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Abstract. In this paper, all canonical forms that exist in the literature for bilateral
symmetry are derived from the formula for rotationally repetitive structures (systems)
considering the rotation angle as 180 degrees. Di�erent nodal numberings lead to di�erent
patterns for matrices associated with bilaterally symmetric structures. This study shows
that all these forms are of the same nature and can be considered as particular forms
of circulant matrices associated with rotationally repetitive structures. Simply put, some
numerical examples are investigated using both the classic approach and the canonical
forms.
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1. Introduction

Eigenvalues and eigenvectors of matrices have a wide
range of applications in di�erent �elds of engineering.
In structural mechanics, these quantities are utilized
for calculating natural frequencies of vibrating systems
and buckling loads of structures [1,2]. Besides, these
quantities are used in performing free vibration and
buckling analysis of circular cylindrical shells in com-
posite structures such as graphene-plates and graphene
foam [3,4]. Using repeated eigenvalues, Choi et al. [5]
developed a generalized steepest descent method for
structural optimization.

Another application of eigenvalues and eigenvec-
tors is in graph theory, which has a long history.
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Some applications of eigenvalues and eigenvectors in
graph theory are nodal ordering, graph partitioning,
and decomposition of �nite element meshes for use in
parallel computing [6]. The reader can refer to [7{9].

In algebraic graph theory, the eigenvalues and
eigenvectors of Laplacian and adjacency matrices of
graphs are used in understanding their characteristics.
A signi�cant contribution to algebraic graph theory
was made by Fiedler [10], in which the second eigen-
vector of the Laplacian matrix of a graph could be
applied to the nodal numbering for pro�le reduction,
graph partitioning, and consequently, domain decom-
position [11]. Further details can be found in such
books as Biggs [12], Cvetkovic et al. [13], Seidel [14],
Chung and Graham [15], and Godsil and Royle [16].
Chen et al. [17] introduced a systematic approach
to deriving origami patterns employing graph theory
and Mixed-Integer Linear Programming (MILP). They
showed that the proposed method could be appropriate
for developing origami patterns with vertices of degree
4 or degree 6.

In the past few decades, improvements in com-
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puter capacity and the availability of memories have
shortened the computational time. However, fast
computation of large matrix eigenvalue problems with
high sparsity is still considered a challenging problem.
Therefore, researchers use basic mathematical ideas for
reducing the complexity of eigenproblems.

To accelerate the computation of eigenproblems,
fast algorithms usually transform the matrix into
simpler forms like diagonal, upper triangular, lower
triangular matrices, or canonical forms. These trans-
formations are known as \similarity transformations."
Popular forms are Jordan form and Schur form. The
term \similarity transformation" refers to a geometric
similarity or matrix transformation in likeness. This
study uses it with its second meaning.

The theory of groups has also been applied
to computational problems in structural mechanics.
General group-theoretic methods for many problems
are developed, where speci�c equilibrium matrices
and sti�ness matrices are given in symmetry-adapted
coordinate systems and block-diagonal forms [18,19].
Kangwai and Guest [20] employed some new techniques
for a symmetric structure to block-diagonalize their
equilibrium matrices. Symmetry mentioned in struc-
tural mechanics often refers to either mirror symme-
try or cyclic symmetry [21]. However, many space
structures are neither cyclically symmetric nor mirror-
symmetric [22]. Many seemingly asymmetric struc-
tures retain some kind of symmetry operations [22,23].
Zingoni [24] presented a criterion for identifying the
computationally e�cient symmetry group and describ-
ing the symmetry properties of the system for a given
problem in structures and solid mechanics. The e�-
ciency of the criterion is shown by applying it to a cubic
con�guration with octahedral symmetry. To improve
the formal symmetry method for the dynamism of
kinematically inde�nite pin-jointed structures, the idea
of graph products was combined with the symmetry-
extended mobility rule [25]. Cable structures are one of
the popular elements that are used to design symmetric
structures [26]. The group theory was employed to
recognize the vibration modes, the number of modes,
and the pairs of modes of the same natural frequency
for double-layer cable nets to reduce the computational
e�ort for calculating their eigenvalue [27,28].

Usually, symmetry occurs in engineering struc-
tures because of its ease of design and construction
and aesthetic objects. In mathematics, \symmetry"
means an invariant object under any of various trans-
formations like re
ecting, rotation, or scaling. A
plane structure is symmetric with respect to an axis of
symmetry on its plane if the re
ection of the structure
about the axis is identical in geometry, supports, and
material properties to the structure itself. The post-
buckling behavior of symmetric frames was studied by
Plgnataro and Rizzi [29].

Kaveh and Sayarinejad [30] represented e�cient
and straightforward methods for calculating the eigen-
solution of a matrix with particular forms. They
proved that one could calculate the eigensolutions of
graph-based matrices by uniting the eigenvalues and
eigenvectors of the submatrices. These submatrices
were obtained by decomposing the graph-based matrix
into small-dimension matrices. Also, they represented
some methods for decomposing and healing the graph
model of structures. According to these articles, the
matrices associated with bilateral symmetric structures
had canonical forms I, II, III, or IV. The applications of
these forms in mass-spring systems, symmetric frames,
and buckling loads of symmetric plane frames [31] were
studied in other papers.

Kaveh and Rahami [31,32] presented other canon-
ical forms for adjacency and Laplacian matrices asso-
ciated with graph models and provided methods for
decomposing regular structures. A structure is called
`regular' if its model can be considered a product
graph [33]. Thomas [34] and Williams [35,36] presented
some results concerning the vibration of cyclically
symmetric structures. Kaveh and Nemati [37] found
the eigensolutions for buckling load and natural fre-
quencies in vibrating systems and utilized the canonical
form from linear algebra known as the circulant ma-
trix [38]. In this method, the structure is decomposed
into repeated substructures and the eigenvalues and
eigenvectors of the graph-based matrices are calculated
by some simple operations on the eigenvalues and
eigenvectors of the substructures. Kaveh et al. [39]
utilized the algebraic graph theory for proposing a
method of constructing preconditioners to apply to the
entire design process of topology optimization. The
e�ciency of their approach was shown by applying it
to the repetitive near-regular shell structures.

The di�erent nodal numbering makes di�erent
patterns for matrices associated with bilateral sym-
metric structures. This study will show that all these
forms can be considered individual cases of the form
associated with rotationally repetitive structures. A
few numerical examples are solved using the classic
approach and the canonical forms to con�rm the
e�ciency of the presented method.

This paper comprises six sections. A brief intro-
duction containing the basic de�nitions from the theory
of graphs and linear algebra is presented in Section 2.
Section 3 discusses the matrices with canonical forms
associated with bilateral symmetric structures and
rotationally repetitive space structures. Di�erent types
of symmetry are discussed in Section 4. The proof of
the relationship between the canonical forms of bilat-
eral symmetric structures and rotationally repetitive
structures is provided in Section 5. Examples are
investigated in Section 6 and the concluding remarks
are presented in Section 7.
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2. Basic de�nitions

2.1. Basic concepts from the theory of graphs
A graph G(N;M) comprises a set of nodes (vertices)
and a set of elements members (edges) with a relation of
incidence that relates a pair of nodes to each member.
Two nodes are adjacent if they correspond to the same
member. A graph G is called undirected if a member
is an unordered pair of nodes.

2.2. Basic de�nitions from linear algebra
In linear algebra, two matrices, A and B, are called
similar if:

B = P�1AP; (1)

where P is a nonsingular matrix and the transformation
A! B is known as a similarity transformation of A.

The characteristic polynomial of a square matrix
A is a polynomial p(�) = det(A��I), which is invariant
under matrix similarity and has the eigenvalues as
roots. The scaler � is an eigenvalue of A if there is a
nonzero vector �, known as an eigenvector, such that:

A� = ��; (2)

(�I �A)� = 0: (3)

The characteristic polynomial of a diagonal matrix A
can easily be de�ned. If the diagonal entries of A are
a1; a2; a3; � � � ; an, then:

(a1 � �)(a2 � �)(a3 � �); � � � ; (an � �) = 0; (4)

will be the characteristic polynomial of A. According
to Eq. (4), it can be seen that the diagonal entries
are also the eigenvalues of this matrix. The simplest
matrix for �nding the eigenvalues is a diagonal matrix.
Similarly, eigenvalues of a triangular matrix are its
diagonal entries.

A matrix can have complex eigenvalues since its
characteristic polynomial can have real or complex
roots. Every n � n matrix has exactly n complex and
real eigenvalues, counted with multiplicity.

2.3. De�nitions from algebraic graph theory
The adjacency matrix A = [aij ]n�n of a graph G,
with its nodes being labeled and containing n nodes, is
de�ned as:

aij =

(
1 if node ni is adjacent to nj
0 otherwise

(5)

The degree matrix D = [dij ]n�n is a diagonal matrix
containing node degrees where dii is the degree of the
ith node.

Laplacian matrix L = [lij ]n�n is de�ned as:

L = D �A: (6)

Therefore, the entries of L areas:

lij =

8><>:�1 if node ni is adjacent to nj
deg(ni) if i = j
0 otherwise

(7)

For the eigensolution of the adjacency matrix, consider
the eigenproblem as follows:

A�i = �i�i; (8)

where �i is the ith eigenvalue and �i is the corre-
sponding eigenvector. For A being a real symmetric
matrix, all the corresponding eigenvalues are real given
as Eq. (9):

�1 � �2 � � � � � �n�1 � �n: (9)

The largest eigenvalue �n has multiplicity equal to
unity for the characteristic equation of A. The corre-
sponding eigenvector �n is the only eigenvector with
positive entries. This vector has many interesting
properties employed in structural mechanics.

For the eigensolution of the Laplacian matrix,
consider the problem as follows:

L�i = �i�i; (10)

where �i is the ith eigenvalue and �i is the correspond-
ing eigenvector. Since A is a real symmetric matrix
and all its eigenvalues are real, all the eigenvalues of L
are also real. It can be shown that the matrix L is a
positive semide�nite matrix with:

0 = �1 � �2 � � � � � �n�1 � �n; (11)

�1 = f1; 1; 1; � � � ; 1gt: (12)

The second eigenvalue �2 of L is also known as \alge-
braic connectivity" of a graph, and its eigenvector �2
is called the Fiedler vector. This vector has attractive
properties.

The Kronecker product of two matrices is an
operation on these matrices, which results in a block
matrix. This operation is denoted by 
.

The Kronecker product of two matrices Am�n and
Bp�q is the mp� nq block matrix as:

Am�n 
Bp�q =

264a11B � � � a1nB
...

. . .
...

am1B � � � amnB

375
mp�nq

: (13)

A Hermitian matrix is a square matrix that is equal
to its conjugate transpose. A real matrix is Hermitian
if and only if it is symmetric.

Being Hermitian is a necessary condition for a
matrix to be diagonalizable:

A is Hermitian, aij = aji: (14)

For two matrices A1 and A2 to be diagonalizable
simultaneously, these two matrices should be Hermitian
and commutative A1A2 = A2A1.
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3. Canonical forms of a matrix

In this section, all the canonical forms available for bi-
lateral symmetry structures and rotationally repetitive
structures are presented. Herein, M is a matrix whose
elements entirely consist of real numbers. Canonical
Forms I, II, III, and IV were represented by Kaveh and
Sayarinejad [30].

3.1. Form I
In this form, M is a block diagonal matrix having a
pattern shown in Eq. (15):

M2n =
�
An 0
0 An

�
2n�2n

: (15)

Since M is a diagonal matrix, its determinant can be
calculated as:

det(M) = det(A)� det(A): (16)

Moreover, the set of eigenvalues of submatrix A is �A.
Therefore, the eigenvalues of M can be calculated as
Eq. (17).

�M = f�Ag [ f�Ag: (17)

This form can be generalized by placing a large number
of matrices with di�erent dimensions on its main
diagonal entries. Based on Eq. (17), eigenvalues of
this generalized matrix will be equal to the union of
the eigenvalues of those matrices located on its main
diagonal.

3.2. Form II
For this particular form, the matrix M has a pattern,
as shown in Eq. (18):

M2n =
�
An Bn
Bn An

�
2n�2n

: (18)

By adding the second column to the �rst one and
then, subtracting the �rst row from the second one, M
transforms to the upper triangular matrix as follows:

M2n =
�
An Bn
Bn An

�
=
�
Cn Bn
0 Dn

�
; (19)

in which:

C = [A] + [B]; (20)

D = [A]� [B]: (21)

Since M is a triangular matrix, its determinant is equal
to the multiplication of two matrices that are located
on the diagonal of M . Therefore, the set of eigenvalues
of M can be obtained as Eq. (22):

�M = f�Cg [ f�Dg: (22)

3.3. Form III
In this form, M has an N �N submatrix, where N =
2n. The pattern of Form II is augmented by k rows
and k columns as formulated in Eq. (23):

M =

24A B P
B A P
Q H R

35 : (23)

As seen, M is an (N + k) � (N + k) matrix, and the
entries of augmented columns are the same in each
column. Similar to Form II, in this case, M can be
factored using row and column permutation.

By exchanging the second column and second row
with the fourth column and fourth row, respectively,
the fourth column is added to the �rst one. At the last
step, by reducing the �rst row from the fourth one, M
transforms into the upper triangular matrix as Eq. (24):

M =

24A+B P B
Q+H R H

0 0 A�B

35 =
�
E K
0 D

�
; (24)

where:

E =
�
A+B P
Q+H R

�
; (25)

D = [A]� [B]: (26)

Since M is a triangular matrix, its determinant will
be equal to the multiplication of two matrices that
are located on diagonal entries. Therefore, the set of
eigenvalues of M can be obtained as Eq. (27):

�M = f�Eg [ f�Dg: (27)

3.4. Form IV
M is a 6n� 6n matrix with the following pattern:

M=

26666664
S�H H�S
H�S S �H

�H S H�S
H�S S �H

�H S H�S
H�S S�H

37777775
6n�6n

:
(28)

S and H are n � n matrices. The characteristic
polynomial of M can be calculated through Eq. (29):

PM (�) =[�(2H � 2S + �)]
�
�2 � 2S�+ SH �H2��

�2 � 2S�+ 3SH � 3H2� : (29)

The �rst term of Eq. (29) can be considered as the
characteristic polynomial of the matrix that is a matrix
of Form II Eq. (30):

[E1] =
�
S �H H � S
H � S S �H

�
= �(2S�2H) [ �[0]n�n : (30)
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The second term of Eq. (29) can be considered as the
characteristic polynomial of the matrix in Eq. (31):

[E2] =
�
S +H �S
H � S S �H

�
: (31)

The third term of Eq. (29) can be considered as the
characteristic polynomial of the matrix in Eq. (32):

[E3] =
�

2S 3H
H�S 0

�
: (32)

Hence, for �nding the eigenvalues of a matrix in the
form of Eq. (28), calculating the eigenvalues of Ei for
i = 1; 2 and 3 is su�cient:

�M = f�E1g [ f�E2g [ f�E3g: (33)

3.5. A canonical form associated with
rotationally repetitive structures

An e�cient eigensolution was developed for determin-
ing the buckling load and free vibration of rotationally
cyclic structures by Kaveh and Nemati [37]. This solu-
tion applies a canonical form, which is often involved in
graph model matrices. This canonical form is presented
in this section.

For rotationally repetitive structures, one can
associate a canonical form as follows:

Mmn =

266666664
J L Lt
Lt J L � � �

Lt J
...

. . .
...

L � � � J L
Lt J

377777775 ; (34)

where the matrix M is a symmetric block matrix, with
n � n blocks. The blocks of this matrix are Jm �m,
Lm � m, and LTm � m. Thus, this matrix generally
has nm � nm entries. Block J is located on the main
diagonal and blocks L and LT are located on the upper
and lower adjacent diagonals and also in the lower-left
corner and the upper right corner, respectively. Matrix
M can be decomposed to the sum of three Kronecker
products as follows:

Mmn = In 
 Jm +Hn 
 Lm +Ht
n 
 Ltm; (35)

where I is an n� n identity matrix and H is an n� n
asymmetric matrix as:

Hn =

266666664
0 1 0
0 0 1 � � �

0 0
...

. . .
...

1 � � � 0 1
0 0

377777775 : (36)

Since H is an asymmetric matrix, block diagonalization
of M requires some considerations.

Here, H is a permutation matrix and hence, it is
orthogonal. Thus, we have Eq. (37):

HHt = 1: (37)

Matrix H and its transpose are characterized by com-
mutative property as in Eq. (38):

HHt = HtH: (38)

According to Eqs. (37) and (38), the two matrices H
and Ht can be diagonalized simultaneously. Now, by
using a matrix such as U = X 
 I, matrix M can be
diagonalized as in Eq. (39):

U�1MU = U�1 �In
Jm+Hn
Lm+Ht
n
Ltm�U

= (X
I)�1 �I
J+H
L+Ht
Lt� (X
I)

=
�
X�1
I�1� �I
J+H
L+Ht
Lt� (X
I)

=
�
X�1
J+X�1H
L+X�1Ht
Lt� (X
I)

=
�
I
J+X�1HX
L+X�1HtX
Lt� : (39)

Since a similarity transformation (see Subsection 2.2) is
employed, the eigenvalues do not change. In Eq. (39),
I is a diagonal matrix and it is su�cient to show that
X simultaneously diagonalizes H and Ht.

The eigenvalues of the matrix M can be found
by using the union of the eigenvalues of n blocks as
Eq. (40):

�M = [nk=1eig
�
Jm + �i(Hn)Lm + �i(Ht

n)Ltm
�
: (40)

Since the eigenvalues of the matrix H are needed for
�nding the eigenvalues of matrix M , let us �nd the
eigenvalues of H. H's characteristic polynomial can be
written as follows:

�n � 1 = 0: (41)

This equation has n real and complex roots that are
identical to those in Eq. (42):

cos(n�) + i sin(n�) = 1: (42)

Obviously, if n is even or odd, then �1, 1, or 1 will
be the only real roots of Eq. (41), respectively. The
complex and real roots are presented in Table 1.

Based on Table 1, for n being even or odd, two
real roots and (n � 2) complex roots or one real and
(n� 1) complex roots will be calculated, respectively.

4. Di�erent kinds of symmetry

In this section, for di�erent forms of the matrices
associated with the symmetric structures, the corre-
sponding graphs are introduced [6].
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Table 1. Roots of the characteristic polynomial
corresponding to the matrix H.

Real roots Complex roots

If n is even +1;�1 cos � � i sin � � = 2k�
n

k = 1; 2; 3; � � � ; n�2
2

If n is odd +1 cos � � i sin � � = 2k�
n

k = 1; 2; 3; � � � ; n�1
2

Figure 1. A sample structure with the pattern in Form I.

Figure 2. A sample structure with the pattern in Form
II.

4.1. Form I symmetry
Here, the symmetry axis does not pass through nodes
and members. The model is a disjoint graph with at
least two distinct subgraphs, as shown in Figure 1.

After nodal numbering of one of the substruc-
tures, the nodal numbers of the second substructure
should be determined considering the symmetry of
nodes, as numbered in Figure 1.

4.2. Form II symmetry
In this case, the model has an even number of nodes
and the axis of symmetry passes through members; for
instance, a sample structure of Form II is drawn in
Figure 2.

The structure is divided into two equal substruc-
tures. After nodal numbering of one of the substruc-
tures, the nodal numbers of the second substructure
should be determined considering the symmetry of
nodes, as shown in Figure 2.

4.3. Form III symmetry
In this case, the axis of symmetry passes through
members and nodes (see Figure 3). The structure
is divided into two equal substructures. Firstly, the
nodal numbering of one of the substructures except
those located on the symmetry axis is performed.
The nodal numbers of the second substructure should

Figure 3. A sample structure with the pattern in Form
III.

Figure 4. A sample rotationally repetitive structure.

be determined considering the symmetry of nodes.
Finally, the labels of the nodes located on the symmetry
axis are assigned, as labeled in Figure 3.

The number of the rows and columns added to the
core of Form II is equal to the number of nodes through
which the axis of symmetry passes. This means that in
the (N +K)� (N +K) matrix M , there are K nodes
through which the axis of symmetry passes.

4.4. The form associated with rotationally
repetitive structures

A rotationally repetitive structure is a structure con-
sisting of a cyclically symmetric con�guration with
an angle of cyclic symmetry equal to �, as shown in
Figure 4.

A rotationally repetitive structure should be di-
vided by some imaginary lines or surfaces into n = 2�

�
segments. The imaginary boundaries may not pass
through any node so that the segment to which a given
node belongs can be uniquely determined.

For nodal numbering, the di�erence between the
number of an arbitrarily selected node in an arbitrary
segment and the number of the corresponding node in
the adjacent segment should be constant.

5. The relations between the canonical forms

5.1. The relation between Forms I and II
According to Eqs. (15) and (18), Form I is a particular
form of Form II with the matrix B equal to zero.
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M2n=
�
An Bn
Bn An

�
N�N

B=0���!M2n=
�
An 0
0 An

�
N�N

:
(43)

5.2. The relation between Form II and Form
III

In this section, an attempt is made to show that the
canonical Form III can be obtained from the canonical
Form II, according to Kaveh [6]. To this end, �rst, the
following points should be considered.

Consider a 2N � 2N matrix L; then, add one
arbitrary row and one arbitrary zero column to the
matrix L as in Eq. (44):

C =
�
L2N�2N 0

X 0

�
(2N+1)�(2N+1)

: (44)

Accordingly, all entries in the (2N+1)th column of the
matrix C are zero, the eigenvalues of the matrix C are
equal to the union of the set of eigenvalues of matrix L
and a set with one zero member. This can be proven
as follows.

The �rst 2N rows of C are multiplied by
k1; k2; � � � ; k2N , respectively, and the sum is equated
to zero. Since any multiple of the last column will be
zero; therefore, Eq. (45) is obtained:

KL+X = 0: (45)

If L is invertible (i.e., if det(L) 6= 0), then K =
�XL(�1) and k1; k2; � � � ; k2N can be found, and the
last row of C becomes zero. However, if det(L) = 0,
then there are many sets of ki that put the last row of
C into zero. Therefore, one can conclude that there is
always at least one transformation that makes the last
row of C zero.

If the kth row of a matrix is multiplied by m and
the kth column is divided by m, the eigenvalues of
this matrix remain unchanged. The reason is that the
magnitude of the diagonal entry stays constant, and if
it is expanded with respect to the row and column, the
determinant of the submatrices remains unaltered.

In the following, an algorithm is provided for
transforming the canonical Form III to Form II:

Step 1. A zero column and a zero row in the second
column and second row are added as in the following
expression:

Form III =

24A B P
B A P
Q H R

35)
2664A 0 B P

0 0 0 0
B 0 A P
Q 0 H R

3775 :
(46)

Step 2. H�Q
2 and Q�H

2 in the �rst and third entries
of the second row are added. The sum of these entries
is equal to zero; hence, adding these two entries does
not a�ect the eigenvalues of the matrix.

2664A 0 B P
0 0 0 0
B 0 A P
Q 0 H R

3775)
2664 A 0 B P

(H�Q)=2 0 (Q�H)=2 0
B 0 A P
Q 0 H R

3775 :
(47)

Step 3. Half of the fourth column is added to the
�rst column and half of the fourth row is added to the
second row. Then, the second interchange column is
added to column 4.2664 A 0 B P

(H �Q)=2 0 (Q�H)=2 0
B 0 A P
Q 0 H R

3775
)
2664 A P=2 B P

(H �Q)=2 0 (Q�H)=2 0
B P=2 A P
Q R=2 H R

3775
)
2664 A P=2 B P
H=2 R=4 Q=2 R=2
B P=2 A P
Q R=2 H R

3775
)
2664 A P B P=2
H=2 R=2 Q=2 R=4
B P A P=2
Q R H R=2

3775 : (48)

Step 4. Column 4 is multiplied by 2 and row 4 is
multiplied by 1/2, resulting in Eq. (49):2664 A P B P=2

H=2 R=2 Q=2 R=4
B P A P=2
Q R H R=2

3775
)
2664 A P B P
H=2 R=2 Q=2 R=2
B P A P
Q=2 R=2 H=2 R=2

3775) �
M N
N M

�
= Form II;

(49)

where:

M +N =
�

A+B 2P
(Q+H)=2 R

�
;

M �N =
�

A�B 0
(H �Q)=2 0

�
: (50)

In matrix M + N , multiplying the second column by
1/2 and multiplying the second row by 2 result in E as
in Eq. (51):

E =
�
A+B P
Q+H R

�
: (51)
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det(M � I�) =

26666664
S �H � � H � S 0 0 0 0
H � S S � � �H 0 0 0

0 �H S � � H � S 0 0
0 0 H � S S � � �H 0
0 0 0 �H S � � H � S
0 0 0 0 H � S S �H � �

37777775 = 0: (52)

Box I

26666664
S�H�� H�S 0 0 0 0
H�S S�� �H 0 0 0

0 �H S�� H�S 0 0
0 0 H�S S�� �H 0
0 0 0 �H S�� H�S
0 0 0 0 H�S S�H��

37777775)
26666664
S�H�� H�S 0 0 0 0
H�S S�� 0 0 0 �H

0 �H 0 0 H�S S��
0 0 0 �H S�� H�S
0 0 H�S S�� �H 0
0 0 S�H�� H�S 0 0

37777775 :(53)

Box II

The right-hand side of matrix M �N in Eq. (50) has
the same eigenvalues as those of A� B except for 2N
extra zeros. E and D are the same matrices as de�ned
in Form III in the previous section.

5.3. The relation between Form IV and Form
III

In this section, it is shown that the canonical Form IV
is a special form of the canonical Form III. For this
purpose, the characteristic polynomial of the canonical
Form IV is considered as in Eq. (52) shown in Box I.

Now, by using the elementary matrix operation,
we have an algorithm that transforms the canonical
Form IV to Form III.

The algorithm is provided through the following
steps:

Step 1. The third column is swapped with the sixth
one and the fourth column with the �fth one Eq. (53)
is shown in Box II.

Step 2. The third row is swapped with the sixth
one and the fourth row with the �fth one Eq. (54) is
shown in Box III.

Step 3. The sixth column is replaced by itself plus
the �rst and second columns and the �fth column is
replaced by itself plus the third and fourth columns
Eq. (55) is shown in Box IV.

Step 4. The �rst row is replaced by itself minus the
sixth row, the second row is replaced by itself minus
the sixth row, the third row is replaced by itself minus
the �fth row, and the fourth row is replaced by itself
minus the �fth row Eq. (56) is shown in Box V.

Step 5. The �rst and second rows are multiplied by
�1 and the �rst and second columns are multiplied
by �1 Eq. (57) is shown in Box VI.

The characteristic polynomial of the canonical Form IV
could be transformed into a characteristic polynomial
that is in the pattern of the canonical Form III as in
Eq. (58), shown in Box VII.

From Eq. (59), shown in Box VIII, it can be
concluded that the canonical Form IV is a special form
of Form III.

26666664
S�H�� H�S 0 0 0 0
H�S S�� 0 0 0 �H

0 �H 0 0 H�S S��
0 0 0 �H S�� H�S
0 0 H�S S�� �H 0
0 0 S�H�� H�S 0 0

37777775)
26666664
S�H�� H�S 0 0 0 0
H�S S�� 0 0 0 �H

0 0 S�H�� H�S 0 0
0 0 H�S S�� �H 0
0 0 0 �H S�� H�S
0 �H 0 0 H�S S��

37777775 :(54)

Box III
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26666664
S�H�� H�S 0 0 0 0
H�S S�� 0 0 0 �H

0 0 S�H�� H�S 0 0
0 0 H�S S�� �H 0
0 0 0 �H S�� H�S
0 �H 0 0 H�S S��

37777775)
26666664
S�H�� H�S 0 0 0 ��
H�S S�� 0 0 0 ��

0 0 S�H�� H�S �� 0
0 0 H�S S�� �� 0
0 0 0 �H S�H�� H�S
0 �H 0 0 H�S S�H��

37777775 :(55)

Box IV

26666664
S �H � � H � S 0 0 0 ��
H � S S � � 0 0 0 ��

0 0 S �H � � H � S �� 0
0 0 H � S S � � �� 0
0 0 0 �H S �H � � H � S
0 �H 0 0 H � S S �H � �

37777775

)

26666664
S �H � � 2H � S 0 0 S �H H � S
H � S S +H � � 0 0 S �H H � S

0 0 S �H � � 2H � S H � S S �H
0 0 H � S S +H � � H � S S �H
0 0 0 �H S �H � � H � S
0 �H 0 0 H � S S �H � �

37777775 : (56)

Box V

26666664
S �H � � 2H � S 0 0 S �H H � S
H � S S +H � � 0 0 S �H H � S

0 0 S �H � � 2H � S H � S S �H
0 0 H � S S +H � � H � S S �H
0 0 0 �H S �H � � H � S
0 �H 0 0 H � S S �H � �

37777775

)

26666664
S �H � � 2H � S 0 0 H � S S �H
H � S S +H � � 0 0 H � S S �H

0 0 S �H � � 2H � S H � S S �H
0 0 H � S S +H � � H � S S �H
0 0 0 �H S �H � � H � S
0 H 0 0 H � S S �H � �

37777775 : (57)

Box VI

26666664
S �H � � 2H � S 0 0 H � S S �H
H � S S +H � � 0 0 H � S S �H

0 0 S �H � � 2H � S H � S S �H
0 0 H � S S +H � � H � S S �H
0 0 0 �H S �H � � H � S
0 H 0 0 H � S S �H � �

37777775 = eig(Form III� �I) = 0; (58)

Box VII
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26666664
S �H 2H � S 0 0 H � S S �H
H � S S +H 0 0 H � S S �H

0 0 S �H 2H � S H � S S �H
0 0 H � S S +H H � S S �H
0 0 0 �H S �H H � S
0 H 0 0 H � S S �H

37777775 =

24A B P
B A P
Q H R

35 = Form III: (59)

Box VIII

5.4. The relation between the canonical Form
II and the form associated with
rotationally repetitive structures

If there is a bilaterally symmetric structure, we have
a substructure that by repeating it twice (n = 2), the
whole structure can be obtained. It is implied that the
rotation angle is 180�. We use n = 2 in Table 1 and
replace the results in Eqs. (34) and (40).

n = 2 is even ! �i(Ht
2) = �i(H2) = �1;+1;

H2 = Ht
2 =

�
0 1
1 0

�
;

�i(Ht
n) = �i(Hn); (60)

Mm2 =I2 
 Jm +H2 
 Lm +Ht
2 
 Ltm

=
�
J 0
0 J

�
+
�

0 L
L 0

�
+
�

0 Lt
Lt 0

�
=
�

J L+ Lt
L+ Lt J

�
=
�
A B
B A

�
: (61)

According to Eq. (61), the mentioned form is similar
to what we have in the bilateral symmetric structures
(Form II). Then, it can be concluded that a bilaterally
symmetric structure is a special form of a rotationally
repetitive structure.

From Eq. (59), it becomes clear that Form IV
is a special type of Form III. According to Eqs. (43)
and (49), the canonical Form III and Form I are a
special form of the canonical Form II. From Eq. (61),
Form II is a special form of the canonical form and it
was presented for rotationally repetitive structures as
in Eq. (34). As a result, it appears that all canonical
forms that are presented for the bilateral symmetric
structures are a special form of the rotationally
repetitive structures.

6. Examples

This section shows that all forms associated with a
particular structure with di�erent nodal numbering
cause the same eigenvalue for the whole structure. On
the other hand, all these forms can be compared with

each other in terms of time, memory, and the method
of nodal numbering. L(G) is the Laplacian matrix
of an entire graph G which is represented in each
example. These examples are programed in MATLAB
R2016b software and processed in a computer with
Intelr CoreTMi7 4510U CPU @ v2.00 GHz processor
and 8.00 GB RAM.

6.1. Example 1
Consider the symmetric frame that has only one sym-
metry axis, as shown in Figure 5. As can be seen, it is
constrained against a motion in the sway direction and
has only two rotation degrees of freedom. Both mass
and sti�ness matrices of the mentioned frame are in
Form II. To determine its natural frequencies, Eq. (62)
must be solved. The natural frequencies are equal to
the eigenvalues of the factors of Form II, as expressed
in Eq. (63):

det
�
K � �2M

�
= 0; (62)

�C =
r

420EI
mL4 ; �D =

r
420EI
11mL4 : (63)

6.2. Example 2
For the graph shown in Figure 6, there are two axes

Figure 5. A sample of the symmetric frame with two
DOFs for Example 1.

Figure 6. A sample graph model with the pattern in
Form II for Example 2.
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Figure 7. A sample graph model with the pattern in
Form III for Example 2.

of symmetry one of which passes through members
(Figure 6) and the other passes through nodes (Fig-
ure 7). By two di�erent nodal numberings, we get
to the canonical Forms II and III for the Laplacian
matrix.

The symmetry of Form II:
The factors of this graph in Form II, according to
Eq. (19), are given below:

A =

2664 3 �1 0 �1
�1 2 �1 0
0 �1 3 �1
�1 0 �1 3

3775 ;
B =

2664�1 0 0 0
0 0 0 0
0 0 �1 0
0 0 0 �1

3775 : (64)

The eigenvalues of the whole graph are now calculated
as the union of the eigenvalues for its factors as
Eq. (67):

eig(A�B) = f1:0968; 3:1939; 4:0000; 5:7093g ; (65)

eig(A+B) = f0:0000; 2:0000; 2:0000; 4:0000g ; (66)

eig(L(G)) = f1:0968; 3:1939; 4:0000; 5:7093; 0:0000;

2:0000; 2:0000; 4:0000g: (67)

The symmetry of Form III
Consider a graph shown in Figure 7. The factors of
this graph in Form III, according to Eq. (24), are as
follows:

A�B =
�

3 �1
�1 3

�
;

E =

26666664
3 �1 �1 �1 0 0
�1 3 0 0 �1 �1
�2 0 2 0 0 0
�2 0 0 3 �1 0
0 �2 0 �1 3 0
0 �2 0 0 0 2

37777775 : (68)

For the entire graph, the eigenvalues are calculated as
the union of the eigenvalues for its factors as Eq. (71):

Figure 8. A sample graph model with the pattern in
Form II for Example 3.

eig(A�B) = f2; 4g; (69)

eig(E) = f0:0000; 2:0000; 3:1939; 4:0000; 1:0968;

5:7093g; (70)

eig(L(G)) = f1:0968; 3:1939; 4:0000; 5:7093; 0:0000;

2:0000; 2; 4g: (71)

As a result, the eigenvalues of this graph with two
di�erent nodal numberings that cause two di�erent
forms are the same.

6.3. Example 3
Consider the graph shown in Figure 8. For this graph,
there are two axes of symmetry one of which passes
through members (Figure 8) and the other passes
through nodes (Figure 9). With two di�erent nodal
numberings, we get to the canonical Forms II and III
for the Laplacian matrix.

The symmetry of Form II
The factors of this graph in Form II, according to
Eq. (19), are as follows:

A=

26666666666664

2 �1 0 �1 0 0 0 0 0
�1 3 �1 0 �1 0 0 0 0
0 �1 2 0 0 �1 0 0 0
�1 0 0 3 �1 0 �1 0 0
0 �1 0 �1 4 �1 0 �1 0
0 0 �1 0 �1 3 0 0 �1
0 0 0 �1 0 0 3 �1 0
0 0 0 0 �1 0 �1 4 �1
0 0 0 0 0 �1 0 �1 3

37777777777775
;

B =

266664
0 0 0
0 0 0

0 0
�1

�1
�1

377775 : (72)

For the whole graph, the eigenvalues are calculated
as the union of the eigenvalues for its factors as in
Eq. (75):
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Figure 9. A sample graph model with the pattern in
Form III for Example 3.

eig(A�B) = f0:2679; 1:2679; 2:0000; 3:0000;

3:2679; 3:7321; 4:7321; 5:0000; 6:7321g; (73)

eig(A+B) = f0:0000; 1:0000; 1:0000; 2:0000;

3:0000; 3:0000; 4:0000; 4:0000; 6:0000g; (74)

eig(L(G)) = f0:0000; 0:2679; 1:0000; 1:0000; 1:2679;

2:0000; 2:0000; 3:0000; 3:2679; 3:0000; 3:0000;

4:0000; 4:0000; 4:7321; 5:0000; 6:0000; 6:7321g:(75)

The symmetry of Form III:
The factors of this graph in Form III, according to
Eq. (24), are as follows:

A =

26666664
2 �1 0 0 0 0
�1 3 �1 0 0 0
0 �1 3 �1 0 0
0 0 �1 3 �1 0
0 0 0 �1 3 �1
0 0 0 0 �1 2

37777775 ;
B = [0]6�6; P = H = Q = �I6�6;

R =

26666664
3 �1 0 0 0 0
�1 4 �1 0 0 0
0 �1 4 �1 0 0
0 0 �1 4 �1 0
0 0 0 �1 4 �1
0 0 0 0 �1 3

37777775 : (76)

For the whole graph, the eigenvalues are calculated as
the union of the eigenvalues for its factors as follows:

eig(A�B) = f1:0000; 1:2679; 2:0000; 3:0000; 4:000;

4:7321g; (77)

eig(E) = f6:7321; 6:0000; 0:0000; 0:2679; 5:0000;

1:0000; 4:0000; 2:0000; 3:7321; 3:2679;

3:0000; 3:0000g: (78)

Figure 10. A sample graph model with the pattern in of
Form II for Example 4.

The eigenvalues of the L(G) are calculated as the union
of the above eigenvalues that are equal to Eq. (75).

6.4. Example 4
Here, a graph is considered, as shown in Figure 10.
This example is taken from the study of Kaveh and
Sayarinejad [40]. For di�erent nodal numberings of this
graph, we have di�erent forms for the Laplacian matrix.

The symmetry of Form II:
This nodal numbering causes the canonical Form II.
According to Eq. (19), for calculating the eigenvalues
of the whole graph model, at �rst, the matrices A and
B should be calculated. Then, the eigenvalues of the
whole graph can be calculated through Eq. (23) as the
union of the eigenvalues for the matrices (A � B) and
(A+B) as Eqs. (79) and (80):

eig(A�B) = f0:58579; 0:85374; 1:58579; 2;

2:26795; 2:58579; 3; 3:41421; 3:58579; 3:68216;

4; 4; 4:26795; 4:31784; 4:414421; 5; 5; 5:41421;

5:73205; 6; 6:41421; 7; 7:14626; 7:73205g; (79)

eig(A+B)=f�1:05E � 16; 0:26795; 0:58579;

0:85374; 1; 1:58579; 2; 2; 2:26795; 2:58579; 3; 3;

3:41421; 3:58579; 3:68216; 3:73205; 4; 4:31784;

4:41421; 5; 5:41421; 5:73205; 6:41421;7:14626g:(80)

The eigenvalues of the whole graph are calculated as
the union of the eigenvalues for its factors as follows:

eig(L(G)) = f0:58579; 0:85374; 1:58579; 2;
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2:26795; 2:58579; 3; 3:41421; 3:58579; 3:68216;

4; 4; 4:26795; 4:31784; 4:414421; 5; 5; 5:41421;

5:73205; 6; 6:41421; 7; 7:14626; 7:73205;

� 1:05E � 16; 0:26795; 0:58579; 0:85374; 1;

1:58579; 2; 2; 2:26795; 2:58579; 3; 3; 3:41421;

3:58579; 3:68216; 3:73205; 4; 4:31784; 4:41421;

5; 5:41421; 5:73205; 6:41421; 7:14626g: (81)

The symmetry of Form III:
Consider a graph model with the pattern in Form III,
as shown in Figure 11.

According to Eq. (24), for calculating the eigen-
values of the entire graph model, at �rst, the matrices
A, B, and E should be calculated. Then, through
Eq. (27), the eigenvalues of the considered graph are
calculated as the union of the eigenvalues for the
matrices (A�B) and E.

eig(A�B) = f0:58579; 0:85374; 1:58579; 2;

2:26795; 2:58579; 3; 3:41421; 3:58579; 3:68216;

4; 4; 4:31784; 4:414421; 5; 5:41421; 5:73205;

6:41421; 7:14626g; (82)

eig(E) = f�1:05E � 16; 0:26795; 0:58579; 0:85374;

1; 1:58579; 2; 2; 2:26795; 2:58579; 3; 3; 3:41421;

Figure 11. A sample graph model with the pattern in
Form III for Example 4.

3:58579; 3:68216; 3:73205; 4; 4; 4:26795; 4:31784;

4:41421; 5; 5; 5:41421; 5:73205; 6; 6:41421; 7;

7:14626; 7:732g: (83)

The eigenvalues of the whole graph are now calculated
as the union of the eigenvalues for its factors and it is
equal to Eq. (81).

The symmetry of Form IV:
Consider a graph model with the pattern in Form IV,
Figure 12.

According to Eq. (30), for calculating the eigen-
values of the entire graph model in Form IV, at �rst,
the matrices S and H should be calculated. Then,
the eigenvalues of their linear combinations should be
calculated using Eq. (33).

eig(S)=f2; 2:58579; 2:58579; 4; 4; 5:4142; 5:4142; 6g ;
(84)

eig(S � 2H) = f � 1:25E � 16; 0:58578; 0:58578;

2; 2; 3:414214; 3:414214; 4g; (85)

eig(S +H) = f1; 1:58579; 1:58579; 3; 3; 4:41421;

4:41421; 5g; (86)

eig(S �H) = f3; 3:58579; 3:58579; 5; 5; 6:41421;

6:41421; 7g; (87)

eig
�
S +
p

3H
�

= f3:73205; 4:317837; 7:317837;

5:732051; 5:732051; 7:14624; 7:14624; 7:73205g;(88)

Figure 12. A sample graph model with the pattern in
Form IV for Example 4.
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eig
�
S �p3H

�
= f0:267949; 0:853736; 0:853736;

2:26795; 2:26795; 3:68216; 3:68216; 4:26795g: (89)

The eigenvalues of the entire graph are now obtained
as the union of the eigenvalues of its factors, which are
equal to the outcome of Eq. (81).

Form corresponding to rotationally repetitive
symmetric structures:
Consider a graph model with the pattern in the
form associated with rotationally repetitive structures
(Figure 13).

J6�6 =

26666664
3 �1 0 0 0 0
�1 4 �1 0 0 0
0 �1 4 �1 0 0
0 0 �1 4 �1 0
0 0 0 �1 4 �1
0 0 0 0 �1 3

37777775 ; (90)

L6�6 = Lt6�6 = �I6�6; (91)

eig(H6�6) = eig(Ht
6�6)

=

(
1;�1;

 p
2

2
�
p

2
2
i

!
;�i;

 �p2
2
�
p

2
2
i

!)
:
(92)

The eigenvalues of the entire graph are now obtained by
replacing J6�6 , L6�6 Lt6�6, eig(H6�6), and eig(Ht

6�6)
in Eq. (40) and in the end, they will be equal to the
outcome of Eq. (83).

As is clear, all these nodal numberings result
in the same eigenvalues. The method of the nodal
numbering of the canonical Forms II and III is harder
than Form IV and the form associated with rotationally
repetitive structures.

Figure 13. A sample graph model with the pattern in
the form associated with rotationally repetitive structures
for Example 4.

6.5. Example 5
The �nite element model of a dome is considered, as
shown in Figure 14. This model consists of 544 nodes
and 2080 elements. Two di�erent nodal numberings
are assigned to this dome. The �rst nodal numbering
causes the canonical Form II, which is introduced for
the bilateral symmetric structures. The second nodal
numbering causes the form associated with rotationally
repetitive structures. In a conventional fashion, the
Laplacian eigenvalues of the dome can be calculated
by solving the corresponding polynomial equation.
However, by using the new methods, the Laplacian
eigenvalues of the entire dome can be obtained as
the union of the eigenvalues of its factors in Form II
or in the form associated with rotationally repetitive
structures. In the classic method, the eigenvalues of a
544� 544 matrix are calculated.

In contrast, through nodal numbering that makes
the matrix in Form II, the eigenvalues of the whole
dome are obtained by a union of two 272�274 matrices.
As a result of examining these two distinct methods,
the computational time of the classic method is almost
six times longer than that of Form II. Also, by the
speci�c nodal numbering that makes the matrix in the
form associated with rotationally repetitive structures,
the eigenvalues are obtained by the union of 32 sets that
are equal to the eigenvalues of 17 � 17 matrices. The
computational time of this form is almost four times
shorter than that of Form II. All computational times
are provided in Table 2. The computational time(s) is
calculated 100 times for each method and �nally, they
are averaged.

6.6. Example 6
As shown in Figure 15, the �nite element model of
a cooling tower is considered. This model consists
of 900 nodes and 3510 elements. The speci�c nodal
numbering is presented in Section 4.4, which creates the
form associated with rotationally repetitive structures.
In a conventional fashion, the eigenvalues of the cooling
tower can be calculated by solving its polynomial
equation and considering a 900�900 Laplacian matrix.
On the other hand, with unique nodal numbering that

Figure 14. A dome for Example 5: (a) Three-dimensional
view of the dome and (b) top view of the dome.
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Table 2. Comparison of the results for Example 5.

Time (sec)

The Laplacian in the classic form 10.4
The Laplacian in Form II 1.8
The Laplacian in the rotationally repetitive form 0.44
Time ratio = Form II

rotationally repetitive form = 4:091 Time ratio = Classic
Form II = 5:778

Table 3. Comparison of the results for Example 6.

Time (sec)

The Laplacian in the classic form 17.2
The Laplacian in the rotationally repetitive form 0.63
Time ratio = classic

rotationally repetitive form = 27:301

Figure 15. A cooling tower for Example 6.

causes the form associated with rotationally repetitive
structures, the eigenvalues of the entire tower can be
obtained as the union of 30 sets of the eigenvalues of
30�30 matrices. The computational time in the classic
method is almost thirty times longer than that in the
new method, as shown in Table 3. The computational
time(s) is calculated 100 times for each method and
�nally, they are averaged.

7. Concluding remarks

Symmetry results in the decomposition of structures
into smaller substructures. The matrices corresponding
to the detached substructures have smaller dimensions
than the dimensions of primary structures. In bilat-
erally symmetric structures, there are three kinds of
symmetry. First, the axis of symmetry does not pass
through members and nodes, Form I. Second, the axis
of symmetry passes through members, Form II. Third,
the axis of symmetry passes through nodes, Form III.
In Form II, instead of �nding the eigenvalues of an
n� n matrix, one can calculate the eigenvalues of two

n
2 � n

2 matrices. In Form III, instead of �nding the
eigenvalues of an (n + k) � (n + k) matrix, one can
calculate the eigenvalues of an n

2 � n
2 and an (n2 +

k)� (n2 + k) matrices. With the decomposition of the
rotationally repetitive structures into subsystems, large
eigenproblems transform into much smaller problems.
In fact, for a structure with n rotationally repetitive
segments, instead of �nding the eigenvalues of an
nm � nm matrix, one can calculate the eigenvalues of
n number of m�m matrices. In structural mechanics,
to calculate natural frequencies and buckling loads
of vibrating regular systems, their matrices can be
associated with one of the mentioned forms to reduce
the computational load and time.

In the present paper, it is proved that all these
canonical forms for bilateral symmetry structures are
interrelated. The only di�erence between them is the
outward appearance of matrices associated with them,
which is originated from the di�erent methods of nodal
numbering. Moreover, it is proved that all these forms
represent special forms associated with rotationally
repetitive structures.
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