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Abstract. Data Envelopment Analysis (DEA) can be employed to evaluate the operation
of units as one of the most important concerns of managers. DEA is a linear programming
technique for calculating relative performance of Decision-Making Units (DMUs) with
multiple input and output. However, although all the input and output are considered
as certain items in these models, there are uncertain items in the real word and the
existing interference between these two concepts will result in uncertain models. Allocation
models were studied in an uncertain environment with belief degree-based uncertain input
costs and output prices. Belief degree-based uncertainty is useful for cases in which
there is no historical information on an uncertain event. Utilizing the uncertain entropy
model as a second objective function, the cost and revenue models showed an optimal
performance with the maximum dispersion rate in their constituent components. As a
solution methodology, the uncertain allocation models were separately converted into crisp
models by the Expected Value (EV) and the Expected Value and Chance-Constrained
(EVCC) methods. A practical example from the Iranian stock market was also employed
to evaluate the performance of the new model.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Data Envelopment Analysis (DEA) is recognized as a
robust analytical tool extensively utilized in measuring
the relative e�ciency of a group of Decision-Making
Units (DMUs) with multiple input and output. The
DEA model, originally named CCR, was �rst developed
by Charnes et al. [1] on a printed paper. They
expanded the nonparametric method introduced by
Farrell [2] to gauge DMUs with multiple input and
output. CCR makes use of mathematical optimiza-
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tion in a linear programming formula to measure the
performance of a DMU relative to a set of DMUs.
Afterwards, Banker et al. [3] introduced the BCC
model. In addition to CCR and BCC, several models
have been developed that discuss DEA from several
perspectives. Instances are RAM by Cooper et al. [4],
slack-adjust by Sueyoshi [5], additive model by Seiford
and Thrall [6], Slacks-Based Measure (SBM) model by
Tone [7], and FDH model by Deprins et al. [8], all of
which are DEA-based models.

In classical DEA models, DMUs are evaluated
by considering input and output values in order to
measure rational e�ciency as compared to di�erent
DMUs. Eventually, the measure to which rational
e�ciency belongs is obtained between (0, 1). DEA
is used for measuring and analyzing such concepts as
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cost and revenue e�ciencies [9]. In fact, one of the most
important aspects of product analysis and organization
is to measure cost and revenue e�ciencies [2]. Real ef-
�ciency models for calculating cost e�ciency search for
a unit that requires the lowest cost for buying input not
more than the input to the units under investigation in
order to produce output equal to the output of the units
under investigation. Furthermore, a revenue e�ciency
model searches for a unit which gains the best revenue
from selling output greater than output of the units
under investigation by consuming the input equal to
the input of the units under investigation.

The method for experimental evaluation of cost
and revenue e�ciencies was �rst developed by F�are et
al. [10]. In the cost and revenue model introduced by
F�are et al. [10], not only the modeling needs input and
output, but also every price can be di�erent in every
unit, which may limit the applications of the model.
Their model was based on some sampling hypotheses.
The input should be homogenous and the prices should
be available and speci�ed. Because of changes in the
process or in input speci�cations, the techniques and
input in big and small organizations might be di�erent.
As a result, input and their costs could also be di�erent.
Accordingly, the technical structure of the DEA model
could be more sophisticated [9].

According to Jamshidi et al. [11], the classical
DEA models assumed that input and output were
represented by precise values. However, in many
real-world systems like banking, insurance, and other
�nancial systems, the input and output are not precise
and cannot be measured exactly. Considering this,
many researchers tried to formulate DEA problems
with di�erent hypotheses. A possible hypothesis is
the earliest principles, which may be used to build
stochastic DEA models. Sengupta [12] summed up
the stochastic DEA model utilizing the Expected Value
(EV). Moreover, Banker [13] consolidated the elements
of applied mathematics under DEA in order to develop
a statistical method. Several papers utilized chance-
constrained programming for DEA so as to introduce
stochastic varieties to information [4,14{16]. Fuzzy
outlook is another theory the hypothesis of which has
been utilized to cope with the uncertainty in DEA.
Cooper et al. [17{19] introduced a technique to deal
with inaccurate information such as moderate data,
adjectival data, and ratio moderate data in DEA.
Furthermore, Kao and Liu [20] designed a technique to
discover the membership function of fuzzy performance
marks when each input and output was a fuzzy number.
Entani et al. [21] proposed an interval potency DEA
model by pessimistic and idealistic values. Several re-
searchers have introduced the possibility measure into
DEA [22{24]. As con�rmed by several studies, human
uncertainty does not come with the same fuzziness in
all cases. To overcome the shortcomings of the fuzzy

theory, Liu [25] introduced the uncertain theory and
re�ned it in 2010 as an understandable mathematical
structure for confronting uncertainty in data, which
served as a strong alternative to the probability theory
when one had to restrict the information in the face
of insu�cient trusted data. The belief degree function
is associated with an underlying concept of this theory
built according to the opinion of the experts [26].

Optimization problems with uncertain data can
be even more interesting and realistic in uncertain
environments with uncertain values for parameters and
variables [27]. To deal with uncertain parameters,
any approach based on randomness, fuzzy theory,
stochastic programming, probability theory, and so on
can be applied to the historical information on the
parameters.

In such cases, the uncertain manner of the prob-
lem is estimated from the historical data as a probabil-
ity function, random number, fuzzy number, etc. [25].
On the other hand, for cases in which no historical
information on an uncertain event exists, uncertainty
theory based on belief degree has been employed to
solve the problem.

The uncertainty theory can be explained by a
simple example. Consider a bridge with undetermined
strength. At �rst, it is assumed that no destructive
experiment is allowed on the bridge. Thus, there is
no sample regarding the strength of the bridge. In
this case, no statistical methods exist for estimating its
probability distribution. Therefore, there is no choice
but to invite bridge engineers to evaluate the belief
degrees about the strength of the bridge [28]. Some
basic concepts of the belief degree-based uncertainty
theory will be explained in Section 2 and a complete
study of this topic can be found in Liu [25].

The belief degree depends heavily on personal
knowledge (including preferences) concerning an event.
When the personal knowledge changes, the belief
degree changes as well. Di�erent people may o�er
di�erent belief degrees. The question is which belief
degree is correct and it may be answered as follows: all
belief degrees are wrong, but some are useful [28].

A belief degree becomes \correct" only when it
is close enough to the frequency of the indeterminate
quantity, which, however, does not usually occur. Nu-
merous surveys have demonstrated that human beings
usually estimate a much wider range of values than the
object actually takes. This human conservatism makes
the belief degrees deviate far from the frequency. Thus,
all belief degrees are wrong compared with the real
frequency [25]. Nevertheless, it is undeniable that these
belief degrees are indeed helpful for decision-making.
Moreover, as determined by the choice of �, there is a
risk that DMUs would not be e�cient even when their
condition is satis�ed [28].

Wen et al. [29] applied the uncertain theory
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for the �rst time to rewriting the DEA model in
uncertainty condition and then, published a paper on
the sensitivity and stability of the additive model in
terms of uncertainty. Wen et al. [30] also introduced a
new additive model with uncertain input and output.
Additionally, Wen et al. [31] developed the DEA model
with uncertainty index ranking for criteria. Lio et
al. [32] also published a paper to evaluate DMUs
with uncertain input and output. Jamshidi et al. [11]
developed the RUSSEL DEA model with uncertain
input and output. Jamshidi et al. [26] applied the SBM
model to an uncertain environment where the uncertain
input and output were belief degree-based uncertainty.

These studies are nevertheless insu�cient for
describing programming with uncertain data [27,33{
39] and new models are often introduced to create new
methods.

Based on the Shannon entropy, Liu [40] intro-
duced the concept of entropy for the �rst time to
determine the uncertainty of uncertain variables re-
sulting from information de�ciency. Clearly, entropy
functions are used as a means for measuring dispersion
in allocation models. Chen and Dai [41] and Dai
and Chen [42] investigated the maximum entropy of
uncertainty distribution for uncertain variables. They
presented the entropy of a function of an uncertain
variable. In the present study, input costs and output
prices are considered as uncertain variables and then,
two di�erent models are proposed to convert the new
model into a crisp model to deal with the uncertainty
problem. Thereafter, uncertain allocation models are
used in a practical example in the Iranian stock market
to �nd a stock portfolio with the maximum return.

Based on the literature on the uncertain DEA
problems, no serious study has been performed on
incorporating entropy and belief degree-based uncer-
tain DEA models. In fact, entropy measures the
degree of uncertainty. This study for the �rst time
aims at dealing with allocation models in an uncertain
environment. Since entropy helps with the diversi�ca-
tion of the model, another function is considered as a
second objective function. This in turn results in the
best and highest diversi�cation of allocation models.
Considering the maximum entropy in allocation models
helps us achieve the highest revenue and the lowest
cost with a maximum dispersal measure. This new
multi-objective model will result in higher e�ciency
of units, which are considered more dispersed in all
processes. The parameters of the objective function
and constraints are considered to be of zigzag uncer-
tainty variables. Two approaches of EV and Expected
Value and Chance-Constrained (EVCC) methods are
developed for the uncertain allocation problems. A
real practical example from the Iranian stock market is
also presented to evaluate the performance of the new
model. The new multi-objective uncertain allocation

models will enhance the power of managerial decisions
and o�er a clear way for choosing components of
allocation models.

The paper is organized as follows: Some prelim-
inary knowledge on uncertainty theory is reviewed in
Section 2. Entropy function in an uncertain space is
introduced in Section 3. Basic concepts of the allo-
cation DEA models are introduced in Section 4. Some
new uncertain DEA models are introduced in Section 5
and their new structures are proven. Section 6 concerns
crisp equivalents of the DEA models. Entropy-based al-
location models with uncertain variables are introduced
in Section 7. The weighted method, which is solely
a multi-objective model, is introduced in Section 8.
Finally, an applied example to the Iranian stock market
is solved by the allocation uncertain models.

2. Preliminaries

Here, the basic concepts and presented uncertain vari-
ables are discussed [25]. Let � be a nonempty set and
L an �-algebra over �. Each element � 2 L is called
an event. A set function Mf�g 2 [0; 1] is known as
an uncertain measure if it satis�es the following three
axioms [25]:

1. Mf�g = 1 for the universal set �;
2. Mf�g+Mf�cg = 1 for any event �;
3. For every countable sub-additive of events f�ig, we

have Mf 1[
i=1

�ig � 1P
i=1

�i.

De�nition 1 [25]. The set function M is called an
uncertain measure if it meets the duality, normality,
and subadditivity axioms.

The uncertain measure has the following at-
tributes:

i. Mf�g = 0;
ii. 0 �Mf�g � 1 for any event �;
iii. Mf�1g � Mf�2g for any events �1 � �2.

The triplet (�; L;M) is called an uncertainty space. In
order to de�ne the product uncertain measure, Liu [43]
proposed the fourth axiom as follows: Let (�k; Lk;Mk)
be the uncertainty space for k = 1; 2; � � � , then the
product uncertain measureM is an uncertain measure
satisfying:

M
( 1Y
k=1

�k

)
=
1
�
k=1
Mkf�kg:

De�nition 2. [25]. An uncertain variable is a mea-
surable function � from an uncertainty space (�; L;M)
of the set of real numbers, i.e., for any Borel set B of
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real numbers, the set f� 2 Bg = f
 2 �j�(
) 2 Bg is
an event.

An uncertainty distribution function is used to
characterize an uncertain variable and de�ned as fol-
lows [25]:

'(x) =Mf� � xg 8 x; x 2 R: (1)

Theorem 1 [44]. A function �(x) : R ! [01] is an
uncertainty distribution if and only if it is an increasing
monotonic function, except �(x) � 0 and �(x) � 1.

Point 1. The zigzag uncertainty distribution is an
uncertain variable � shown with Z(a; b; c) and ex-
pressed as follows:

'(x) =

8>>>>>>>>>>><>>>>>>>>>>>:

0 x � a
(x�a)
2(b�a) a � x � b
(x+c�2b)

2(c�b) b � x � c

1 x � c

(2)

where a, b, and c are real numbers with a < b < c.

De�nition 3. An uncertainty distribution ' is said
to be regular if it has an inverse function '�1(�) and
it is unique for each � 2 (0; 1). For instance, the
uncertain distributions are given in Eq. (2).

Point 2. The inverse uncertainty distribution of
zigzag uncertain variable Z(a; b; c) is:

��1(�) =

(
(1� 2�)a+ 2�b � < 0:5
(2� 2�)b+ (2�� 1)c � � 0:5

(3)

De�nition 4 [28]. The uncertain variables �1; �2; � � � ;
�n are considered to be independent if:

M
�

n\
i=1

(�i 2 Bi)
�

=
n
�
i=1
Mf�i 2 Big;

for any Borel set B1; B2; � � � ; Bn.

De�nition 5 [28]. The uncertain variables �1; �2; � � � ;
�n are independent if and only if:

M
�

n[
i=1

(�i 2 Bi)
�

=
n_
i=1
Mf�i 2 Big ;

for any Borel set B1; B2; � � � ; Bn.

Theorem 2 [28]. Let �1; �2; � � � ; �n be independent
uncertain variables and f1; f2; � � � ; fn measurable func-
tions. Then, f1(�1); f2(�2); � � � ; fn(�n) are independent
uncertain variables.

Theorem 3 [28]. Let �1; �2; � � � ; �n be variables with
independent uncertainty and regular uncertainty distri-
butions '1; '2; � � � ; 'n, respectively. If f is a strictly
increasing function, then � = f(�1; � � � ; �n) is an
uncertain variable with inverse uncertain distribution
 (�1) = f('�1

1 (�); '�1
2 (�); � � � ; '�1

n (�)).

Theorem 4 [28]. Let �1; �2; � � � ; �n be independent
uncertain variables and regular uncertainty distri-
butions '1; '2; � � � ; 'n, respectively. If f is strictly
increasing with respect to �1; �2; � � � ; �n and strictly
decreasing with respect to �m+1; �m+2; � � � ; �m+n, then
� = f(�1; � � � ; �n) is an uncertain variable with an
inverse uncertainty distribution:

'�1(�) =f('�1
1 (�); � � � ; '�1

m (�); '�1
m+1(1� �);

� � � ; '�1
n (1� �)):

De�nition 6 [28]. If � be an uncertain variable, then
the EV of � is de�ned by:

E[�] =
Z +1

0
M(� � x)dx�

Z 0

�1
M(� � x)dx; (4)

provided that at least one of the two integrals is �nite.
The couple uncertain variable and distribution

(�; ') have some related formulae explained as follows:

E[�] =
Z +1

0
(1� '(x))dx�

Z 0

�1
'(x)dx: (5)

Point 3. The EV for variable � with zigzag uncertain
distribution is de�ned as fallows:

E[�] =
a+ 2b+ c

4
: (6)

Theorem 5 [28]. Let �1; �2; � � � ; �n be independent
uncertain variables with regular uncertainty distri-
butions '1; '2; � � � ; 'n, respectively. If f is strictly
increasing with respect to �1; �2; :::; �n and strictly
decreasing with respect to �m+1; �m+2; � � � ; �m+n, then
� = f(�1; � � � ; �n) has an EV:

E[�] =
Z 1

0
f('�1

1 (�); � � � ; '�1
m (�); '�1

m+1(1� �)

; � � � ; '�1
n (1� �))d�: (7)

Theorem 6 [28]. Let � and � be independent un-
certain variables with �nite EV. Then, for any real
numbers a and b, we have:

E[a� + b�] = aE[�] + bE[�]:
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Theorem 7 [28]. Let �1; �2; � � � ; �n be independent
uncertain variables with regular uncertainty distri-
butions '1; '2; � � � ; 'n, respectively. If the function
f(�1; � � � ; �n) is strictly increasing with respect to
�1; �2; � � � ; �n and strictly decreasing with respect to
�m+1; �m+2; � � � ; �m+n, then: Mff(�1; �2; � � � ; �n) �
0g � �, if and only if:

f
�
��1

1 (�);� � �; ��1
m (�); ��1

m+1(1��);� � �; ��1
n (1��)

��0:

Theorem 8 [28]. Let � be an uncertain variable with
regular uncertainty distribution �. Then:

E[�] =
Z 1

0
'�1(�)d�: (8)

3. Entropy function as an uncertain variable

The primary de�nition of entropy is presented in this
section to specify the uncertainty of an uncertain
variable.

De�nition 7 [28]. Suppose that � is an uncertain
variable with uncertainty distribution�. Then, its
entropy is de�ned as follows:

H[�] =
Z +1

�1
S(�(x))dx; (9)

where S(t) = �t ln t� (1� t) ln(1� t).
It is easy to verify that S(t) is a symmetric func-

tion about t = 0:5, strictly increasing in the interval
[0; 0:5], strictly decreasing in the interval [0:5; 1], and
reaching its unique maximum ln 2 at t = 0:5.

Point 4. Let � be a zigzag uncertain variable � �
Z(a; b; c). Then, its entropy is:

H[�] =
c� a

2
: (10)

Theorem 9. Let � be an uncertain variable. Then,
H[�] � 0 and the inequality holds if � is essentially
constant.

Theorem 10. Let � be an uncertain variable and c
be a real number, then:

H[� + c] = H[�]: (11)

Theorem 11 [42]. Let � be an uncertain variable with
regular uncertainty distribution �. Then:

H[�] =
Z 1

0

�
��1(�) ln

�
�

1� �
��

d�: (12)

Theorem 12 [42]. Let �1; �2; � � � ; �n be independent
uncertain variables with regular uncertainty distribu-
tions '1; '2; � � � ; 'n, respectively. If f(x1; � � � ; xn)

is strictly increasing with respect to x1; � � � ; xm and
strictly decreasing with respect to xm+1; � � � ; xm+n,
then the uncertain variable � = f(�1; � � � ; �n) has an
entropy:

H[�] =
Z 1

0
f
�
��1

1 (�); � � � ;��1
m (�);��1

m+1(1� �);

� � � ;��1
n (1� �)

�
ln
�

�
1� �

�
d�: (13)

Theorem 13 [42]. Let � and � be independent
uncertain variables. Then, for any real numbers a and
b, we have:

H[a� + b�] = jajH[�] + jbjH[�]: (14)

4. DEA models

Assume that there are n DMUs to be evaluated, each
consisting of xij (i = 1; � � � ;m) as input vector and yrj
(r = 1; � � � ; s) as output vector. Also, c = (ci1; � � � ; cin)
for (i = 1; � � � ;m) and p = (pr1; � � � ; prn) for (r =
1; � � � ; s), respectively, represent the input costs and
output prices. Assume that DMUo is an evaluated
unit. The cost e�ciency model searches for a unit
which consumes the lowest cost for buying input not
more than the input in the units under investigation for
producing output equal to the output of the units under
investigation. The cost e�ciency model is de�ned as
follows [7]:

cx� = min
x;�

cx = min
mX
i=1

cioxi;

s.t. :

xi �
nX
j=1

xij�j i = 1; � � � ;m;

yro �
nX
j=1

yrj�j r = 1; � � � ; s;

xi � 0 i = 1; � � � ;m;
�j � 0 j = 1; � � � ; n: (15)

Assuming an optimal solution for (x�; ��), the cost
e�ciency ratio is de�ned as:

Ec =
cx�
cxo

; (16)

according to Eq. (16), 0 � Ec � 1.

De�nition 8. DMUo is cost e�cient if and only if
Ec = 1.
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In addition, the revenue e�ciency model searches
for a unit which gains the best revenue from selling
the output greater than the output of the units under
investigation and consumes the input equal to the input
to the units under investigation. The revenue e�ciency
model is de�ned as follows [7]:

py� = max
y;�

py = max
sX
r=1

proyr;

s.t.:

xio �
nX
j=1

xij�j i = 1; � � � ;m;

yr �
nX
j=1

yrj�j r = 1; � � � ; s;

yr � 0 r = 1; � � � ; s;
�j � 0 j = 1; � � � ; n: (17)

Assuming an optimal solution for (y�; ��), the revenue
e�ciency ratio is de�ned as:

ER =
pyo
py� ; (18)

according to Eq. (18), 0 � ER � 1.

De�nition 9. DMUo is revenue-e�cient if and only
if ER = 1.

5. Uncertain DEA model

The allocation model requires input and output
equipped with precise data. Nevertheless, in real-
world situations, input and output may be unstable
and complicated and, therefore, cannot be measured
in an accurate manner. This con
ict results in the
investigation of uncertain DEA models. Decision-
makers in real-word situations make their decisions in
an indeterminate state. To model indeterminacy, there
exist two mathematical systems, namely the probabil-
ity theory [45] and the uncertainty theory [25]. If there
exists frequency in the phenomena, the probability
theory is employed; otherwise, the uncertain theory
can be a powerful technique for resolving a problem
with no sample using the personal belief degree. For
this purpose, skilled consultants and experts should be
invited to measure the belief degree. Belief degree-
based uncertainty is useful for cases in which there is
no historical information on an uncertain event. For
example, both costs and prices may be unstable and
complex in the stock market. Therefore, uncertain
DEA models should be used for discovering the e�-
ciency of two people with two di�erent stock portfolios

in terms of cost and revenue.
Through this approach, we aim to introduce an

allocation model, referred to as the uncertain allocation
model, with uncertain input and output. First, the new
symbols and notation are presented as follows:
- ~xk = (~x1k; ~x2k; � � � ; ~xmk): The uncertain input

vector of DMUk, k = 1; 2; � � � ; n;
- 'ik(x): The uncertainty distribution of ~xik, k =

1; 2; � � � ; n, i = 1; 2; � � � ;m;
- ~yk = (~y1k; � � � ; ~yrk): The uncertain output vector of

DMUk, k = 1; 2; � � � ; n;
-  rk(x): The uncertainty distribution of ~yrk, k =

1; 2; � � � ; n, r = 1; 2; � � � ; s;
- �: A predetermined con�dence level;
- M: The uncertainty measure expressed in Section 2.

Now, suppose that the input costs cij and the input
vectors xij , for (i = 1; � � � ;m), (j = 1; � � � ; n) as well
as the output vector yrj(r = 1; � � � ; s) in Model (15)
are uncertain variables represented by ~cij , ~xij , and ~yrj ,
respectively. Accordingly, the uncertain cost e�ciency
model can be rewritten as follows:

~cx� = min
x;�

~cx = min
mX
i=1

~cioxi;

s.t.:

xi �
nX
j=1

~xij�j i = 1; � � � ;m;

~yro �
nX
j=1

~yrj�j r = 1; � � � ; s;

�j�0; xi�0 j=1; � � � ; n; i=1; � � � ;m: (19)

Also, suppose that the output price prj , the output
vectors yrj for (r = 1; � � � ; s), (j = 1; � � � ; n), and
the input vector xij(i = 1; � � � ;m) in Model (17) are
uncertain variables represented by ~prj ; ~yrj , and ~xij ,
respectively. Accordingly, the uncertain cost e�ciency
model can be rewritten as follows:

~py� = max
y;�

~py = max
sX
r=1

~proyr;

s.t.:

~xio �
nX
j=1

~xij�j i = 1; � � � ;m;

yr �
nX
j=1

~yrj�j r = 1; � � � ; s;

�j�0; yr�0 j=1; � � � ; n; r=1; � � � ; s: (20)
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6. Crisp equivalents of the model

To deal with the uncertainty problem, two di�erent
methods are presented to convert it into a crisp model,
namely (1) the EV and (2) the EVCC methods.

6.1. EV method
In this section, the uncertain cost model is transformed
to a crisp model using the EV method.

6.1.1. Cost optimization model
The uncertain cost e�ciency (Model (19)) is introduced
as follows using the EV method:

� = E [~cx�] = min
x;�

E [~cx] = minE

"
mX
i=1

~cioxi

#
;

s.t.:

E

24 nX
j=1

~xij�j � xi
35 � 0 i = 1; � � � ;m;

E

24~yro �
nX
j=1

~yrj�j

35 � 0 r = 1; � � � ; s;

�j � 0; xi � 0 j = 1; � � � ; n; i = 1; � � � ;m:
(21)

De�nition 10 (e�ciency). In Model (21), DMUo
is e�cient if and only if �� = 1, where �� is the optimal
value of Model (21).

Theorem 14. Assume that the input costs ~ci1; ~ci2;� � � ; ~cin, the input ~xi1; ~xi2; � � � ; ~xin, and the output
~yr1; ~yr2; � � � ; ~yrn are independent uncertain variables
with uncertainty distributions of 'i1; 'i2; � � � ; 'in;
 i1;  i2; � � � ;  in; and �r1; �r2; � � � ; �rn, respectively,
where i = 1; 2; � � � ;m and r = 1; � � � ; s. Then, the
uncertain programming Model (21) will be equivalent
to the following model:

min
mX
i=1

xi
Z 1

0
��1
io (�)d�;

s.t.:

nX
j=1

�j
Z 1

0
 �1
ij (�)d�� xi � 0 i = 1; � � � ;m;

Z 1

0
��1
ro (�)d��

nX
j=1

�j
Z 1

0
��1
rj (1� �)d� � 0

r = 1; � � � ; s;

�j � 0; xi � 0 j = 1; � � � ; n; i = 1; � � � ;m:
(22)

Proof. According to Theorem 6, objective function in
(21) is rewritten as follows:

E

"
mX
i=1

~cioxi

#
=

mX
i=1

E [~cioxi] =
mX
i=1

xiE [~cio] :

The function
mP
i=1

xiE[~cio] is strictly increasing with

respect to ~cio for each i. According to Theorem 8, we
have:

mX
i=1

xiE [~cio] =
mX
i=1

xi
Z 1

0
��1
io (�)d�:

As a result, the objective function is proven. Now,
according to Theorem 8:

E[a�] =
Z 1

0
a��1(�)d� = a

Z 1

0
��1(�)d� = aE[�]:

Let us prove the constraint as follows:
According to Theorem 6, the �rst constraint of

Model (21) is rewritten as follows:

E

24 nX
j=1

~xij�j � xi
35 = E

24 nX
j=1

~xij�j

35� xi
=

nX
j=1

�jE [~xij ]� xi =
nX
j=1

�j
Z 1

0
 �1
ij (�)d�� xi:

The function ~yro � nP
j=1

~yrj�j is strictly increasing with

respect to ~yro and strictly decreasing with respect to ~yrj
for each r, r = 1; � � � ; s and j, j = 1; � � � ; n. According
to Theorems 6 and 8, we have:

E

24~yro �
nX
j=1

~yrj�j

35 = E [~yro]� E
24 nX
j=1

~yrj�j

35
=
Z 1

0
��1
ro (�)d��

nX
j=1

�j
Z 1

0
��1
rj (1� �)d�:

The theorem is therefore proven.

6.1.2. Revenue optimization model
Using the EV method explained in the previous section,
the uncertain revenue (Model (20)) is introduced as
follows:
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� = E [~py�] = max
y;�

E [~py] = max
y;�

E

"
sX
r=1

~proyr

#
;

s.t.:

E

24 nX
j=1

~xij�j � ~xio

35 � 0 i = 1; � � � ;m;

E

24yr � nX
j=1

~yrj�j

35 � 0 r = 1; � � � ; s;

�j � 0; yr � 0 j = 1; � � � ; n; r = 1; � � � ; s:
(23)

De�nition 11 (e�ciency). In Model (23), DMUo
is e�cient if and only if �� = 1, where �� is the optimal
value of Model (23).

Theorem 15. Assume that the output prices ~pr1; ~pr2;� � � ; ~prn, the input ~xi1; ~xi2; � � � ; ~xin, and the out-
put ~yr1; ~yr2; � � � ; ~yrn are independent uncertain vari-
ables with uncertainty distributions �r1; �r2; � � � ; �rn;
 i1;  i2; � � � ;  in; and �r1; �r2; � � � ; �r n, respectively,
where i = 1; 2; � � � ;m and r = 1; � � � ; s. Then, the
uncertain programming (Model (23)) will be equivalent
to the following model:

max
sX
r=1

yr
Z 1

0
��1
ro (�)d�;

s.t.:

nX
j=1

�j
Z 1

0
	�1
ij (�)�

Z 1

0
	�1
io (1� �)d� � 0

i = 1; 2; � � � ;m;

yr �
nX
j=1

�j
Z 1

0
��1
rj (1� �)d� r = 1; � � � ; s;

�j � 0; yr � 0; j = 1; � � � ; n; r = 1; � � � ; s:
(24)

Proof. According to Theorem 6, the objective function
in Model (23) is rewritten as follows:

E

"
sX
r=1

~proyr

#
=

sX
r=1

E [~proyr] =
sX
r=1

yrE [~pro] :

The function
Ps
r=1 yrE[~pro] is strictly increasing with

respect to ~pro for each r. According to Theorem 8, we
have:

sX
r=1

yrE [~pro] =
sX
r=1

yr
Z 1

0
��1
io (�)d�:

Thus, the objective function is proven. Now, according
to Theorem 8:

E[a�] =
Z 1

0
a	�1(�)d� = a

Z 1

0
	�1(�)d� = aE[�]:

Let us prove the constraint as follows. According
to Theorem 6, the �rst constraint of Model (23) is
rewritten as follows:

E

24yr � nX
j=1

~yrj�j

35 = yr � E
24 nX
j=1

~yrj�j

35
= yr �

nX
j=1

E [~yrj ]�j :

The function yr� nP
j=1

E[~yrj ]�j is strictly increasing with

respect to �~yrj for each r = 1; � � � ; s and j = 1; � � � ; n.
According to Theorem 8, we have:

yr �
nX
j=1

E [~yrj ]�j = yr �
nX
j=1

�j
Z 1

0
��1
rj (1� �)d�

8 r; r = 1; � � � ; s:

The function
nP
j=1

~xij�j � ~xio is strictly increasing with

respect to ~xij and strictly decreasing with respect to
�~xio for each i = 1; � � � ;m and j = 1; � � � ; n. According
to Theorems 6 and 8, we have:

E

24 nX
j=1

~xij�j � ~xio

35 =
nX
j=1

�jE [~xij ]� E [~xio]

=
nX
j=1

�j
Z 1

0
	�1
ij (�)d��

Z 1

0
	�1
io (1� �)d�;

i = 1; � � � ;m:
The theorem is therefore proven.

6.2. EVCC method
Using the EVCC method, the uncertain cost and
revenue models are converted into crisp models and the
new crisp models are solved with the help of speci�c
software.

6.2.1. Cost optimization model
The uncertain cost (Model (19)) is converted to a crisp
model using the EVCC method as follows:
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E [~cx�] = min
x;�

E [~cx] = minE

"
mX
i=1

~cioxi

#
;

s.t.:

M
8<: nX
j=1

~xij�j � xi � 0

9=; � � i = 1; 2; � � � ;m;

M
8<:~yro �

nX
j=1

~yrj�j � 0

9=; � � r = 1; � � � ; s;

�j � 0; xi � 0; j = 1; � � � ; n; i = 1; � � � ;m:
(25)

De�nition 12. A vector (xi; �j) � 0 where j =
1; :::; n, i = 1; :::;m is called a feasible solution to the
uncertain programming (Model (25)) if:

M
8<: nX
j=1

~xij�j � xi � 0

9=; � � i = 1; � � � ;m:

M
8<:~yro �

nX
j=1

~yrj�j � 0

9=; � � r = 1; � � � ; s:

De�nition 13. A feasible solution is called an ex-
pected optimal solution to the uncertain programming
(Model (25)) if:

E

"
mX
i=1

~ciox�i

#
� E

"
mX
i=1

~cioxi

#
i = 1; 2; � � � ;m; j = 1; 2; � � � ; n; (26)

for any solution (xi; �j).

De�nition 14. A larger optimal objective value in
Model (25) means a more e�cient DMUo.

Theorem 16. Assume that the input costs ~ci1; ~ci2;� � � ; ~cin, the input ~xi1; ~xi2; � � � ; ~xin, and the output
~yr1; ~yr2; � � � ; ~yrn, are independent uncertain variables
with uncertainty distributions of 'i1; 'i2; � � � ; 'in;
 i1;  i2; � � � ;  in; and �r1; �r2; � � � ; �r n, respectively,
where i = 1; 2; � � � ;m and r = 1; � � � ; s. Then, the
uncertain programming (Model (25)) will be equivalent
to the following model:

min
mX
i=1

xi
Z 1

0
��1
io (�)d�;

s.t.:

nX
j=1

 �1
ij (�)�j � xi � 0 i = 1; 2; � � � ;m;

��1
ro (�)�

nX
j=1

��1
rj (1� �)�j � 0 r = 1; � � � ; s;

�j�0; xi�0 i=1; 2; � � � ;m; j=1; 2; � � � ; n:
(27)

Proof. Equivalency of the objective function was
proven in the proof of Theorem 15. To prove the equiv-
alency of the constraints, the function

Pn
j=1 ~xij�j �xi

is strictly increasing with respect to ~xij for each i =
1; � � � ;m and j = 1; � � � ; n. According to Theorem 7:

M
8<: nX
j=1

~xij�j � xi � 0

9=; � �,
M
8<: nX
j=1

~xij�j�xi � 0

9=;��, nX
j=1

 �1
ij (�)�j �xi�0;

8j; j=1; � � � ; n; i=1; � � � ;m:
Also, the function ~yro�Pn

j=1 ~yrj�j is strictly increasing
with respect to ~yro and strictly decreasing with respect
to ~yrj for each r = 1; � � � ; s and j = 1; � � � ; n.
According to Theorem 7:

M
8<:~yro �

nX
j=1

~yrj�j � 0

9=; � �, ��1
ro (�)

�
nX
j=1

��1
rj (1� �)�j � 0

j = 1; � � � ; n; r = 1; � � � ; s:
Therefore, the theorem is proven.

6.2.2. Revenue optimization model
The uncertain revenue (Model (20)) is converted to a
crisp model using the EVCC method:

E [~py�] = max
y;�

E [~py] = maxE

"
sX
r=1

~proyr

#
;

s.t.:

M
8<: nX
j=1

~xij�j � ~xio � 0

9=; � � i = 1; 2; � � � ;m;

M
8<:yr � nX

j=1

~yrj�j � 0

9=; � �; r = 1; � � � ; s;
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�j � 0; yr � 0 j = 1; � � � ; n; r = 1; � � � ; s:
(28)

De�nition 15. A vector (yr; �j) � 0 where j =
1; :::; n, r = 1; :::; s, is called a feasible solution to the
uncertain programming (Model (28)) if:

M
8<: nX
j=1

~xij�j � ~xio � 0

9=; � � i = 1; 2; � � � ;m;

M
8<:yr � nX

j=1

~yrj�j � 0

9=; � � r = 1; � � � ; s:

De�nition 16. A feasible solution (y�r , ��j ) is called
an expected optimal solution to the uncertain program-
ming (Model (28)) if:

E

"
sX
r=1

~proy�r

#
� E

"
sX
r=1

~proyr

#
j = 1; � � � ; n; r = 1; � � � ; s; (29)

for any solution (yr; �j).

De�nition 17. A larger optimal objective value in
Model (28) means a more e�cient DMUo.

Theorem 17. Assume that the output prices ~pr1; ~pr2;� � � ; ~prn, the input ~xi1; ~xi2; � � � ; ~xin, and the out-
put ~yr1; ~yr2; � � � ; ~yrn are independent uncertain vari-
ables with uncertainty distributions of �r1; �r2; � � � ; �rn;
 i1;  i2; � � � ;  in; and �r1; �r2; � � � ; �r n, respectively,
where i = 1; 2; � � � ;m and r = 1; � � � ; s. Then, the
uncertain programming (Model (28)) will be equivalent
to the following model:

max
sX
r=1

yr
Z 1

0
��1
ro (�)d�;

s.t.:

nX
j=1

�j �1
ij (�)�  �1

io (1� �) � 0 i = 1; 2; � � � ;m;

yr �
nX
j=1

��1
rj (1� �)�j � 0 r = 1; � � � ; s;

�j � 0; yr � 0 j = 1; � � � ; n; r = 1; � � � ; s:
(30)

Proof. Equivalency of objective function was proven
in the proof of Theorem 15. To prove the equivalency of

the constraints, the function
Pn
j=1 ~xij�j�~xio is strictly

increasing with respect to ~xij and strictly decreasing
with respect to �~xio for each i = 1; � � � ;m, and j =
1; � � � ; n. According to Theorem 7, we have:

M
8<: nX
j=1

~xij�j � ~xio � 0

9=; � �,
M
8<: nX
j=1

~xij�j � ~xio � 0

9=; � �, nX
j=1

�j �1
ij (�)

� �1
io (1��)�0 j=1; � � � ; n; i=1; � � � ;m:

Also, the function yr � nP
j=1

~yrj�j is strictly decreasing

with respect to �~yrj for each r = 1; � � � ; s, and j =
1; � � � ; n. According to Theorem 7, we have:

M
8<:yr � nX

j=1

~yrj�j � 0

9=; � �, yr

�
nX
j=1

��1
rj (1� �)�j � 0

j = 1; � � � ; n; r = 1; � � � ; s:
Proof is completed.

7. Entropy-based allocation models with
uncertain variables

In the literature on uncertain DEA, there is no study
on the use of entropy in models with uncertain data.
Entropy is employed to provide a quantitative measure
for the degree of uncertainty. On the basis of the
Shannon and Weaver [46] entropy, Liu [47] introduced
the concept of entropy for the �rst time to determine
the uncertainty of uncertain variables resulting from
information de�ciency. Chen and Dai [41] and Dai
and Chen [42] investigated the principle of maximum
entropy of uncertainty distribution for uncertain vari-
ables. They presented the entropy of a function for
uncertain variables.

Considering the maximum entropy in allocation
models help us achieve the highest revenue and the
lowest cost with the maximum dispersal measure. This
model will result in the e�ciency of units, which are
considered more dispersed in all processes. Moreover,
it will enhance the power of managerial decisions.

Now, Model (12) is rewritten as a second objective
function using Models (22), (24), (27), and (30) as
follows. By utilizing Theorems 12 and 13 as the ob-
jective function of Model (22), we de�ne the following
uncertain entropy function.
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Lemma 1. Suppose ~ci1; ~ci2; � � � ; ~cin is an uncer-
tain variable with regular uncertainty distribution
'i1; 'i2; � � � ; 'in for (i = 1; � � � ;m). If f : Rn ! R
is a strictly increasing function with respect to xi,
i = 1; � � � ;m, then the uncertain function f(x; ~c) has
an entropy:

H (x; ~c) =
mX
i=1

xi
Z 1

0
'�1
io (�) ln

�
�

1� �
�
d�: (31)

Proof. Since ~cio has a regular uncertain distribution
'io, we obtain:

H (x; ~c) =
mX
i=1

xi
Z +1

�1
f('io(x))dx:

From Theorem 13, the following equality can be rewrit-
ten:

H (x; ~c) =
mX
i=1

xi
Z 0

�1

Z 'io(x)

0
f 0(�)d�dx

+
mX
i=1

xi
Z 0

�1

Z +1

'io(x)
�f 0(�)d�dx;

where:

f 0(�) = (�� ln�� (1� �) ln(1� �))0

=� ln
�

�
1� �

�
:

By applying the Fubini theorem [48] to the above
function, we obtain:

H (x; ~c) =
mX
i=1

xi
Z 0

�1

Z 0

'�1
io (x)

f 0(�)d�dx

+
mX
i=1

xi
Z 1

'io(x)

Z 'io(x)

0
�f 0(�)d�dx

=
mX
i=1

xi
Z 1

0
'�1
io (�)f 0(�)d�

=
mX
i=1

xi
Z 1

0
'�1
io (�) ln

�
�

1� �
�
d�:

Lemma 2. Suppose ~pr1; ~pr2; � � � ; ~prn is an uncer-
tain variable with regular uncertainty distribution
�r1; �r2; � � � ; �rn for r = 1; � � � ; s. If f : Rn ! R
is a strictly increasing function with respect to yr,
r = 1; � � � ; s, then the uncertain function f(y; ~p) has
an entropy:

H (y; ~p) =
sX
r=1

yr
Z 1

0
��1
ro (�) ln

�
�

1� �
�
d�: (32)

Proof. Since ~pro has a regular uncertain distribution
�ro, we obtain:

H (y; ~p) =
sX
r=1

yr
Z +1

�1
f(�ro(x))dx:

From Theorem 13, this equality can be rewritten as:

H (y; ~p) =
sX
r=1

yr
Z 0

�1

Z �ro(x)

0
f 0(�)d�dx

+
sX
r=1

yr
Z 0

�1

Z 1
�ro(x)

�f 0(�)d�dx;

where:

f 0(�)=(�� ln��(1��) ln(1��))0=�ln
�

1� �:
By applying the Fubini theorem [48] to the above
function, we obtain:

H (y; ~p) =
sX
r=1

yr
Z 0

�1

Z 0

��1
ro (x)

f 0(�)d�dx

+
sX
r=1

yr
Z 1

�ro(x)

Z �ro(x)

0
�f 0(�)d�dx

=
sX
r=1

yr
Z 1

0
��1
ro (�)f 0(�)d�

=
sX
r=1

yr
Z 1

0
��1
ro (�) ln

�
�

1� �
�
d�:

According to above discussions, the allocative e�ciency
models are presented below. First, the new multi-
objective cost e�ciency model consisting of an uncer-
tain cost model and an uncertain entropy function is
explained.

Note 1. All multi-objective problems are solved
by the weighting method. Accordingly, the multi-
objective problems are converted into single-objective
ones. The coe�cients w1 and w2 are considered for
improving the 
exibility of our model to be used by
decision makers for determining the importance of
objective functions as w1 +w2 = 1. The values of these
functions are determined before solving the problems
by the decision makers. Equal weights (w1 = w2) mean
equal attention of decision makers to both functions;
the uncertain multi-objective cost e�ciency model is
introduced as follows using the EVCC method. The
EVCC method is used for converting the new model to
a crisp model:
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Z1 = min
mX
i=1

xi
Z 1

0
��1
io (�)d�;

Z2 = max
mX
i=1

xi
Z 1

0
��1
io (�) ln

�
1� �d�;

s.t.:

nX
j=1

 �1
ij (�)�j � xi � 0 i = 1; � � � ;m;

��1
ro (�)�

nX
j=1

��1
rj (1� �)�j � 0; r = 1; � � � ; s;

�j � 0; xi � 0 j = 1; � � � ; n; i = 1; � � � ;m:
(33)

Using the weighting method explained previously, the
uncertain multi-objective (Model (33)) is rewritten as
follows:

min(w1Z1 � w2Z2);

s.t.:

nX
j=1

 �1
ij (�)�j � xi � 0 i = 1; � � � ;m;

��1
ro (�)�

nX
j=1

��1
rj (1� �)�j � 0 r = 1; � � � ; s;

�j�0; xi�0 j=1; � � � ; n; i = 1; � � � ;m:
(34)

De�nition 18. The greater the optimal objective
value in Model (34) is, the more e�cient is the DMUo.

The new multi-objective revenue e�ciency model
consisting of an uncertain revenue model as the �rst
objective function and an uncertain entropy as the
second objective function is developed here. The
uncertain multi-objective revenue e�ciency model is
introduced using the EVCC method as follows. Again,
EVCC method is used for converting the uncertain
form to the crisp form.

Z1 = max
sX
r=1

yr
Z 1

0
	�1
ro (�)d�;

Z2 = max
sX
r=1

yr
Z 1

0
	�1
ro (�) ln

�
1� �d�;

s.t.:

nX
j=1

�j �1
ij (�)�  �1

io (1� �) � 0 i = 1; � � � ;m;

yr �
nX
j=1

��1
rj (1� �)�j � 0 r = 1; � � � ; s;

�j � 0; yr � 0 j = 1; � � � ; n; r = 1; � � � ; s:
(35)

Using the weighting method, the uncertain multi-
objective (Model (35)) is rewritten as follows:

min(�w1Z1 � w2Z2);

s.t.

nX
j=1

�j �1
ij (�)�  �1

io (1� �) � 0 i = 1; � � � ;m;

yr �
nX
j=1

��1
rj (1� �)�j � 0 r = 1; � � � ; s;

�j � 0; yr � 0 j = 1; � � � ; n; r = 1; � � � ; s:
(36)

De�nition 19. The greater the optimal objective
value in Model (36) is, the more e�cient is the DMUo.

Using the uncertain entropy model as the second
objective function, we will be able to achieve an optimal
performance in cost and revenue models with the max-
imum dispersion rate in their constituent components.
As a solution methodology, the uncertain allocation
models are converted to crisp models using the two
EV approaches. The uncertain multi-objective cost
e�ciency model is introduced using the EV method
as follows. The EV method is used for converting the
new model to a crisp model.

Z1 = min
mX
i=1

xi
Z 1

0
��1
io (�)d�;

Z2 = max
mX
i=1

xi
Z 1

0
��1
io (�) ln

�
1� �d�;

s.t.:

nX
j=1

Z 1

0
 �1
ij (�)�jd�� xi � 0 i = 1; � � � ;m;

Z 1

0
��1
ro (�)d��

nX
j=1

Z 1

0
��1
rj (1� �)�jd� � 0

r=1; � � � ; s;
�j�0; xi�0 j=1; � � � ; n; i=1; � � � ;m: (37)
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Using the weighting method, the uncertain multi-
objective (Model (37)) is rewritten as follows:

min(w1Z1 � w2Z2);

s.t.:

nX
j=1

Z 1

0
 �1
ij (�)�jd�� xi � 0 i = 1; � � � ;m;

Z 1

0
��1
ro (�)d��

nX
j=1

Z 1

0
��1
rj (1� �)�jd� � 0

r = 1; � � � ; s;
�j � 0; xi � 0 j = 1; � � � ; n; i = 1; � � � ;m:

(38)

De�nition 20 (e�ciency). DMUo is e�cient if and
only if the optimal solution in Model (38) can achieve
the value of 1.

Using the EV method, the multi-objective rev-
enue e�ciency model consisting of an uncertain revenue
model and an uncertain entropy is introduced as
follows:

Z1 = max
sX
r=1

yr
Z 1

0
	�1
ro (�)d�;

Z2 = max
sX
r=1

yr
Z 1

0
	�1
ro (�) ln

�
�

1� �
�
d�;

s.t.:

nX
j=1

�j
Z 1

0
 �1
ij (�)d��

Z 1

0
 �1
io (1� �)d� � 0

i = 1; � � � ;m;

yr �
nX
j=1

�j
Z 1

0
��1
rj (1� �) � 0 r = 1; � � � ; s;

�j�0; yr�0 j=1; � � � ; n; r=1; � � � ; s: (39)

Using the weighting method, the uncertain multi-
objective (Model (37)) is rewritten as follows:

min(�w1Z1 � w2Z2);

s.t.:

nX
j=1

�j
Z 1

0
 �1
ij (�)d��

Z 1

0
 �1
io (1� �)d� � 0

i = 1; � � � ;m;

yr �
nX
j=1

�j
Z 1

0
��1
rj (1� �) � 0 r = 1; � � � ; s;

�j�0; yr�0 j=1; � � � ; n; r=1; � � � ; s: (40)

De�nition 21 (e�ciency). DMUo will be e�cient
if and only if the optimal solution in Model (40) can
achieve the value of 1.

8. Practical example

The accuracy of the above-mentioned models is ex-
amined using a practical example. There is a well-
known direct relationship between business in stock
market and market forecasting. In the meantime, the
use of beliefs and opinions of experts in the �eld of
buying and selling stocks is of great importance to
obtaining the maximum revenue at the minimum cost.
Therefore, the use of belief theory in the stock market
to take into account the most e�cient suggestions will
be helpful in this business. Tables 1 and 2 list data
of 25 stockbrokers for buying and selling a same stock
portfolio with di�erent prices. Considering that the
amounts and numbers of stock are equal and the buying
and selling prices are uncertain variables (Tables 3
and 4), the e�ciency of the cost and revenue models in
the stock portfolio is explained.

The results obtained from Model (34) with di�er-
ent w1 and w2 are presented in Table 5.

According to the results, none of the cost-e�cient
DMUs is equal to 1. According to De�nition (18), a
larger optimal objective value means a more e�cient
DMUo. Therefore, according to Model (34):

1. If w1 = 0:6, w2 = 0:4, then DMU17 is e�cient;

2. If w1 = 0:7, w2 = 0:3, then DMU8 is e�cient;

3. If w1 = 0:8, w2 = 0:2, then DMU8 is e�cient;

4. If w1 = 0:9, w2 = 0:1, then DMU8 is e�cient.

The results obtained from Model (38) with di�erent w1
and w2 are shown in Table 6.

As clearly seen, the cost-e�cient DMUs are equal
to 1. According to De�nition 20 and Model (38):

1. If w1 = 0:6, w2 = 0:4, then DMU17 is e�cient;

2. If w1 = 0:7, w2 = 0:3, then DMU8 is e�cient;

3. If w1 = 0:8, w2 = 0:2, then DMU4, DMU7, DMU8,
DMU11, DMU16, and DMU17 are e�cient.
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Table 1. DMUs with three uncertain inputs (xij).

DMUi Iran-Khodro Saderat Bank Pars Petrochemical

DMU1 Z(23200, 24300, 26400) Z(26300, 27400, 28600) Z(19000, 19900, 20200)

DMU2 Z(20000, 22000, 240000) Z(27600, 28900, 29000) Z(18500, 19300, 21200)

DMU3 Z(21000, 22500, 24300) Z(28300, 29500, 31200) Z(22000, 23200, 24100)

DMU4 Z(21500, 22700, 23300) Z(31200, 32700, 34200) Z(17100, 17900, 18600)

DMU5 Z(22900, 25000, 26300) Z(33100, 34300, 36100) Z(22300, 23300, 24000)

DMU6 Z(21200, 23200, 24500) Z(25230, 25740, 26150) Z(18340, 18770, 18960)

DMU7 Z(22300, 23300, 24900) Z(26150, 26630, 26970) Z(17000, 17300, 17700)

DMU8 Z(21700, 22900, 23700) Z(27200, 27730, 28050) Z(18100, 18900, 19150)

DMU9 Z(23100, 23800, 24100) Z(27330, 27520, 27740) Z(19200, 19740, 20000)

DMU10 Z(21100, 21700, 22300) Z(28130, 28430, 28720) Z(22350, 22980, 23110)

DMU11 Z(22400, 23200, 24300) Z(29220, 29780, 30050) Z(18100, 18820, 19100)

DMU12 Z(23200, 23900, 24500) Z(26130, 26740, 26970) Z(19230, 19490, 19990)

DMU13 Z(22200, 22700, 23200) Z(26000, 26370, 26700) Z(21340, 21780, 22000)

DMU14 Z(23100, 23500, 23900) Z(28240, 28530, 28780) Z(22270, 22520, 22990)

DMU15 Z(22200, 22900, 23200) Z(25430, 25790, 26100) Z(23410, 23800, 24000)

DMU16 Z(21400, 21700, 21800) Z(27200, 27730, 28050) Z(19180, 19900, 22000)

DMU17 Z(20100, 20700, 21200) Z(26050, 26390, 26430) Z(18170, 18890, 19220)

DMU18 Z(20300, 20800, 21300) Z(27300, 27800, 27990) Z(21310, 21660, 21960)

DMU19 Z(21000, 21300, 21800) Z(25130, 25640, 25830) Z(19730, 20000, 20150)

DMU20 Z(22300, 22900, 23200) Z(25000, 25390, 25930) Z(22110, 22730, 23100)

DMU21 Z(20150, 20400, 21000) Z(26170, 26600, 26820) Z(23430, 23730, 24150)

DMU22 Z(21100, 21650, 22100) Z(27230, 27470, 27580) Z(21210, 21840, 22050)

DMU23 Z(22300, 22750, 22960) Z(31100, 31430, 31690) Z(22120, 22590, 22970)

DMU24 Z(22150, 22230, 22780) Z(32330, 32560, 32810) Z(23380, 23980, 24400)

Table 7 presents the results obtained from Model (36)
with di�erent w1 and w2.

According to the results, none of the revenue-
e�cient DMUs is equal to 1. According to Def-
inition 19, a larger optimal objective value means
a more e�cient DMUo. Therefore, according to
Model (36):

1. If w1 = 0:6, w2 = 0:4, then DMU6, DMU7, DMU8,
DMU17, DMU19, DMU20, and DMU21 are e�cient;

2. If w1 = 0:5, w2 = 0:5, then DMU6, DMU7, DMU8,
DMU17, DMU19, DMU20, and DMU21 are e�cient.

The results obtained from Model (40) with di�erent
w1 and w2 are presented in Table 8.
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Table 2. DMUs with three uncertain outputs (yij).

DMUi Iran-Khodro Saderat Bank Pars Petrochemical

DMU1 Z(17500, 18100, 19600) Z(23500, 25000, 26100) Z(12000, 12500, 13200)

DMU2 Z(15100, 16300, 20000) Z(25000, 26100, 27300) Z(13400, 17800, 18400)

DMU3 Z(19000, 20000, 20900) Z(24200, 25700, 27600) Z(17300, 18400, 20000)

DMU4 Z(16000, 17300, 20000) Z(28100, 29300, 30300) Z(13000, 13400, 14100)

DMU5 Z(18400, 19200, 24000) Z(24000, 25100, 26500) Z(17300, 18500, 20500)

DMU6 Z(16200, 16900, 17200) Z(26230, 26470, 26580) Z(14110, 14730, 15100)

DMU7 Z(19100, 19700, 20200) Z(23130, 23640, 23830) Z(12410, 12800, 13000)

DMU8 Z(17100, 17700, 18300) Z(26430, 26790, 27100) Z(17230, 17490, 17990)

DMU9 Z(15100, 15650, 16100) Z(28130, 28740, 28970) Z(13210, 13840, 14050)

DMU10 Z(18050, 18250, 18530) Z(23330, 23520, 23740) Z(15310, 15660, 15960)

DMU11 Z(17300, 17750, 17960) Z(28240, 28530, 28780) Z(14340, 14780, 15000)

DMU12 Z(16000, 16300, 16800) Z(24300, 24800, 24990) Z(12230, 12540, 12870)

DMU13 Z(19150, 19400, 20000) Z(25170, 25660, 25820) Z(13180, 13900, 14000)

DMU14 Z(15200, 15900, 16500) Z(24230, 24740, 25150) Z(15700, 15900, 16150)

DMU15 Z(18300, 19300, 20900) Z(24200, 24730, 25050) Z(12730, 13000, 13150)

DMU16 Z(19400, 20200, 21300) Z(23000, 23370, 23700) Z(16380, 16980, 17400)

DMU17 Z(16100, 16500, 16900) Z(22200, 22730, 23050) Z(17340, 17770, 18960)

DMU18 Z(18300, 18900, 19200) Z(23000, 23390, 23930) Z(13170, 13890, 14220)

DMU19 Z(17150, 17230, 17780) Z(28330, 28560, 28810) Z(14430, 14730, 15150)

DMU20 Z(16300, 16800, 17300) Z(24220, 24780, 25050) Z(12350, 12980, 13110)

DMU21 Z(19400, 19700, 19800) Z(22100, 22430, 22690) Z(13100, 13820, 14100)

DMU22 Z(19200, 19700, 20200) Z(25130, 25430, 25720) Z(16120, 16590, 16970)

DMU23 Z(16100, 16800, 17100) Z(28030, 28340, 28620) Z(17270, 17520, 17990)

DMU24 Z(18700, 19900, 20700) Z(25050, 25390, 25430) Z(14000, 14300, 14770)

DMU25 Z(15200, 16200, 17500) Z(23150, 23630, 23970) Z(15600, 15980, 16430)

Obviously, the cost-e�cient DMUs are equal to 1.
According to De�nition 21 and Model (40):

1. If w1 = 0:3, w2 = 0:7, then DMU3, DMU8, DMU16,
and DMU17 are e�cient;

2. If w1 = 0:4, w2 = 0:6, then DMU8, DMU17,

DMU18, DMU19, DMU20, DMU21, DMU22,
DMU23, DMU24, and DMU25 are e�cient;

3. If w1 = 0:5, w2 = 0:5, then DMU2, DMU3, DMU6,
DMU8, DMU11, DMU16, DMU17, DMU19, DMU22,
and DMU23 are e�cient.
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Table 3. Input costs for DMUs (cij).

DMUi Iran-Khodro Saderat Bank Pars Petrochemical

DMU1 Z(2603, 2610, 2715) Z(950, 1000, 1100) Z(30000, 32000, 34000)

DMU2 Z(2500, 2520, 2580) Z(900, 950, 990) Z(28000, 29000, 30000)

DMU3 Z(2450, 2500, 2530) Z(800, 900, 910) Z(27000, 27500, 27900)

DMU4 Z(2300, 2310, 2340) Z(810, 820, 850) Z(26000, 26500, 26700)

DMU5 Z(2200, 2250, 2290) Z(840, 850, 869) Z(25000, 25500, 25800)

DMU6 Z(2000, 2100, 2200) Z(890, 899, 9100) Z(24000, 24900, 25100)

DMU7 Z(2190, 2220, 2240) Z(800, 810, 830) Z(28500, 28600, 29100)

DMU8 Z(2199, 2210, 2299) Z(830, 840, 850) Z(29100, 29250, 29380)

DMU9 Z(2090, 2099, 2115) Z(840, 850, 860) Z(29500, 29900, 30000)

DMU10 Z(2100, 2150, 2180) Z(830, 890, 920) Z(30000, 31000, 31990)

DMU11 Z(2110, 2120, 2130) Z(910, 960, 990) Z(31000, 32000, 32850)

DMU12 Z(2122, 2139, 2169) Z(990, 1010, 1030) Z(32000, 32800, 33500)

DMU13 Z(2220, 2270, 2299) Z(1000, 1019, 1038) Z(33000, 33790, 33990)

DMU14 Z(2000, 2050, 2091) Z(1100, 1200, 1290) Z(33000, 33900, 34100)

DMU15 Z(1900, 1960, 1999) Z(1090, 1099, 1120) Z(34000, 34900, 35200)

DMU16 Z(2070, 2080, 2090) Z(1190, 1200, 1210) Z(35000, 35990, 36590)

DMU17 Z(2120, 2160, 2190) Z(1210, 1219, 1229) Z(35900, 36200, 36990)

DMU18 Z(2198, 2210, 2250) Z(1290, 1231, 1391) Z(36000, 36900, 37000)

DMU19 Z(2260, 2290, 2300) Z(1391, 1399, 1410) Z(37000, 37500, 37990)

DMU20 Z(2310, 2321, 2347) Z(1290, 1310, 1380) Z(37700, 38100, 38800)

DMU21 Z(2340, 2370, 2398) Z(1170, 1199, 1270) Z(38000, 38200, 38400)

DMU22 Z(2410, 2419, 2421) Z(1280, 1320, 1410) Z(38600, 38900, 38990)

DMU23 Z(2380, 2391, 2400) Z(1470, 1499, 1510) Z(38710, 38790, 38990)

DMU24 Z(2330, 2340, 2350) Z(1510, 1590, 1690) Z(40000, 41000, 42500)

DMU25 Z(2410, 2427, 2439) Z(1700, 1820, 1899) Z(43000, 45000, 45990)

It seems that DMU8 and DMU17 have the best perfor-
mance for selling a same stock portfolio with di�erent
prices.

According to the above results, DMU8 and
DMU17 seem to be e�cient in most models. These two
DMUs showed the best performance in both cost and
revenue models for buying and selling the same stock
portfolio with di�erent prices.

9. Conclusion

This paper was aimed at presenting an uncertain
allocation model with inherent complexity of uncertain
models. Due to the complexity of the new models,
two methods were proposed to convert the uncertain
models into crisp models. Finally, an real example
from the Iranian stock market was used to examine
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Table 4. Output prices for DMUs (pij).

DMUi Iran-Khodro Saderat Bank Pars Petrochemical

DMU1 Z(17500, 18100, 19600) Z(23500, 25000, 26100) Z(12000, 12500, 13200)

DMU2 Z(15100, 16300, 20000) Z(25000, 26100, 27300) Z(13400, 17800, 18400)

DMU3 Z(19000, 20000, 20900) Z(24200, 25700, 27600) Z(17300, 18400, 20000)

DMU4 Z(16000, 17300, 20000) Z(28100, 29300, 30300) Z(13000, 13400, 14100)

DMU5 Z(18400, 19200, 24000) Z(24000, 25100, 26500) Z(17300, 18500, 20500)

DMU6 Z(16200, 16900, 17200) Z(26230, 26470, 26580) Z(14110, 14730, 15100)

DMU7 Z(19100, 19700, 20200) Z(23130, 23640, 23830) Z(12410, 12800, 13000)

DMU8 Z(17100, 17700, 18300) Z(26430, 26790, 27100) Z(17230, 17490, 17990)

DMU9 Z(15100, 15650, 16100) Z(28130, 28740, 28970) Z(13210, 13840, 14050)

DMU10 Z(18050, 18250, 18530) Z(23330, 23520, 23740) Z(15310, 15660, 15960)

DMU11 Z(17300, 17750, 17960) Z(28240, 28530, 28780) Z(14340, 14780, 15000)

DMU12 Z(16000, 16300, 16800) Z(24300, 24800, 24990) Z(12230, 12540, 12870)

DMU13 Z(19150, 19400, 20000) Z(25170, 25660, 25820) Z(13180, 13900, 14000)

DMU14 Z(15200, 15900, 16500) Z(24230, 24740, 25150) Z(15700, 15900, 16150)

DMU15 Z(18300, 19300, 20900) Z(24200, 24730, 25050) Z(12730, 13000, 13150)

DMU16 Z(19400, 20200, 21300) Z(23000, 23370, 23700) Z(16380, 16980, 17400)

DMU17 Z(16100, 16500, 16900) Z(22200, 22730, 23050) Z(17340, 17770, 18960)

DMU18 Z(18300, 18900, 19200) Z(23000, 23390, 23930) Z(13170, 13890, 14220)

DMU19 Z(17150, 17230, 17780) Z(28330, 28560, 28810) Z(14430, 14730, 15150)

DMU20 Z(16300, 16800, 17300) Z(24220, 24780, 25050) Z(12350, 12980, 13110)

DMU21 Z(19400, 19700, 19800) Z(22100, 22430, 22690) Z(13100, 13820, 14100)

DMU22 Z(19200, 19700, 20200) Z(25130, 25430, 25720) Z(16120, 16590, 16970)

DMU23 Z(16100, 16800, 17100) Z(28030, 28340, 28620) Z(17270, 17520, 17990)

DMU24 Z(18700, 19900, 20700) Z(25050, 25390, 25430) Z(14000, 14300, 14770)

DMU25 Z(15200, 16200, 17500) Z(23150, 23630, 23970) Z(15600, 15980, 16430)

the performance of the new models. For this purpose,
25 stockbrokers were selected to determine buying and
selling prices of a single stock portfolio with di�erent
prices in the cost and revenue models. The amounts
and numbers of stock were considered to be equal.

The buying and selling prices were also considered as
uncertain variables. The presented models can help
managers choose the best portfolio in the stock market.
Instead of the expected values for objective functions
with uncertain variables, the variance can be taken into
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Table 5. The results of evaluating cost e�ciency with Model (34) (� = 0:5).

DMUi DMU1 DMU2 DMU3 DMU4 DMU5

w1 = 0:6, w2 = 0:4 0.149 0.168 0.156 0.170 0.150

w1 = 0:7, w2 = 0:3 0.324 0.370 0.342 0.375 0.330

w1 = 0:8, w2 = 0:2 0.504 0.571 0.527 0.581 0.513

w1 = 0:9, w2 = 0:1 0.687 0.770 0.718 0.790 0.694
DMUi DMU6 DMU7 DMU8 DMU9 DMU10

w1 = 0:6, w2 = 0:4 0.164 0.170 0.172 0.158 0.139

w1 = 0:7, w2 = 0:3 0.361 0.376 0380 0.347 0.303

w1 = 0:8, w2 = 0:2 0.556 0.558 0.585 0.539 0.471

w1 = 0:9, w2 = 0:1 0.753 0.790 0.799 0.728 0.640
DMUi DMU11 DMU12 DMU13 DMU14 DMU15

w1 = 0:6, w2 = 0:4 0.168 0.144 0.146 0.133 0.130

w1 = 0:7, w2 = 0:3 0.370 0.314 0.320 0.293 0.285

w1 = 0:8, w2 = 0:2 0.575 0.488 0.496 0.455 0.442

w1 = 0:9, w2 = 0:1 0.777 0.664 0.675 0.618 0.601
DMUi DMU16 DMU17 DMU18 DMU19 DMU20

w1 = 0:6, w2 = 0:4 0.168 0.173 0.142 0.160 0.128

w1 = 0:7, w2 = 0:3 0.370 0.377 0.310 0.352 0.282

w1 = 0:8, w2 = 0:2 0.574 0.584 0.481 .0.545 0.438

w1 = 0:9, w2 = 0:1 0.781 0.795 0.654 0.742 0.595
DMUi DMU21 DMU22 DMU23 DMU24 DMU25

w1 = 0:6, w2 = 0:4 0.133 0.155 0.150 0.135 0.132

w1 = 0:7, w2 = 0:3 0.291 0.340 0.329 0.294 0.289

w1 = 0:8, w2 = 0:2 0.451 0.528 0.510 0.456 0.450

w1 = 0:9, w2 = 0:1 0.617 0.718 0.693 0.619 0.611

Table 6. The result of evaluating cost e�ciency with Model (38) (� = 0:5).

DMUi DMU1 DMU2 DMU3 DMU4 DMU5

w1 = 0:6, w2 = 0:4 0.262 0.287 0.274 0.300 0.267

w1 = 0:7, w2 = 0:3 0.570 0.628 0.600 0.656 0.587

w1 = 0:8, w2 = 0:2 0.882 0.965 0.921 1 0.907
DMUi DMU6 DMU7 DMU8 DMU9 DMU10

w1 = 0:6, w2 = 0:4 0.285 0.297 0.301 0.275 0.244

w1 = 0:7, w2 = 0:3 0.627 0.651 0.663 0.605 0.532

w1 = 0:8, w2 = 0:2 0.966 1 1 0.939 0.826
DMUi DMU11 DMU12 DMU13 DMU14 DMU15

w1 = 0:6, w2 = 0:4 0.294 0.252 0.255 0.233 0.228

w1 = 0:7, w2 = 0:3 0.645 0.548 0.559 0.511 0.500

w1 = 0:8, w2 = 0:2 1 0.850 0.867 0.791 0.773
DMUi DMU16 DMU17 DMU18 DMU19 DMU20

w1 = 0:6, w2 = 0:4 0.298 0.302 0.248 0.280 0.225

w1 = 0:7, w2 = 0:3 0.653 0.657 0.543 0.614 0.492

w1 = 0:8, w2 = 0:2 1 1 0.838 0.952 0.761
DMUi DMU21 DMU22 DMU23 DMU24 DMU25

w1 = 0:6, w2 = 0:4 0.233 0.273 0.262 0.236 0.231

w1 = 0:7, w2 = 0:3 0.510 0.598 0.574 0.515 0.502

w1 = 0:8, w2 = 0:2 0.788 0.927 0.890 0.796 0.783
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Table 7. The result of evaluating revenue e�ciency with Model (36) (� = 0.5).

DMUi DMU1 DMU2 DMU3 DMU4 DMU5

w1 = 0:4, w2 = 0:6 0.51 0.59 0.63 0.59 0.57

w1 = 0:5, w2 = 0:5 0.51 0.73 0.78 0.76 0.73
DMUi DMU6 DMU7 DMU8 DMU9 DMU10

w1 = 0:4, w2 = 0:6 0.71 0.71 0.71 0.53 0.58

w1 = 0:5, w2 = 0:5 0.82 0.82 0.82 0.67 0.73
DMUi DMU11 DMU12 DMU13 DMU14 DMU15

w1 = 0:4, w2 = 0:6 0.57 0.50 0.54 0.55 0.55

w1 = 0:5, w2 = 0:5 0.74 0.62 0.69 0.69 0.71
DMUi DMU16 DMU17 DMU18 DMU19 DMU20

w1 = 0:4, w2 = 0:6 0.62 0.71 0.53 0.71 0.71

w1 = 0:5, w2 = 0:5 0.73 0.82 0.68 0.82 0.82
DMUi DMU21 DMU22 DMU23 DMU24 DMU25

w1 = 0:4, w2 = 0:6 0.71 0.60 0.59 0.51 0.53

w1 = 0:5, w2 = 0:5 0.82 0.73 0.73 0.67 0.67

Table 8. The result of evaluating revenue e�ciency with Model (40) (� = 0:5).

DMUi DMU1 DMU2 DMU3 DMU4 DMU5

w1 = 0:3, w2 = 0:7 0.81 0.95 1 0.90 0.93

w1 = 0:4, w2 = 0:6 0.83 0.93 0.81 0.915 0.87

w1 = 0:5, w2 = 0:5 0.92 1 1 0.955 0.977
DMUi DMU6 DMU7 DMU8 DMU9 DMU10

w1 = 0:3, w2 = 0:7 0.98 0.92 1 0.83 0.93

w1 = 0:4, w2 = 0:6 0.915 0.885 0.97 0.87 0.905

w1 = 0:5, w2 = 0:5 1 0.963 1 0.946 0.963
DMUi DMU11 DMU12 DMU13 DMU14 DMU15

w1 = 0:3, w2 = 0:7 0.98 0.89 0.90 0.92 0.88

w1 = 0:4, w2 = 0:6 0.905 0.85 0.89 0.89 0.86

w1 = 0:5, w2 = 0:5 1 0.937 0.963 0.955 0.946
DMUi DMU16 DMU17 DMU18 DMU19 DMU20

w1 = 0:3, w2 = 0:7 1 1 0.90 0.98 0.92

w1 = 0:4, w2 = 0:6 0.93 1 1 1 1

w1 = 0:5, w2 = 0:5 1 1 0.955 1 0.955
DMUi DMU21 DMU22 DMU23 DMU24 DMU25

w1 = 0:3, w2 = 0:7 0.93 0.94 0.89 0.83 0.83

w1 = 0:4, w2 = 0:6 1 1 1 1 1

w1 = 0:5, w2 = 0:5 0.963 1 1 0.955 0.946

account in future studies. The problem presented in
this paper can be also studied with normal uncertain
variables.
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