.00 1.15 1.33 1.00

F11 1.00 2.62 1.00 1.02 2.62 1.00 1.01 1.00

F12 1.02 1.00 1.01 1.00 1.13 1.00 1.00 1.02

F13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F14 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00

F15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 6. Comparison of mean optimization results in the treated test functions.

Test function PSO GA ICA DE CBO TLBO SOS EICA

F1 6.59 1.01 1.00 8.58 222.18 4.16 14.06 2.15
F2 4.41 1.01 1.53 1.24 9.65 2.38 1.14 1.00
F3 65.08 1.00 1.00 23.01 1903.05 13.29 26.25 2.06
F4 7.55 1.58 2.11 1.26 418.47 3.16 1.40 1.00
F5 135.81 1.00 6.07 23.73 28243.09 61.27 31.52 1.00
F6 1.64 1.00 1.12 2.47 3.90 1.18 2.42 1.00
F7 1.54 1.00 1.15 3.30 4.07 1.20 3.44 1.00
F8 1.00 1.12 1.10 1.16 1.34 1.01 1.01 1.15
F9 121.11 1.00 1.19 68.80 1362.82 5.46 89.84 1.00
F10 1.77 1.00 1.23 1.67 2.33 1.23 1.37 1.00
F11 1.00 2.00 1.00 1.14 2.00 1.00 1.25 1.00
F12 1.01 1.16 1.01 1.04 1.61 1.00 1.01 1.02
F13 1.00 1.01 1.02 1.01 1.14 1.01 1.00 1.02
F14 1.00 1.00 1.00 1.00 1.09 1.00 1.00 1.00
F15 1.00 1.00 1.00 177.98 73.60 1.00 188.12 1.00

For a clear comparison between the best and mean
results in Tables 5 and 6, the values are normalized to
the optimal result of each function and the most desired
one (the least cost) is highlighted in each case.

Functions F1�F5 are unimodal and have only
one global optimum. These functions allow evaluating
the exploitation capability of the investigated meta-
heuristic algorithms. According to Table 5, EICA has a
superior exploitation capability with respect to others
in achieving the best results, exhibiting the e�ciency

of the proposed algorithm in dealing with a majority
of the test cases.

On the other hand, multimodal functions include
several local optima whose number can increase with
the problem size (the number of design variables).
Therefore, this kind of test problems returns useful
information when the purpose is to evaluate the ex-
ploration capability of an optimization algorithm. The
results of Table 5 for the functions F6{F15 indicate that
EICA has been very competitive against other treated
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Figure 2. Convergence comparison of Enhanced Imperialist Competitive Algorithm (EICA) vs. Imperials Competitive
Algorithm (ICA) for sample test functions F2, F9, and F14.

methods. Comparison of the mean results in Table 6
shows the overall superior rank of EICA with respect to
others in this experiment. Figure 2 demonstrates the
superior convergence of EICA over ICA in the sample
test functions F2, F9, and F14.

5. Constraint engineering problems

In this section, the performance of EICA is validated
by solving several constrained engineering problems (as
given in Appendix A) which are widely used in the
literature. The maximum NFE has been reported in
each case, while other control parameters are taken
the same as those in Section 4. For each example,
the results have been compared with other well-known
optimizers through 30 independent trials, over which
the corresponding best solution, mean, and Standard
Deviation (SD) are reported. In every run, a randomly
initiated population is identically used by the treated
algorithms in terms of fair comparison. In addition
to the total NFE, the one corresponding to the last
improvement in the best run has been reported as
NFEb when available.

5.1. Design of tension/compression spring
Arora [26] described this problem for which the aim is
to minimize the weight f(x) of a tension/compression
spring (as depicted in Figure 3) subject to constraints
on minimum deection, shear stress, surge frequency,
limits on outside diameter, and variables' bounds. The

Figure 3. Tension/compression spring design problem.

design variables include wire diameter d(x1), mean coil
diameter D(x2), and number of active coils P (x3).

In the present work, the problem is �rst solved
by PSO, GA, ICA, DE, CBO, TLBO, SOS, and EICA
using the same initial population in every trial run by
5000 function calls. Table 7 reports the corresponding
results in which EICA outperformed other algorithms
by achieving the best result of 0.01266 and the mean
of 0.01290 for the cost function. Furthermore, EICA
runs have continued up to 10000 function calls. Con-
sequently, the best result (global optimum) has not
changed, but the mean and SD have improved, as
declared in Table 8.

Table 8 compares the results of EICA in optimal
spring design with those reported in the related litera-
ture. It can be noted that the proposed hybridization
has considerably improved the result of ICA. In addi-
tion, EICA has captured global optimum of 0.01266
via just NFEb of 5000 while Mine Blast Algorithm
(MBA) has elapsed NFEb of 7650 to �nd the same
result. The second quality rank belongs to Heuristic
Particle Swarm Optimization (HPSO) [31] and Whale
Optimization Algorithm (WOA) [32] in determining

Table 7. Result of the present work for tension/compression spring design problems.

Design variable PSO GA ICA DE CBO TLBO SOS EICA

X1 0.0500 0.07227 0.05000 0.05000 0.05000 0.0510 0.06312 0.0521

X2 0.3161 0.67730 0.31147 0.31652 0.31732 0.3396 0.67524 0.3673

X3 14.4327 10.55366 15.00000 14.75751 14.10949 12.5560 3.85898 10.6963

Best 0.01298 0.04441 0.01324 0.01326 0.01278 0.01284 0.01576 0.01266

Mean 0.01320 0.04442 0.03321 0.13562 0.06228 0.01324 0.09362 0.01290

SD 0.00100 0.00001 0.02100 0.0562 0.0065 0.0008 0.0004 0.0002
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Table 8. Comparison results obtained from various algorithms for tension/compression spring design.

Design
variable

RO [27] ES [28] TWO [29] MBA [30] HPSO [31] WOA [32] GSA [32,33] EICA EICA

X1 0.0513 0.0519 0.0515 0.0516 0.0517 0.0512 0.0502 0.0521 0.0521
X2 0.3490 0.3639 0.3543 0.3559 0.3571 0.3452 0.3236 0.3673 0.3673
X3 11.7627 10.8905 11.4287 11.3446 11.2650 12.0040 13.52 54 10.6963 10.6963

Best 0.01267 0.01268 0.01266 0.01266 0.01267 0.01267 0.01270 0.01266 0.01266
Mean N/A N/A 0.01297 0.01271 0.01270 0.01270 0.0136 0.01290 0.01282

SD N/A N/A 2:6E � 4 6:3E � 05 1:5E � 05 0.0003 0.0026 0.00020 0.00007

NFE N/A N/A N/A 50000 5000 5000 10000

(NFEb) (7650) (81000) (4410) (4980) (5000) (5000)

Table 9. Results of the present work for pressure vessel design problem.

Design variable PSO GA ICA DE CBO TLBO SOS EICA

X1 1.3426 1.3663 0.9612 1.2772 0.9675 1.2807 1.2672 1.2588
X2 0.6250 0.6250 0.6250 0.6250 0.6250 0.6250 0.6250 0.6250
X3 65.4917 65.2428 49.7836 65.4348 50.1309 65.3235 65.4119 65.2252
X4 10.0000 10.0000 112.2087 10.0000 99.7065 10.0000 10.0000 10.000

Best 5728.54 5714.73 8481.01 5653.77 7950.1 5640.23 5640.35 5603.51
Mean 7059.63 11385.75 8536.40 6318.8 7960.43 6643.83 5883.62 5604.60

SD 893.9 2820.3 170.5 529 24.9 588.1 166.4 1.41

the objective value of 0.01267 by taking 81000 and 4980
function calls, respectively. In this example, EICA has
superior quality of �nal design compared to ICA.

5.2. Pressure vessel design problem
Pressure vessel design problem was introduced by Kan-
nan and Kramer [34] for which the costs of material,
forming, and welding were uni�ed into total cost to be
minimized. The cylindrical vessel was capped at both
ends by hemispherical heads, as shown in Figure 4.
There are four design variables in this problem: Ts
(X1, thickness of the shell), Th (X2, thickness of the
head), R (X3, inner radius), and L (X4, length of the
cylindrical section of the vessel). Here, this example is
solved by continuous variables.

According to Table 9, EICA has outperformed the
other treated methods in capturing 5603.51 as the best

Figure 4. Pressure vessel design problem.

cost. It is well superior to 8481.01 by ICA and 5640.23
by TLBO even within 30000 function evaluations.

It is noticed that the best result of EICA, i.e.,
5603.51, has not changed after NFEb of 16000 where
the mean and SD are 5610.27 and 7.54, respectively.
According to Table 10, increasing NFE to 30000 has
improved SD and mean results of EICA. A comparison
of our �ndings with those in the literature in this
example points to the superior performance of EICA
in terms of e�ectiveness and robustness.

5.3. I-beam design
This case is modi�ed and derived from the original
problem reported in [37] with the aim of minimizing
the vertical deection of an I-beam as the objective (see
Figure 5). The beam is simply supported at both ends
and should satisfy stress constraints, while 4 continuous
design variables are con�ned within their bounds.

According to Table 11, in this example, EICA

Figure 5. Minimizing vertical deection of a
simply-supported I-beam.
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Table 10. Comparison of Enhanced Imperialist Competitive Algorithm (EICA) with literature results for pressure vessel
design problem.

Design variable MBA [30] GSA [32,33] VCS [35] GWO [36] EICA EICA

X1 0.7802 1.1250 0.7782 0.7791 1.2588 1.2588

X2 0.3856 0.6250 0.3846 0.3846 0.6250 0.6250

X3 40.4292 58.2901 40.3196 40.3277 65.2252 65.2252

X4 198.4964 84.4542 199.9999 199.6503 10.000 10.000

Best 5889.32 8538.83 5885.33 5889.37 5603.51 5603.51

Mean 5889.32 8932.95 5911.62 5891.52 5610.27 5604.60

SD 160.34 683.5 57.36 13.91 7.54 1.41

NFE 100000 N/A N/A N/A 16000 30000

(NFEb) (70650) (7110) (36020) (16000) (16000)

Table 11. Result of the present work for I-beam design problem.

Design variable PSO GA ICA DE CBO TLBO SOS EICA

X1 80.0000 80.0000 80.0000 80.0000 72.5342 80.0000 80.0000 80.0000

X2 50.0000 16.7337 50.0000 50.0000 42.5342 50.0000 42.5614 50.0000

X3 1.0890 2.5401 1.4852 0.9747 1.8504 0.9875 1.2053 0.9594

X4 2.1741 3.3336 0.9000 2.2633 1.8504 2.2440 2.2836 2.2761

Best 0.013566 0.020200 0.025004 0.013265 0.020247 0.013344 0.014849 0.013221

Mean 0.015064 0.025689 0.027439 0.014246 0.027668 0.014118 0.016034 0.014010

SD 0.0008 0.0015 0.0028 0.0014 0.0029 0.0006 0.0007 0.0008

Table 12. Comparison of Enhanced Imperialist Competitive Algorithm (EICA) with literature results for I-beam design
example.

Design variable CS [38] ARSM [39] EICA EICA

X1 80.0000 80.0000 80.0000 80.0000
X2 50.0000 37.05 50.0000 50.0000
X3 0.9000 1.71 0.9594 0.9594
X4 2.3216 2.31 2.2761 2.2761

Best 0.013074 0.0157 0.013221 0.013221
Mean 0.013216 N/A 0.014010 0.013400

SD 0.00013 N/A 0.00080 0.00027
NFE 25000 N/A 5000 10000

(NFEb) (5000) (5000) (5000)

has captured the best result of 0.013221 and mean of
0.014010 which are both better than the results of other
treated algorithms via 5000 function calls.

The best result of the literature, i.e., 0.013074,
belongs to Cuckoo Search (CS) [38] with 1% di�erence
from the best result of EICA. Note that the literature
works in Table 12 have been conducted with di�erent
initial populations and their outcome is consistent with
the results of the present works in Table 11. Extending
NFE from 5000 to 10000 points to the robustness of
EICA upon improving SD and mean results.

6. Structural sizing problems

In this section, the performance of EICA is examined
in a process that involves solving several structural
problems. The results are compared with literature
results of other well-known optimizers. Structural
weight minimization is of concern, provided that mem-
ber properties can only be chosen from a discrete set
of available structural pro�les. In addition to variable
bounds, there are several behavioral constraints that
should be evaluated via structural analysis.
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A Diversity Index, DI, is also utilized via Eq. (14)
[40]. It is further used to compare the convergence
behavior of the algorithms:

DI = mean
j

�
SDj

Uj � Lj
�
; (14)

where Lj and Uj are the lower and upper bounds
on every jth design variable, respectively; meanwhile,
SDj stands for the SD of the corresponding design
variable among colonies of the population. DI is
evaluated for the entire population at each iteration.
The DI should be high at early iterations and it
would decrease throughout the search progress as the
population agents converge to the optimum. The DI
trace versus iterations varies for various algorithms and
it can be employed to ensure a better understanding of
the behavioral di�erences. For the structural examples
in the present work, a population of size 50 has been
identically used in ICA and EICA.

6.1. 10-bar truss design
The 10-bar truss, shown in Figure 6, has been widely
addressed by many researchers. The material density is
0.1 lb/in3 (0.0272 N/cm3) and the modulus of elasticity
equals E = 104 ksi (68947.57 MPa). Stress limitation
in compression and tension for each member is taken
�25 ksi (�172.37 MPa). Maximum nodal displacement
in each direction is limited to �2 in (�0:0508 m). A
vertical load of 105 lb is exerted at Nodes 2 and 4.

Optimal results of GA, PSO, PSOPC, HPSO,
MBA and ICA, and EICA are compared in the present
work for the 10-bar truss, as shown in Table 13. Of
note, EICA has successfully captured the best design
among the others. The least NFE is 5850 for EICA,

Figure 6. 10-bar truss example.

while it is more than 10000 for PSO, PSOPC, HPSO,
and ICA. The SD of EICA about its mean result is
93.9, while it is 664.1, 12.8, 3.8, and 257.0 for PSO,
PSOPC, HPSO, and ICA, respectively.

Figure 7 exhibits the superior convergence of
EICA over ICA in this example. The reason for the
above �nding can be determined by tracing the DI
of the methods. According to Figure 8, EICA value
has reduced DI more rapidly, while ICA has kept
oscillations of the constant DI after an initial decrease.
This issue points to quite a di�erent behavior of these
algorithms, although EICA is the extension of ICA
with e�ective hybridization.

6.2. 15-bar truss design
The 15-bar truss given in Figure 9 was studied by Li et
al. [42] and Sadollah et al. [43]. Material density and
elasticity modulus are 7800 kg/m3 and E = 200 MPa,
respectively. The allowable stress for each member of

Table 13. Comparison of results obtained by di�erent algorithms for the 10-bar truss example.
Variables (in2) GA [41] PSO [42] PSOPC [42] HPSO [42] MBA [30] ICA EICA

A1 33.5 30 30 30 30 30 33.5
A2 1.62 1.62 1.8 1.62 1.62 1.62 1.62
A3 22 30 26.5 22.9 22.9 30 22.9
A4 15.5 13.5 15.5 13.5 16.9 18.8 14.2
A5 1.62 1.62 1.62 1.62 1.62 1.62 1.62
A6 1.62 1.8 1.62 1.62 1.62 1.62 1.62
A7 14.2 11.5 11.5 7.97 7.97 13.9 7.97
A8 19.9 18.8 18.8 26.5 22.9 16 22.9
A9 19.9 22 22 22 22.9 19.9 22
A10 2.62 1.8 3.09 1.8 1.62 3.13 1.62

Best weight (lb) 5613.8 5581.8 5593.4 5531.9 5507.7 5706.52 5490.73
Mean (lb) { { { { { 5920.40 5611.20

SD { 664.1 12.8 3.8 { 257 93.9
NFE { 50000 50000 50000 20000 15000 15000

(NFEb) { (15000) (15000) (12500) (3600) (6250) (5850)
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Figure 7. Convergence comparison of Enhanced
Imperialist Competitive Algorithm (EICA) vs. Imperials
Competitive Algorithm (ICA) for the 10-bar truss
example.

Figure 8. Diversity Index (DI) traces of Enhanced
Imperialist Competitive Algorithm (EICA) vs. Imperials
Competitive Algorithm (ICA) for the 10-bar truss.

Figure 9. 15-bar truss example.

this structure equals �120 MPa. Nodal displacements
are con�ned at �10 mm in any direction.

Discrete design variables are selected from the set
f113.2, 143.2, 145.9, 174.9, 185.9, 235.9, 265.9, 297.1,
308.6, 334.3, 338.2, 497.8, 507.6, 736.7, 791.2, 1063.7g

Figure 10. Convergence comparison of Enhanced
Imperialist Competitive Algorithm (EICA) vs. Imperials
Competitive Algorithm (ICA) for the 15-bar truss.

Figure 11. Diversity Index (DI) traces of Enhanced
Imperialist Competitive Algorithm (EICA) vs. Imperials
Competitive Algorithm (ICA) for the 15-bar truss.

(mm2). Concentrated loads of 35kN are applied at
Nodes 4, 6, and 8.

According to Table 14, the global best design of
this example with a weight of 105.735 is captured by
HPSO [42], MBA [30], and EICA. As shown in Figure 9,
EICA has captured this global optimum through 4850
function evaluations with a better convergence rate
than ICA.

According to Figure 10, EICA has rapidly con-
verged to zero velocity, while ICA has a more gradual
trend of diversity variation in this example. According
to Figure 11, DI trace in EICA rapidly decreases in
several runs and the population moves towards an
optimal solution; however, it has not been caught in
local minimum and has achieved the best �tness. On
the contrary, in the ICA, the diversity of the population
in each run is almost constant and the convergence
process is slow.

6.3. 582-bar tower truss design
As an example of a large-scale problem, a 582-bar
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Table 14. Comparison of results obtained from various algorithms for 15-bar truss example.

Variables (mm2) PSO [42] PSOPC [42] HPSO [42] MBA [43] ICA EICA
A1 185.9 113.2 113.2 113.2 113.2 113.2
A2 113.2 113.2 113.2 113.2 113.2 113.2
A3 143.2 113.2 113.2 113.2 338.2 113.2
A4 113.2 113.2 113.2 113.2 297.1 113.2
A5 736.7 736.7 736.7 736.7 736.7 736.7
A6 143.2 113.2 113.2 113.2 113.2 113.2
A7 113.2 113.2 113.2 113.2 113.2 113.2
A8 736.7 736.7 736.7 736.7 736.7 736.7
A9 113.2 113.2 113.2 113.2 113.2 113.2
A10 113.2 113.2 113.2 113.2 113.2 113.2
A11 113.2 113.2 113.2 113.2 113.2 113.2
A12 113.2 113.2 113.2 113.2 113.2 113.2
A13 113.2 185.9 113.2 113.2 113.2 113.2
A14 334.3 334.3 334.3 334.3 334.3 334.3
A15 334.3 334.3 334.3 334.3 334.3 334.3

Best weight (kg) 108.84 108.96 105.735 105.735 113.836 105.735
Mean { { { { 126.84 112.02

SD { { { { 11.36 10.79
NFE 25000 25000 25000 25000 10000 10000

(NFEb) (18700) (16000) (7500) (2000) (6500) (4850)

truss in Figure 12 (80 m tower) was considered. This
optimization problem was already solved with discrete
variables by Hasan�cebi et al. [44], Kaveh and Talatahari
[45], Kaveh and Mahdavi [46], and Shahrouzi et al. [47].
To keep symmetry of the tower around x- and y-axes,
the members are considered for sizing in 32 groups.
A single load case consisting of 5 kN force in both
x and y directions and a vertical force of 30 kN in
the downward z-direction is applied at every node of
the tower. The tower is optimized by a minimum
volume, while member cross-sections are selected from
a list of AISC W-sections based on the area and
radii of gyration. The corresponding lower and upper
bounds of the section area are 39.74 cm2 and 1387.09
cm2, respectively. Nodal displacements are limited
to 8.0 cm in each direction. The allowable tensile
and compressive stresses are calculated due to the
AISC ASD provisions [48] as follows:

�+
i = 0:6 Fy for �i � 0; (15)

��i =(
[(1� �2

i
2C2

c
)Fy ]=( 5

3 + 3�i
8Cc
� �3

i
8C3

c
) for �i < Cc

12�2E
23�2

i
for �i � Cc (16)

where E (the modulus of elasticity) is 203893.6 MPa
and Fy (the yield stress of steel) is taken 253.1 MPa. �i
is the slenderness ratio (�i = kLi=ri) where Li stands
for the length of the ith member and ri is the corre-
sponding minimal radius of gyration. Cc =

p
2�2E=Fy

denotes the slenderness measure by which the elastic
and inelastic buckling regions are distinguished from Figure 12. 582-bar tower truss.
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Table 15. Comparison of results obtained by di�erent algorithms for the 582-bar truss example.
Variables (cm2) PSO [44] DHPSACO [45] CBO [46] OTLBO [47] ICA EICA

A1 39.74 45.68 39.74 39.74 39.74 39.74
A2 149.68 136.13 149.68 136.13 123.23 165.16
A3 45.68 53.16 53.23 53.23 39.74 39.74
A4 113.55 109.68 90.96 118.06 104.52 123.23
A5 45.68 45.68 45.68 45.68 39.74 39.74
A6 39.74 45.68 39.74 39.74 39.74 39.74
A7 90.97 92.90 128.38 92.90 155.48 98.84
A8 45.68 45.68 45.68 45.68 39.74 39.74
A9 39.74 92.90 39.74 39.74 39.74 39.74
A10 85.81 45.68 90.96 90.97 66.45 136.13
A11 45.68 45.68 49.35 39.74 39.74 39.74
A12 129.03 75.48 118.06 136.13 155.48 83.87
A13 140.65 56.71 143.87 144.52 156.77 167.10
A14 90.97 136.13 100.64 92.90 101.94 101.94
A15 143.87 143.87 115.48 149.68 101.94 155.48
A16 55.90 92.90 75.48 58.90 57.03 39.74
A17 39.74 155.48 101.93 118.06 231.61 127.10
A18 127.10 45.68 49.35 45.68 39.74 39.74
A19 45.68 39.74 39.74 39.74 87.10 39.74
A20 39.74 75.48 81.29 87.10 72.26 107.74
A21 75.48 45.68 45.68 39.74 39.74 39.74
A22 45.68 41.87 39.74 39.74 160.00 39.74
A23 39.74 58.84 41.89 47.35 39.74 39.74
A24 41.87 53.23 45.68 39.74 39.74 39.74
A25 45.68 39.74 39.74 39.74 39.74 39.74
A26 39.74 39.74 39.74 39.74 39.74 68.39
A27 39.74 45.68 45.68 39.74 39.74 39.74
A28 45.68 53.23 39.74 39.74 39.74 39.74
A29 39.74 68.39 39.74 39.74 39.74 39.74
A30 39.74 45.68 47.35 39.74 39.74 39.74
A31 45.68 39.74 62.64 39.74 41.87 39.74
A32 45.68 45.68 53.22 39.74 100.64 39.74

Best volume (m3) 22.3958 22.0607 21.8376 20.9835 22.3458 20.5618
Mean { { { 21.2646 22.9541 22.4675

SD { { { { 2.602 2.550
NFE 50000 17500 20000 132000 25000 25000

(NFEb) (17500) (8500) (17700) (80400) (17500) (12500)

each other. Furthermore, the maximum slenderness
ratio �m is limited to 300 and 200 for tension and
compression members, respectively.

Table 15 reports the optimal design of this prob-
lem by PSO [44], DHPSACO [45], CBO [46], OTLBO
[47], and ICA and EICA. According to the reported
results, EICA has the best quality of �nal solution

among others at 20.56 m3 and the second rank belongs
to OTLBO at 20.89 m3.

As evident in Figure 13, EICA found the best
solutions through 12500 function evaluations; however,
ICA has not been able to capture such optimum within
25000 structural analyses. Figure 13 also shows a
higher convergence rate of EICA than that of ICA.
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Figure 13. Convergence comparison of Enhanced
Imperialist Competitive Algorithm (EICA) vs. Imperials
Competitive Algorithm (ICA) for the 582-bar truss.

Figure 14. Diversity Index (DI) traces of Enhanced
Imperialist Competitive Algorithm (EICA) vs. Imperials
Competitive Algorithm (ICA) for the 582-bar truss.

This �nding is con�rmed by observing DI traces in
Figure 14, while ICA has a more gradual trend of
diversity variation. The results show that EICA has
outperformed ICA in terms of convergence accuracy.
EICA controls DI slowly in every iteration. It facili-
tates EICA to achieve search re�nement near the last
function calls, while a greater value of DI prevents the
real improvement of ICA result.

6.4. 384-bar double-layer barrel vault
Another optimization problem investigated in this
article paper is a 384-bar double-layer barrel vault.
The span of the barrel vault is 24.82 m with its rise
and length being 5.12 m and 26.67 m, respectively.
The depth of the structure, i.e., the distance between
the top and bottom layers, is equal to 1.35 m. This
structure consists of 111 pinned joints and 384 bar
elements, which are grouped into 31 independent sizing
variables, as identi�ed in Figure 15.

The structural material properties are assumed
as follows: the modulus of elasticity is considered to
be 30,450 ksi (210,000 MPa), the yield stress of steel

Figure 15. 384-bar double-layer barrel vault: (a) Top
view and (b) perspective view.

Figure 16. Comparison of convergence rates for the
384-bar double-layer barrel vault.

58 ksi (400 MPa), and the density of steel 0.288 lb/in3

(7833.413 kg/m3). All connections are assumed as
ball jointed and the supports are considered at two
external edges of the top layer of the barrel vault.
Vertical concentrated loads of �20 kips (�88:964 kN)
are applied to all free joints (nonsupport joints) of the
top layer. Strength and slenderness limitations are
set according to AISC-ASD provision. Displacement
constraints of �0:1969 in (5 mm) are imposed on all
nodes in x, y, and z directions [3].

The design variables are the cross-sectional areas
of the bar elements which are selected from a list of steel
pipe sections from AISC-ASD. These pipe sections are
shown in Table 16.

384-bar barrel vault is a complex spatial example
and the total NFE is set to 20000; however, the last
improvement of EICA is identi�ed in NFEb of 7800,
leading to the best result in Table 17. EICA yields the
least weight of 28041.6 kg, con�rming its e�ectiveness,
while ICA does not experience any improvement in
a considerably heavier design, weighing 35867.2 kg.
Figures 16 and 17 compare the convergence rates
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Table 16. Structural steel pipe sections.

No. Type Nominal diameter (in.) Area (cm2) Gyration radius (cm)
1 ST 1

2 1.6129 0.662432
2 EST 1

2 2.064512 0.635
3 ST 3

4 2.129028 0.846582
4 EST 3

4 2.774188 0.818896
5 ST 1 3.161284 1.066038
6 EST 1 4.129024 1.034542
7 ST 1 1

4 4.322572 1.371346
8 ST 1 1

2 5.16128 1.582166
9 EST 1 1

4 5.677408 1.331214
10 EST 1 1

2 6.903212 2.003806
11 ST 2 6.903212 1.53543
12 EST 2 9.548368 1.945132
13 ST 2 1

2 10.96772 2.41681
14 ST 3 14.387068 2.955798
15 EST 2 1

2 14.5161 2.346452
16 DEST 2 17.161256 1.782572
17 ST 3 1

2 17.290288 3.395726
18 EST 3 19.483832 2.882646
19 ST 4 20.451572 3.835908
20 EST 3 1

2 23.741888 3.318002
21 DEST 2 1

2 25.999948 2.143506
22 ST 5 27.74188 4.775454
23 EST 4 28.451556 3.749548
24 DEST 3 35.290252 2.65811
25 ST 6 35.999928 5.700014
26 EST 5 39.419276 4.675124
27 DEST 4 52.25796 3.490976
28 ST 8 54.19344 7.462012
29 EST 6 54.19344 5.577332
30 DEST 5 72.90308 4.379976
31 ST 10 76.77404 9.342628
32 EST 8 82.58048 7.309358
33 ST 12 94.19336 11.10361
34 DEST 6 100.64496 5.236464
35 EST 10 103.87076 9.216898
36 EST 12 123.87072 11.028934
37 DEST 8 137.41908 7.004812

and DI history of ICA and EICA in this example,
respectively. The uctuating trend of DI prevents ICA
from true global search such that it stops at a local
minimum, thus justifying the lack of proper search
re�nement by ICA. On the other hand, EICA has not
only escaped from local optimum but also obtained the
highest quality solution with proper diversity reduction
during iterations of the search.

6.5. 1104-bar helipad truss design
In order to evaluate the performance of the proposed
algorithms in dealing with a real-world problem, opti-
mal design of a helipad truss in Figure 18 with 1104
bar elements has been introduced in the discrete form
for the �rst time. In the main double-layer grid, the
distance between the top and bottom layers is 1 m,
while the bottom layer has a bay length of 18 m. The
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Table 17. Comparison of results obtained from various algorithms for 384-bar double-layer barrel vault.

Section name CBO [3] ECBO [3] VPS [3] MDVC-UVPS [3] ICA EICA
A1 ST 1

2 ST 1
2 ST 3

4 ST 1
2 EST 6 ST 1

2

A2 EST 2 ST 2 1
2 EST 2 1

2 EST 2 EST 6 EST 3
A3 EST 2 EST 2 EST 2 1

2 EST 2 EST3=4 EST 3
A4 ST 3 ST 1 1

2 EST 1 1
2 ST 1 1

2 ST 4 EST 1 1
2

A5 DEST 2 1
2 EST 4 DEST 3 DEST 3 ST3 1

2 EST 3 1
2

A6 ST 2 1
2 ST 1 1

2 ST 1 1
2 ST 1 1

2 EST 12 EST 2 1
2

A7 ST 12 ST 12 ST 12 ST 12 ST 8 EST 10
A8 DEST 4 ST 10 EST 8 DEST 5 ST 8 ST 10
A9 DEST 5 ST 12 EST 10 EST 10 EST 6 EST 10
A10 ST 12 DEST 8 EST 10 EST 10 ST 10 EST 12
A11 DEST 5 DEST 5 DEST 5 DEST 5 DEST 5 EST 8
A12 DEST 6 EST 8 DEST 5 ST 12 EST 4 DEST 5
A13 DEST 3 ST 6 ST 6 ST 6 DEST 2 DEST 2 1

2

A14 EST 3 1
2 EST 3 1

2 DEST 3 ST 4 EST 4 DEST 2
A15 ST 2 1

2 ST 2 1
2 ST 2 1

2 EST 2 1
2 ST 2 1

2 ST 1
2

A16 EST 6 ST 5 ST 5 ST 4 EST 1 1
2 ST 4

A17 EST 6 EST 4 DEST 3 ST 6 ST 12 DEST 2
A18 EST 2 EST 1 1

2 EST 1 1
2 EST 1 1

2 EST 3 EST 4
A19 EST 2 ST 1 1

4 ST 1 1
4 ST 1 1

4 EST1 ST 4
A20 EST 2 1

2 EST 1 1
2 EST 1 1

2 EST 1 1
2 EST 2 1

2 ST 3
4

A21 EST 4 EST 1 1
2 EST 1 1

2 EST 1 1
2 EST 1

2 ST 1
2

A22 ST 3 1
2 ST 1 1

4 EST 1 1
2 ST 1 1

4 EST 3
4 ST 1 1

2

A23 EST 1 1
2 EST 1 1

2 EST 1 1
2 EST 1 1

2 EST 6 ST 2
A24 ST 3 1

2 EST 2 1
2 EST 2 1

2 ST 3 1
2 EST 1

2 DEST 2
A25 ST 2 1

2 ST 2 1
2 EST 2 1

2 EST 2 ST 6 ST 2 1
2

A26 DEST 4 ST 2 1
2 EST 1 1

2 EST 2 EST 1 1
2 ST 2 1

2

A27 EST 3 DEST 2 ST 3 ST 3 1
2 DEST 3 ST 2 1

2

A28 EST 2 EST 1 1
2 EST 1 1

2 EST 2 EST 2 EST 1 1
2

A29 ST 2 1
2 ST 2 1

2 EST 2 EST 2 ST 1 1
4 ST 2

A30 ST 3 EST 1 1
2 EST 2 EST 2 EST1 DEST 2

A31 ST 2 1
2 EST 1 1

2 EST 1 1
2 EST 2 DEST 5 ST 1 1

2

Best weight (kg) 31501.3 28343.1 28329.2 28456.3 35867.2 28041.6
Mean 55971.9 29839.5 30798.9 29818.2 38147.1 29645.3

SD 47099.6 1535.8 1321.3 1307.2 1532 945.7
NFE 20000 20000 20000 20000 20000 20000

(NFEb) (4320) (15980) (12780) (3460) (300) (7800)

structural members are divided into 9 groups for sizing
design. At the top layer, the concentrated vertical load
of 350 kgf is applied at each of 4 central nodes, in
addition to the distributed load of 300 kgf/m2. Nodal
displacements are limited to 0.5 cm in each direction.
The allowable tensile and compressive stresses are
calculated due to the AISC ASD provisions [48]. In this
example, the material density and modulus of elasticity
are 7850 kg/m3 and 2:1�108 kN/m2, respectively. The

yield stress of steel material is taken 253.1 MPa. Cross-
sectional areas of the bar elements can be selected from
a list of standard AISC pipe sections, given in Table 16.

Upon applying Npop of 50 and NFE of 10000,
this example is solved by PSO, TLBO, ICA, and
EICA. Additional parameters of PSO and ICA are set
according to Table 4.

Figure 19 demonstrates a sample convergence
history of PSO, TLBO, and ICA. As can be realized,
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Figure 17. Comparison of diversity history for the
384-bar double-layer barrel vault.

Figure 18. Helipad (1104-bar) truss: (a) Top view and
(b) side view.

PSO is trapped in local optima. On the other hand,
EICA has captured the highest quality result among
the others, reported as 24459.8 kg in Table 18.

The diversity variation for these algorithms is
compared in Figure 20. Of note, PSO uctuates at
about a relatively high DI after an initial increase,
while TLBO and EICA have a decreasing trend of
diversity up to the end of their search. ICA begins
with a decreasing trend, but keeps oscillating about a
constant DI that is lower than PSO and greater than

Figure 19. Convergence comparison for the 1104-bar
truss.

Figure 20. Comparison of Diversity Index (DI) history
for the 1104-bar truss.

the others. The highest convergence rate belongs to
EICA which causes a more rapid DI decrease among
the others. Note that not all methods spend the same
number of iterations to reach a prescribed NFE.

According to DI trace comparison in Figure 20,
it may be observed that the best trend of diversity
variation belongs to EICA which allows for signi�-
cant exploration upon the start of optimization, but
properly decreases DI to allow for search re�nement
in �nal iterations. On the other hand, keeping a
high DI (such as PSO) can prevent the method from
proper search re�nement and a�ect its e�ciency and
robustness. This issue is numerically con�rmed by
the quality of the results in Table 18. Figure 20
shows that the proposed modi�cations of ICA via EICA
have signi�cantly changed (improved) its behavior by
making a balance between exploration and exploitation
as a key factor in the performance of a meta-heuristic
algorithm.

7. Conclusion

The present work proposed a hybrid method that was



1990 M. Shahrouzi and A. Salehi/Scientia Iranica, Transactions A: Civil Engineering 28 (2021) 1973{1993

Table 18. Optimal section indices and structural weights obtained for the helipad design problem.

Design variable PSO TLBO ICA EICA

X1 20 19 14 16

X2 25 21 25 22

X3 16 29 28 27

X4 15 13 12 13

X5 23 20 22 21

X6 6 4 1 1

X7 23 23 18 19

X8 10 14 10 13

X9 30 33 32 35

Best weight (kg) 27314.7 24748.5 24505.6 24459.8

Mean 28960.5 25513.7 24901.4 24897.2

SD 1155.4 564.3 321.5 490.2

NFE 10000 10000 10000 10000

(NFEB) (950) (6000) (8700) (6700)

formed by adding a walking phase to the standard Im-
perialist Competitive Algorithm (ICA) together with
greedy replacement strategy. Exploitation capability of
Enhanced Imperialist Competitive Algorithm (EICA)
was then evaluated by treating unimodal test functions.
EICA could capture true optimum with competitive
e�ciency using well-known optimization methods in-
cluding Genetic Algorithm (GA), Particle Swarm Opti-
mization (PSO), Di�erential Evolution (DE), Colliding
Bodies Optimization (CBO), Teaching-Learning-Based
Optimization (TLBO), Symbiotic Organisms Search
(SOS), and standard ICA. The exploration capability
was, however, tested by multimodal functions with
several local optima. In a majority of test functions,
the proposed EICA outperformed such optimization
methods in capturing global optima, even with a lower
computational e�ort. Particularly, the performance of
EICA was quite better than ICA, which con�rmed the
e�ectiveness of the proposed hybridization technique.

In order to validate the function of the proposed
method in constrained optimization, it was tested on a
number of engineering benchmarks and discrete struc-
tural sizing problems. By starting from an identical
initial population in each of the independent runs,
EICA achieved competitive or superior �nal results
compared to other well-known optimizers.

A comparison between the �nal results of the
present work and those already reported in the litera-
ture con�rmed the capability of EICA in capturing high
quality optima in discrete problems. In some cases,
EICA required higher NFE than literature works to
achieve better standard deviation; however; comparing
the quality of results shows EICA superiority.

Furthermore, EICA had a desired trend of Di-
versity Index (DI) variation, i.e., high diversi�cation,
in early iterations followed by great intensi�cation
as the search progresses to the end. This is while
ICA keeps uctuating about a higher value. This
issue provides reasoning for better search re�nement
of EICA than that of ICA. Lower standard deviation
of EICA than ICA showed its better stability over
several independent runs. The e�ectiveness of EICA
in global search was also evaluated in a large-scale
example and a real-word constrained problem. In other
words, the proposed enhanced algorithm could better
overpass local optima traps to capture global optimum.

Numerical tests con�rmed the theoretical expec-
tation of performance improvement of ICA via the
proposed algorithm. In the light of our experiments, it
is concluded that the proposed hybrid strategy in EICA
has considerably enhanced the performance of ICA
and changed its behavior in making a balance between
exploitation and exploration. EICA was utilized with
the least number of parameters, which is of practical in-
terest in structural sizing and engineering optimization
problems. The application of the proposed method to
other types of problems, such as building frames, under
dynamic loading will be a future research direction.
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Appendix

Tension/compression spring design problem

min f(x) = (x3 + 2)x2x2
1;

subject to:

g1(x) = 1�
�

x3
2x3

71:785x4
1

�
� 0;

g2(x) = 4x2
2 � x1x2

12:566(x?3
1x2 � x4

1)
+
�

1
5108x2

1

�
�1 � 0;

g3(x) = 1�
�

140:45x1

x2
2x3

�
� 0;

g4(x) = 1�
�
x1 + x2

1:5

�
� 0;
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0:05 � x1 � 2:00;

0:25 � x2 � 1:30;

2:00 � x3 � 15:00:

Pressure vessel design problem

min f(x) = 0:6224x1x3x4 + 1:7781x2x3
2

+ 3:1661x4x1
2 + 19:84x3x1

2;

subject to:

g1(x) = �x1 + 0:0193x3 � 0;

g2(x) = �x2 + 0:00954x3 � 0;

g3(x) = ��x3
2x4 � 4

3
�x3

3 + 1296000 � 0;

g4(x) = x4 � 240 � 0;

0 � xi � 100 i = 1; 2;

10 � xi � 200 i = 3; 4:

I-beam design problem

min f(b; h; tw; tf )=
5000

tw(h�2tf )3

12 + btf 3

6 +2btf (h�tf2 )
2 :

subject to:

g1 = b:tw + tw(h� 2tf ) � 300;

g2 =
18h� 104

tw(h� 2tf )3 + 2btw(4tf 2 + 3h(h� 2tf ))

+
15b� 103

(h� 2tf )tw3 + 2twb3
� 6;

10 � b � 50; 10 � h � 80;

0:9 � tw � 5; 0:9 � tf � 5:
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