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Abstract. This study revisited the problem of online conict-free coloring of intervals on
a line, where each newly inserted interval must be assigned a color upon insertion such that
the coloring remains conict-free, i.e., for each point p in the union of the current intervals,
there must be an interval I with a unique color among all intervals covering p. The best-
known algorithm uses O(log3 n) colors, where n is the number of current intervals. A
simple greedy algorithm was presented that used only O(log n) colors. Therefore, the open
problem raised in [Abam, M.A., Rezaei Seraji, M.J., and Shadravan, M. \Online conict-
free coloring of intervals", Journal of Scientia Iranica, 21(6), pp. 2138{2141 (2014).] was
resolved.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Background. In a cellular network, each base station
has a coverage area (usually denoted by a disk) and can
only give services to clients being inside its coverage
area. In general, several base stations may cover a
client (i.e., their coverage areas have a common point).
This may lead to interference of signals for the client.
Thus, one would like to assign frequencies to the base
stations such that for each client within the coverage
area of at least one base station, there is a base station
with a unique frequency covering the client. The
main objective of this course is to do this using a
few distinct frequencies. Even et al. [1] modeled this
problem by the concept of conict-free coloring, de�ned
next.

The Conict-Free coloring (CF-coloring) of a set
of n objects with respect to a (possibly in�nite) family
of ranges is a coloring of objects with the following
properties: for any range r 2 R intersecting at least one
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object, there is an object o 2 S(r) with a unique color
in S(r), where S(r) is the set of objects intersecting r.
It is clear that a conict-free coloring always exists as
we can use n di�erent colors. However, one would like
to use a few colors for this purpose. Note that if we take
S to be a set of disks (the coverage area of base stations)
andR to be the set of all points inR2 (clients), then we
get the frequency-assignment problem discussed above.
In this paper, a case where objects are intervals in R1

and ranges are points is only considered.

Related work. The o�ine CF-coloring where all
objects are given in advance has been studied a lot
in the last two decades. Even et al. [1] were the �rst
to present CF-coloring of points with respect to disks
using O(logn) colors, which is tight in the worst case.
Then, Har-Peled and Smorodinsky [2] extended these
results by considering other range spaces like rectangles
and pseudo disks. For more recent work on the CF-
coloring problem, see [3{9].

Chen et al. [10] were the �rst to study the
online version of CF-coloring of points with respect
to intervals: Upon the arrival of a point, a color
is assigned to it and the color cannot be changed
since then. The coloring must remain conict-free at
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all times. They presented a deterministic algorithm
using O(log2 n) colors and a randomized algorithm
using O(log n) colors with a high probability for a
set of n points. The best-known lower bound for
both randomized and deterministic algorithms, also
valid for the o�ine case, is 
(log n) colors [11]. They
also showed that the known simple greedy algorithm
that held the unique maximum invariant (see the next
section) might require 
(

p
n) colors and obtain an

upper bound on the number of colors used by the
algorithm as an open problem{ they conjectured the
bound to be close to 
(

p
n). For other interesting

variants of the online CF-coloring problem, see [12]
and references therein. Abam et al. [13] considered the
online CF-coloring of intervals with respect to points.
They presented a simple greedy algorithm that uses
O(
p
n) colors. Then, they gave a more sophisticated

algorithm that used O(log3n) colors (big O). They
left out an open problem whether there was a CF-
coloring algorithm using o(log3 n) colors (small o). It
is worth mentioning that the o�ine CF-coloring of
intervals with respect to points can be done with at
most 3 colors [1].

Recently, de Berg and Markovic [14] studied the
dynamic CF-coloring of rectangles (and some other
objects) under insertions and deletions. For n arbi-
trary rectangles whose coordinates come from a �xed
universe of size N , they use O(log2N log2 n) colors, at
the cost of only O(log n) re-colorings per insertion and
deletion. The fully dynamic and kinetic versions of
intervals were considered in [15] as well.

Problem de�nition. We revisit the problem of online
CF-coloring of intervals on a line. Here, intervals
are arriving one by one and upon the arrival of an
interval, we should assign a color to this interval and
its color cannot be changed later. At any time, the
coloring must remain conict-free, i.e., for each point p
in the union of the current intervals, there must be
an interval with a unique color among all intervals
covering p.

Our results. This paper a�rmatively answers the
open problem whether there is a CF-coloring algorithm
for intervals with respect to points using o(log3 n) col-
ors. It is demonstrated that the known simple greedy
algorithm that holds the unique-maximum invariant
(see the next section) only uses O(log n) colors. There
is a simple proof showing that any online CF-coloring
of intervals with respect to points needs 
(log n)
colors. Therefore, the problem of online CF-coloring
of intervals is settled down.

Paper organization. The paper is organized as
follows. Section 2 analyzes the known simple greedy
algorithm and shows that it uses only O(logn) colors.

This paper will close with a few concluding remarks
and solutions to open problems in Section 3.

2. Simple CF-coloring using O(logn) colors

Our algorithm is similar to the simple greedy algorithm
given in [13] that holds the unique-maximum invariant{
this greedy algorithm indeed is a well-known algorithm
in the area of CF-coloring and researchers in this �eld
are interested in knowing how well this algorithm works
(for instance, see [10]). Suppose that I is a set of n
intervals arriving through time one by one and suppose
that for each point p 2 R1, I(p) is the set of all intervals
containing p at the current time. We denote colors
by non-negative integer numbers and denote the color
of an interval I by c(I). The algorithm guarantees
to hold the unique-maximum invariant (UM invariant
for short): mc(p) = maxI2I(p) c(I) is unique in the
multiset fc(I) : I 2 I(p)g for all p 2 R1. If this holds,
the coloring, of course, is a CF-coloring as the interval
with the maximum color among intervals containing p
has a unique color. Next, details of the algorithm will
be discussed.

2.1. Coloring algorithm
The maximum color used so far in a variable m is
maintained; at the beginning, m = 1. Upon the arrival
of an interval I, the set SI � f1; � � � ;mg of forbidden
colors for I is computed �rst in a sensethat if one of
them is assigned to I and then, the UM invariant does
not hold anymore. Then, a color is assigned to I as
follows. If SI = f1; � � � ;mg, m is increased by 1 and
c(I) is set to be m. Otherwise, c(I) is set to be the
smallest unforbidden color from the set f1; � � � ;mg.
Algorithm 1 shows a simple implementation of the
above algorithm.

2.2. Analysis
Imagine we know all n intervals in advance (see
Figure 1(a)). Let p1; p2; :::; pm be the list of the
distinct interval endpoints, sorted from left to right
(m � 2n as some endpoints may coincide). Consider
the partitioning of R1 into the elementary intervals
(1 : p1); [p1 : p1]; (p1 : p2); [p2 : p2]; � � � ; (pm1 :
pm); [pm : pm]; (pm : +1) (see Figure 1(b)). The list of
elementary intervals consists of open intervals between
two consecutive endpoints pi and pi+1, alternated with
closed intervals consisting of a single endpoint. The
reason that we treat the points pi as intervals is that the

Algorithm 1. Online-CF-coloring (I).
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Figure 1. (a) All three input intervals in advance, (b) elementary intervals and their mc when no interval arrives, and
(c)-(e) the status when the intervals I1; I2, and I3 arrive one by one in the given order. Upon the arrival of I3, c(I3)
becomes 3 as the �rst color holding the UM variant is 3. Therefore, mc(e) = 3 for all elementary intervals e except the
rightmost and leftmost elementary intervals.

set of intervals covering pi is not necessarily the same as
the set of intervals covering p where p can be any point
close to pi. For an elementary interval e, let mc(e) be
the maximum color covering e. At the beginning when
no interval has arrived, mc(e) = 0 for all (at most)
4n+1 elementary intervals. It is clear that mc(e) is not
decreasing through time for each elementary interval e
(see Figure 1(c){(e)). Let Ii;j be the set of the input
intervals whose color is at least i and at most j. We
will show that jI10;+1j � n=2. Let I be a member of
I10;+1. Upon the arrival of I, we assign a color greater
than 9 to it. This implies that assigning any color less
than 10 would not hold the UM invariant. Therefore,
there must be 9 elementary intervals fe1; � � � ; e9g such
that fmc(e1); � � � ;mc(e9)g = f1; 2; � � � ; 9g . After
coloring I, all mc(ei) (i = 1; � � � ; 9) become the color
of I which is at least 10. Then, it can be imagined
that all these 9 elementary intervals with mc less than
10 are killed after the insertion of I|note that these
elementary intervals are still alive, but their mc is at
least 10. Therefore, each member of I10;+1 kills 9

elementary intervals with mc less than 10 and since
we have at most 4n + 1 elementary intervals, we can
simply conclude that 9. jI10;+1j � 4n + 1; yielding
jI10;+1j � n=2 for n � 2. Similarly, if we apply the
same argument to the set I�I1;9, we can conclude that
jI19;+1j � n=4|note that I � I1;9 = I10;+1 has size
of at most n=2, as shown above. Of course. This can
be extended to jI9i+1;+1j � n=2i. For i greater than
log2 n, we know that n=2i < 1. Therefore, I9i+1;+1
is empty for i > log2 n. This shows that the greedy
algorithm uses at most 9 log2 n = O(logn) colors in
total.

Theorem 1. There is an online CF-coloring algorithm
for a set of n intervals in the online model that uses
O(log n) colors.

As mentioned in [13], although there is a CF-
coloring of intervals with respect to points using 3
colors in the o�ine model, it can be easily shown
[11] that in the online model, any such CF-coloring
must use 
(log n) colors in the worst case. Consider
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I = fI1; � � � ; Ing where Ij = [1; pj ] and pj = j.
Suppose that the intervals in I arrive in the increasing
order of their indices. In this scenario, it is easy to see
that CF-coloring of the intervals is equivalent to CF-
coloring of points pi with respect to intervals, needing

(log n) colors [1]. Indeed, if we assign the color of
each interval Ir to its right endpoint (i.e. pr), we can
show that among points pk at any interval [i; j], one
has a unique color. This lower bound on the number of
colors demonstrates that our algorithm is tight in the
worst case.

3. Conclusion

This study revisited the problem of online conict-
free coloring of intervals on a line, where each newly
inserted interval must be assigned a color upon in-
sertion such that the coloring would remain conict-
free. Subsequently, this paper a�rmatively answered
the open problem whether there was a CF-coloring
algorithm for intervals with respect to points using
o(log3 n) colors. Indeed, it was shown that the known
simple greedy algorithm that maintained the maximum
color unique only used O(log n) colors. This matched
the known lower bound 
(log n) for the number of
colors. This problem could be simply extended to the
online CF-coloring of rectangles with respect to points.
As an interesting special case, rectangles with one side
on the x-axis can be studied �rst.
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