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Abstract. Home Health Care (HHC) is the task of preparing medical and paramedical
services for patients at their place of residence. In the HHC industry, it is imperative for
decision-makers to appoint nurses to service patients and plan visiting patterns to confront
with con
icting objectives and boost service quality. This study provides signi�cant insights
into Home Health Care Routing and Scheduling Problem (HHCRSP) by pursuing three
patient-oriented objectives. The proposed model accounts for real-life constraints such as
emergency patients, nurses' pro�ciency, and patients' preferences. Owing to the multi-
objective nature of the model, both Augmented Epsilon Constraint (AEC) and Fuzzy Goal
Programming (FGP) approaches are employed to accomplish the mentioned objectives.
Further, getting as close as possible to the real-world problems, some parameters are
considered uncertain. In this regard, a robust approach along with three dissimilar
uncertainty sets is used to control uncertainty. The numerical results indicate that
regardless of the type of the uncertainty set, increasing the control parameters would make
the objective values farther than ideal, and the comparison made among the sets con�rmed
the stringency of the Box space. A unique indicator was also presented to validate the
viability of the robust approaches according to which the features of all sets were almost
the same in terms of equal optimality and feasibility criteria.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Home Health Care (HHC) is an alternative to con-
ventional clinical treatments that includes o�ering
medical, paramedical, and social services to patients
at their own home. The HHC industry has 
ourished
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signi�cantly in the last decade due to several reasons,
namely population aging, social changes, increase in
the number of patients that su�er from chronic dis-
eases, development of modern technologies, congestion
of hospitals, and governmental pressures [1]. It is
expected that the demand rate for the HHC services
will be twice until 2030, mainly because the HHC
services are becoming more accessible and prevailing
than ever owing to their desirability and ability to alle-
viate the patients' stress [2]. In addition, the care and
treatment HHC services can provide are di�erent from
the formal services in hospitals. For instance, the main
di�erence between the HHC and hospital services is the
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location, i.e., home, a place where patients can stay
with their family in a personalized environment with
particular values, preferences, culture, and habits [3,4].
In the HHC companies, decisions made in the oper-
ations management are systematically arranged into
four decision levels according to the time horizon [5]
including the strategic (1{5 years), tactical (6{12
months), operational (weeks-months), and detailed
operational levels (hours-days). The current study
primarily focused on the detailed operational level
problem which includes daily routing and scheduling
of nurses. The essential resources for preparing home
care services in advance are nurses, transportation
vehicles, administrative buildings, medical equipment
and instruments, and administrative sta�. On the
bulk scale, low payments and high operational costs
are considered as the greatest challenges in the HHC
industry, resulting in near-zero pro�t margin for HHC
companies and even negative in rural areas [6,7].

In this context, HHC studies have explored some
criteria represented as the constraints and objective
functions in mathematical programming. The funda-
mental problem is concerned with employing nurses
to provide their patients with healthcare and devise
their daily visiting routes to achieve certain objectives.
In real-world applications, a number of constraints
may complicate the matter by showing the distinct
requirements of a particular HHC company such as
preferences of customers, continuity of care, break
times, and interdependent services [1,8]. In general,
HHC optimization problems are made up of three sub-
problems:

(i) Assignment of nurses and patients;

(ii) Scheduling appointments;

(iii) Daily routing for nurses.

In some research studies, only one of these problems
was taken into account, while some others considered
all three sub-problems. Those studies that deal with
all three sub-problems follow two di�erent approaches.
The �rst approach is based on decomposition method-
ology. In this approach, the principal problem is
divided into two main problems namely assignment
problem and routing and scheduling problem. First,
the assignment problem is solved and then, the sched-
ules and routes are settled. The second approach is
integrated solving all the three problems. Figure 1
shows a network including major topics in the �eld of
Home Health Care Routing and Scheduling Problem
(HHCRSP) which are based on the frequency of key-
words selected by the authors in this �eld [9]. The
keywords included in the �gure are Time Windows
(TWs), continuity of care, synchronization, and a
variety of other solutions to these issues. Figure 2
shows that an increasing number of publications have
been conducted on HHC since 2010, con�rming that
HHC is a promising and growing sector in the near
future. Figure 3 shows the share of each of the top
�ve countries in the total number of studies published
by 2020. Surprisingly, according to the chart, the
United States with a 41% share is the largest and most
in
uential player in the �eld of HHC. Table 1 lists the
main acronyms used throughout this paper.

In this research, a routing problem was integrated

Figure 1. Visualization of selected keywords in the �eld of HHCRSP [9].
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Figure 2. The histogram of publications dealing with
HHC in journals and conference proceedings by year.

Figure 3. Five leading countries in the �eld of HHC
based on the number of studies published so far.

Table 1. List of acronyms.

Symbols Description

EC Epsilon Constraint
AEC Augmented Epsilon Constraint
ELL Ellipsoidal
GP Goal Programming
FGP Fuzzy Goal Programming
HHCRSP Home Health Care Routing & Scheduling

Problem
HHC Home Health Care
HCC Home Health Center
PH Polyhedral
VRPTW Vehicle Routing Problem with Time

Windows

with the scheduling problem. In fact, the routing
section itself can be Vehicle Routing Problem with
the Time Window (VRPTW). The HHC problem is a
collection of nodes and vectors. The nodes represent
patients randomly distributed at the level of a geo-
graphic region, and the vectors connect these nodes
to each other representing the communication paths
through which nurses can visit patients. What makes
the problem more challenging is that nurses' traveling
times and patients' visit times related to their health

conditions are usually not deterministic. Therefore,
while planning for the HHC operation, such a source
of uncertainty should be taken into consideration.

The contributions of this paper can be elaborated
at three di�erent levels. First, the present study
considered uncertain traveling and service times in
the HHCRSP. In this regard, three unique Robust
Optimization Approaches (ROAs) were employed to
control uncertainties. Given that in such problems
with distinct patients, each with unique characteristics,
three patient-oriented objectives would gain signi�-
cance; hence, a multi-objective optimization approach
was used to consider di�erent managerial perspectives
on the problem ahead. Moreover, Emergency Patients
(EP) and preferred visit times were considered to get
the model closer to the real-world problems. Due to
their health conditions, the EP should be visited in the
predetermined TWs as much as possible with the least
earliness or tardiness in their visits.

The rest of the paper is organized as follows: Sec-
tion 2 presents a review of the related HHCRSPs from
the academic literature. Section 3 formally de�nes a
tri-objective mathematical programming model for the
problem. Section 4 uses Augmented Epsilon Constraint
(AEC) and Fuzzy Goal Programming (FGP) methods
in order to solve the multi-objective model proposed
in the previous section and examine the trade-o�
between objectives. This section also elaborates ROA
with three di�erent uncertainty sets including Box,
Polyhedral (PH), and Ellipsoidal (ELL) sets. Section 5
presents a computational experiment that highlights
the �ndings based on the proposed approach. Section 6
presents a sensitivity analysis of the number of nurses
on the objectives. Finally, Section 7 concludes the
paper and points out future research directions.

2. Related literature

HHC planners may face tough and challenging op-
timization problems at distinct decision levels such
as nurse assignment, shift scheduling, and routing
decisions. In most cases, a set of di�erent nurses should
be assigned to heterogeneous patients who are spread
over a speci�c area. In this regard, they are required to
consider various constraints like Skill Matching (SM),
patients' preferences, and real-world complications of
HHC operations such as continuity of care.

The literature review given in this paper focuses
on how to study the three core aspects that characterize
recent works on the HHCRSP including:
� Objectives and performance measures;
� Decisions and constraints;
� Solution methodologies.

Table 2 presents an initial classi�cation of the
objectives and performance measures considered in the
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Table 2. Common objectives and performance measures
in the HHC area.

Abbreviation Description

UN Uncovered visits

BP Balance between Patients

TD Travel Distance

OT Over Time

TC Travel Cost

PP Patient Preference

HHC area. Each category contains an extensive class of
possible objective functions or performance measures.
Table 3 presents a summary of the objectives treated
in the HHC literature.

According to this table, Traveling Costs (TC), Pa-
tients' Preferences (PP), and Over Times (OT) are the
most common objectives in the HHC literature. Table 4
lists the most frequent decisions and constraints taken
into account when planning HHC services. Table 5
identi�es which of these constraints were handled in
the reviewed studies.

As observed in Table 5, the relevant studies done
to date have concentrated mostly on TW and SM
rather than on other common constraints to ensure
high service level. In addition, some service char-
acteristics in this table namely EP and Uncertainty
(U), which are prevailing in real-world problems, have

Table 4. Frequent decisions and constraints.

Abbreviation Description

EP Emergency Patients

SM Skill Matching

TW Time Window

U Uncertainty

CC Continuity of Care

B Breaks

S Synchronization

WT Working Time regulation

received scant attention in the literature. Hence,
this paper attempts to �ll a gap in the literature by
considering EPs and U in detail. Considering hard
TWs, i.e., no 
exibility outside the speci�ed time
window, is a vital assumption, as numerous operations
in HHC are time sensitive. Some examples are the
provision of medication or insulin injection which must
be completed in a speci�c time frame. Moreover, in
order to respect PP, soft TW were taken into account
in a range of articles [10{13]. If a certain task is
performed outside the soft TW, a penalty is added
to the objective function. Working time regulations,
guaranteeing that nurses can only be scheduled for a
certain amount of time, are included in most of the
reviewed papers. The maximum working time during a
day usually varies from 5 to 10 hours. In this context,

Table 3. Performance measures and objectives found in the HHC literature.

References UN PP TC OT TD BP

Rasmussen et al. [8] X | X | | |

Bertels and Fahle [16] | X X | | |

Braekers et al. [23] | X X X | |

Fernandez et al. [7] | | | | X |

Hiermann et al. [10] | X | X | |

Mankowska et al. [1] | | | | X |

Nickel et al. [24] | | | X X |

Bard et al. [19] | | X X | |

Bachouch et al. [27] | | | | X |

Shao et al. [28] | | X X | |

Trautsmawieser et al. [14] | X | X | |

M�s�r et al. [21] | X | X | |

Riazi et al. [20] | | | | X |

Shi et al. [22] | | X | | |

Liu et al. [26] | | X | | |

This paper X X | | | X
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Table 5. Decisions and constraints handled in the HHC literature.

Reference EP SK U TW B S WT CC

Rasmussen et al. [8] | X | X | X | |

Bertels & Fahle [16] | X | X X | X |

Braekers et al. [23] | X | X | | X |

Fernandez et al. [7] | | X | | | | |

Hiermann et al. [10] | X | X | | | |

Mankowska et al. [1] | X | X | X | |

Nickel et al. [24] | X | X -, | X |

Bard et al. [19] | X | X X | X |

Bachouch et al. [27] | X | X X | | X
Shao et al. [28] | X | X X | | |

Trautsmawieser et al. [14] | X | X | | | |

M�s�r et al. [21] | X | X | | X |

Riazi et al. [20] | X | X | | X |

Shi et al. [22] | X X X | | | |

Liu et al. [26] | | | X | X | |

This paper X X X X | | X |

some authors [11,14,15] preferred working times and
penalized violations in the objective function to respect
nurses' preferences. Mandatory breaks, like lunch
times, are less frequently taken into account. Some
papers such as [16,17] considered a prede�ned compul-
sory break node that ought to be visited by every single
nurse. A more recent paper [18] considered if and at
what time a break should occur by setting a maximum
cumulative working time without a break. Bard et
al. [19] demonstrated that the presence of di�erent
components such as overtime and need for scheduling
lunch breaks would cause di�erent theoretical and
computational di�culties. To �nd solutions, they
developed a branch-and-price-and-cut algorithm proce-
dure and a novel rolling horizon algorithm that could
incrementally construct weekly schedules by modifying
the linear cost functions. The proposed algorithms
proved to be capable of �nding near-optimal solutions
to small instances within 50 minutes. Additionally,
Mankowska et al. [1] and Rasmussen et al. [8] claimed
that 10% to 30% of all services were either concurrent
or should be performed in a certain order to help heavy
patients or prepare injections before or after meals.

Many developed solution methods for HHCSRP
were developed based on the VRP techniques in many
variants. Riazi et al. [20] integrated the gossip algo-
rithm with a local solver based on Column Generation
(CG), which made it a constructive algorithm for larger
instances. They claimed that in the extensive numer-

ical examples, gossip-CG outperformed pure CG in
minimizing the total distance traveled by all caregivers.
M�s�r et al. [21] evaluated the performance of heuristics
while solving the problems via routing and roster-
ing characteristics including HHCRSP and personnel
rostering. They employed a novel hyper-heuristic as
an analytical tool to investigate the behavior of the
heuristics and determine the requirements for solv-
ing the problems. The experimental results revealed
that di�erent low-level heuristics performed better in
solving problems, particularly with a vehicle routing
component. Shi et al. [22] studied the HHCRSP
assuming that the nurses' travel times and service
times for patients were uncertain. They employed
the Gurobi solver, simulated annealing, Tabu search,
and variable neighborhood search to solve the problem.
They concluded that in case of uncertainties in carrying
out a given schedule to visit patients, the solutions
obtained by the stochastic model and the Robust model
demonstrated the advantage of the Robust model.

While most of previous studies had dealt with
single-objective optimization models, Braekers et
al. [23] developed a bi-objective HHC routing and
scheduling model for the �rst time, considering the
total travelling distance and patient inconvenience as
two con
icting objectives functions. Nickel et al. [24]
attempted to solve the routing and scheduling problem
based on Master Schedule Problem (MSP) and Opera-
tional Planning Problem (OPP). They also developed



2652 A. Hosseinpour-Sarkarizi et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2647{2669

heuristics formulated based on constraint program-
ming. In order to obtain a valid planning, Decerle et
al. [25] modeled a problem considering soft TW and
synchronization constraints as well as working time
balancing. Using an MACO algorithm, they illustrate
that a balanced working time among nurses is vital to
gaining fairness and satisfaction in a home-based hospi-
talization structure. In another research, Hiermann et
al. proposed a multi-modal HHC routing and schedul-
ing supported by Austrian HHC providers [10]. They
used a two-stage solution approach based on constraint
programming and metaheuristic algorithms to solve the
problem. Liu et al. [26] investigated a special variant
of the VRP considering the TWs and synchronized
visits. Given that the synchronization constraints can
complicate the problem, Adaptive Large Neighborhood
Search (ALNS) heuristics was proposed to solve this
problem. They succeeded in obtaining the highest
quality solutions in a shorter computation time than
that in the previous methods. Bachouch et al. [27]
discussed the problem of assigning patients to di�erent
care workers using a routing problem with some speci�c
constraints. In this regard, they proposed an integer
linear program to decide (1) which human resource
should be used and (2) when the service should be
executed during the planning horizon to satisfy the
care plan for each patient served by the HHC providers.
Shao et al. [28] presented the �rst algorithm to support
weekly planning at the healthcare agencies with con-
tracts. In order to better match patients' demands with
therapist skills while minimizing the treatment, travel,
and administrative costs, they modeled the problem as
a mixed-integer program while developing a two-phase
greedy randomized adaptive search procedure. At
Phase I, daily routes are constructed for the therapists
and at Phase II, a high-level neighborhood search is

executed to converge on a local optimum. With the
help of real-data provided by a U.S. rehabilitation
agency and random instances, they could illustrate the
e�ectiveness of the procedure.

The current research aimed to develop a tri-
objective Mixed Integer Linear Programming (MILP)
model to deal with the HHC problem, considering both
EPs and preferred visit times. To this end, it employed
the FGP and AEC approaches to solve the proposed
model. Finally, it adopted several robust methods to
address the uncertainty inherent in the travel time and
duration of each patient's visit.

To the best of the authors' knowledge, as detailed
in the literature, the EP in the case of the HHCRSP has
not been considered yet. Although extensive research
has been carried out on HHCRSP, no single study that
had already examined the uncertainty conditions and
patients' preferences simultaneously was found. In the
next section, a set of explanations and details about
the developed problem is given.

3. The proposed HHCRSP model

3.1. Problem de�nition
Consider an HCC that plans to use its limited nurs-
ing teams to service a speci�c number of emergency
and non-emergency patients at di�erent locations each
day. The optimal TW for each patient's visit is
pre-determined. In the planning period (daily), each
nurse is available for a speci�c period who visits
a certain number of patients. First, the patients
should be assigned to available nurses. Then, nurse
routing is done for servicing patients, and the time
schedule for each patient's visit is determined by the
nurses. For example, as outlined in Figure 4, 10
patients are scheduled to be serviced by the HCC

Figure 4. Schematic 
ow of patients' visits in the HHCRSP.
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(two nurses). The assignment of nurses A and B
to the patients set C = fC1; C2; � � � ; C10g has been
de�ned in advance. Therefore, patients fC1; C4; C5g
and fC2; C3; C7; C9; C10g should be visited by nurse
A and nurse B, respectively. The remaining patients
will receive care in the next planning period. The
patient's visit path is considered to be C2�C3�C7�
C9 � C10 for nurse B and C1{C4{C5 for nurse A.
In this research, every nurse cannot visit any patient.
Nurses in the HHC actually provide supportive care for
patients who are sick, recovering, or disabled. They
encounter patients with unique medical and nursing
needs that must be ful�lled in order for these patients
to be able to continue living at their own homes. Hence,
there is a broad range of nurses' daily activities, e.g.,
giving treatment, cleaning, providing required drugs,
conducting checkups, and so on. Moreover, nurses in
the HHC are accountable to many patients; hence,
they must perform their duties in the way required
and contribute to good and safe care. It is precisely
for this reason that it is assumed that nurses have
restricted medical and nursing competencies indicating
their skills to visit certain patients. In other words,
nurses have a higher concentration on their patients'
care and treatment.

Assume that the number of patients is equal to
C. Consider the network N consisting of C + 2 nodes;
the nodes f0g and fC + 2g are the same as HCC. At
�rst, N nurses are placed in the HCC (i.e., node 0).
After assigning nurses to patients, the path speci�c to
each nurse is determined and ultimately, they return
to the HCC (that is, the N + 1 node, which is possibly
the same node as 0). Based on each nurse's path,
the travelling time between the two nodes i and j
of the network and duration of each patient's visit,
patients' visit schedule (of course, if he/she is visited)
is determined. The parameters of the travel time on
the arc (i� j) and stop time duration at each node i of
the network N are among the parameters that should
be considered in the HHCRSP to control the decision
risk. According to the aforementioned explanations,
the proposed optimization model pursues the following
three objectives:

� Minimizing the number of patients who have not
been visited;

� Minimizing the total (or maximum) deviation (ear-
liness/tardiness) from the optimal TW for patients'
visits;

� Maximizing patients who are visited in their optimal
TW.

To accomplish the three above-mentioned objec-
tives, the following decisions should be optimally made:

� How to allocate nurses to patients;

� How to prepare the patients' visit schedule (nurses'
arrival time);

� How to determine the nurses' route.

3.2. Problem formulation
The most in
uential assumptions that are de�ned in
modeling and solving the HHCRSP are as follows:

� The location of patients is given;

� The number of nurses is given;

� At moment 0, all nurses are present at the HCC
(moment 0 can be taken, for example, as 7 am);

� The nurse's working time is determined;

� Based on the medical diagnosis and preferences of
each patient, the optimal time interval for each
patient's visit is predetermined;

� EP must be visited;

� Each patient is visited by only one nurse;

� The skills of nurses are restricted and every nurse
cannot visit any patient;

� Travelling time between patients' locations and visit
time durations is uncertain.

Since \travelling time between patients' loca-
tions" and \visit time durations" are uncertain, a nom-
inal/average value with a perturbation value for these
parameters is considered. For example, the nominal
travel time between patients 4 and 7 is considered as
30 minutes with �ve-minute perturbation. Therefore,
an interval between 25{35 minutes is considered as the
travel time between patients 4 and 7. Prior to propos-
ing a multi-objective optimization model, the nomen-
clature should be explained. The sets, parameters, and
decision variables of the proposed optimization model
are presented in Tables 6{8, respectively.

The objective functions and constraints of the
proposed model are as follows:

Table 6. Sets of the proposed optimization model.

Sets De�nition

C = fC1; C2; � � � ; C10g Set of patients

D � C Set of emergency patients

H = f0; jCj+ 1g 0; jCj + 1 are arti�cial
nodes representing the
origin and destination of
the route (HCC)

N = C [H Set of all nodes

K = f1; 2; � � � ; k; � � � ; jKjg Set of nurses
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Table 7. Parameters of the proposed optimization model.

Parameters De�nition

bkc If nurse k is quali�ed to visit patient c, it is equal to 1; otherwise, 0

[�c � �c] Optimal time window to service patient c

dmc Maximum permissible deviation from the optimal time window to visit patient c

vmk The maximum number of patients who can be visited by nurse k

amk Maximum working time duration of nurse k

^timei�j Travelling time between node i and node j (uncertain)

v̂timec Service duration of patient c (uncertain) v̂time0 = ^vtimejCj+1 = 0

�c The patient c's sensitivity coe�cient compared to that of other patients (�c > 1 8c 2 D and
�c = 1 8c =2 D)

Table 8. Decision variables of the proposed optimization model.

Decision variables De�nition

ykc Equals 1 if nurse k visits patient c; otherwise, 0.

gc Equals 1 if patient c is visited in the optimal time window; otherwise, 0.

xkij Equals 1 if nurse k travels arc i� j; otherwise, 0.

tkc Service start time of nurse k at patient c (tk0 � 0 when nurse k starts at HCC and tkjCj+1 > 0
when nurse k returns to HCC at the end of the working day)

ec Early arrival to visit patient c according to the optimal time window

lc Late arrival to visit patient c according to the optimal time window

Minimize F1 =
X
c2C

 
1�X

k2K
ykc

!
; (1)

Minimize F2 = max
c2C (�c(ec + lc)); (2)

Maximize F3 =
X
c2C

gc: (3)

Objective Function (1) minimizes the number of un-
covered patients during the planning horizon (i.e., on
a daily basis). Note that if a patient is visited,P
k2K ykc = 1 and 1 �Pk2K ykc = 0; therefore, this

patient is not considered an uncovered one. Objective
Function (2) minimizes the maximum deviation from
the optimal time window of the patients' services.
This function aims to con�ne tardiness or earliness of
services to patients. Note that ec:lc = 0 is permanent
(i.e., merely earliness or tardiness takes place or both
variables are equal to 0 in value). This linearization of
the Objective Function (2) is performed by Eq. (4):

Minimize F2 = u;

u � �c(ec + lc); 8 c 2 C: (4)

Objective Function (3) maximizes the number of pa-
tients visited in their optimal TW.

s.t.:X
k2K

ykc � 1; 8 c 2 C; (5)

X
k2K

ykc = 1; 8 c 2 D � C; (6)

X
c2C

ykc � vmk; 8 k 2 K; (7)

ykc � bkc; 8 k 2 K; c 2 C; (8)

gc �X
k2K

ykc; 8 c 2 C; (9)

X
j2N

xk0j = 1; 8 k 2 K; (10)

X
i2N

xki(jCj+1) = 1; 8 k 2 K; (11)
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X
i2N

xkic =
X
i2N

xkci; 8 k 2 K; c 2 C; (12)

X
i2N

xkic = ykc; 8 k 2 K; c 2 C; (13)

tkj � tki + ^timei�j + v̂timei + (xkij � 1)M ;

8 k 2 K; i; j 2 N; (14)

(�c � dmc)ykc � tkc � (�c + dmc)ykc;

8 k 2 K; c 2 C; (15)

tkjCj+1 � tk0 � amk; 8 k 2 K; (16)

ec��c�tkc�M(1�ykc); 8 k 2 K; c2C; (17)

lc � tkc � �c; 8 k 2 K; c2C; (18)

gc =

(
1 if lc + ec = 0
0 if lc + ec > 0

8 c 2 C; (19)

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

ykc 2 f0; 1g
gc 2 f0; 1g
xkij 2 f0; 1g
tkc � 0
tk0 � 0
tkjcj+1 � 0
ec � 0
lc � 0

(20)

Constraint (5) ensures that each patient is either
visited by one nurse or uncovered (maximum of one
nurse is assigned to each patient). Constraint (6)
indicates that every single EP must be visited (a nurse
will surely visit any EP). Constraint (7) restricts the
number of patients assigned to each nurse. Constraint
(8) guarantees that nurse k can visit patient c on
condition that the nurse is su�ciently quali�ed for
service patient c. In other words, if bkc = 0, then
ykc = 0. Constraint (9) ensures that one nurse visits
any patient who is supposed to be visited in the
optimal TW (

P
k2K ykc = 1). Constraints (10) and

(11) ensure that the route of each nurse starts and
ends in the HCC. Constraint (12) represents in
ow-
out
ow conditions and ensures that nurse k, who visits
patient i, should leave this patient after the service.
Constraint (13) ensures that if nurse k is assigned
to patient c, then patient c must be located on the
path of nurse k. Constraint (14) calculates the start
times of the service operations considering the traveling
times and service durations. The constraint shows that
the start times of services along a nurse's route are

explicitly increasing. In doing so, they evade cycles
in the routes as well because a return to an already
visited patient would violate the start time of the prior
visit. Note that in this case, M is a large number.
Obviously, if the arc (i � j) is not traversed, this
constraint will be deactivated. Given this constraint,
the classic constraint of sub-tour elimination, which is
as Constraint (21), will be redundant [29]:

wki � wkj + jCj � xkij � jCj � 1;

8 i; j 2 C; k 2 K: (21)

A hard time window (optimal time window with the
maximum deviation allowed [�c � dmc; �c + dmc])
is considered by every nurse for each patient's visit
through Constraint (15). Note that if nurse k is not
assigned to patient c, then ykc = 0 and tkc = 0, and
this constraint becomes deactivated. Nurses are only
allowed to work within a given time in a day, which is
handled by Constraint (16). It should be noted that
the variable tkjcj+1 represents the arrival back of the
nurse k to the HCC, and if he/she leaves the HCC
at moment 0 (tk0 = 0), then tkjcj+1 � tk0 is equal to
his/her working time. Constraint (17) computes the
early arrival to visit patient c compared to the optimal
TW. As mentioned above, M is a large number (as
large as �c), and it should be noted that if nurse k
is not allocated to patient c (ykc = 0), this inequality
is deactivated. Similarly, Constraint (18) shows the
nurse's late arrival to visit patient c compared to the
optimal TW. Constraint (19) determines whether or
not a patient is visited in his/her optimal TW. If no
early arrival or late arrival take place (lc + ec = 0),
then, gc = 1; otherwise, gc = 0. This equality can be
linearized as follows:

gc � 1� (lc + ec)
M

; 8 c 2 C; (22)

gc � 1� (lc + ec)M ; 8 c 2 C: (23)

Constraint (20) de�nes the feasible domains of decision
variables.

4. Solution approach

The general form of a mathematical model with n
objective functions can be stated as follows:

min(F1(x); F2(x); � � � ; Fn(x)); x 2 X: (24)

An ideal solution for the problem formulated in Con-
straint (24) optimizes all the objective functions si-
multaneously while satisfying all constraints. However,
most real-world problems involve con
icting objectives;
hence, any feasible solution cannot optimize all the
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objective functions at the same time. Accordingly,
decision-makers seek a preferable and e�ective solu-
tion. The solution methods used to cope with the
proposed multi-objective optimization model are as
follows.

4.1. FGP method
FGP is a method for solving multi-objective optimiza-
tion problems and it was �rst proposed by Rubin and
Narasimhan [30]. This method is an extension of Goal
Programming (GP) method that considers a goal for
each objective and attempts to get as much closer
as possible to these goals. FGP considers a goal for
each objective using fuzzy numbers (fuzzy membership
function) where the value of each goal varies from 0
to 1. Then, the weighted sum of goals is expressed as
the objective function of the problem. Assume that
the single-objective version of the problem formulated
in Constraint (24) has been already solved. Based on
the results of individual optimization, a payo� table
can be obtained according to which mi = f�i and Mi
are considered as the optimal values of the objective
i and upper bound for this objective, respectively.
Accordingly, in the FGP method, each objective i is
expressed based on the following goal:

Gi(x) = �(x)fi = G(fi(x))

=

8>>><>>>:
0; fi(x) �Mi

Mi�fi(x)
Mi�mi ; x 2 X

1; fi(x) � mi

(25)

Therefore, the Multi-objective Optimization Model
(MODM) problem modeled in Constraint (24) can be
rewritten and solved using the FGP method (on the
basis of the fuzzy membership function in Eq. (25)):

max
X
i

wiGi(x);

Gi(x) =
Mi � fi(x)
Mi �mi

; i = 1; 2; � � � ; n; x 2 X;
(26)

where fi(x) ! mi and Gi(x) ! 1. Of note, in the
proposed FGP method, wi represents the relative
importance of objective i, which is assumed to be
determined by the decision-maker(s).

4.2. AEC method
Consider the general expression of an MODM problem
based on the optimization model (24). Suppose that
the objective k is to be minimized provided that
other objectives are limited to the predetermined upper
bounds. In this case, based on the EC method,
the following single-objective optimization model is
obtained:

min fk(x);

fi(x) � ei; i = 2; 3; � � � ; n; i 6= k; x 2 X: (27)

In Constraint (27), di�erent solutions can be achieved
by changing the values of ei that may not be e�ective
(weakly e�cient). However, the problem can be solved
in a more e�ective manner by modifying the model in
Constraint (27) based on the AEC method [31]. In this
method, it is required that the payo� matrix as well as
the minimum (mi) and maximum (Mi) values for each
objective be computed. Then, the range of changes in
each ei is de�ned as ei 2 [mi;Mi], and the value of
Ri = Mi �mi is de�ned as a domain to normalize the
objectives. If ei < mi, the problem becomes infeasible;
if ei � Mi, ine�cient or repetitive solutions can be
obtained. In the AEC method, the following model
replaces the model in the EC method (Relation (27)):

min fk(x)�
nX

i=1;i6=k
�isi;

fi(x) + si = ei;

i = 1; 2; 3; � � � ; n; i 6= k; x 2 X; si � 0: (28)

An e�ective solution is obtained in the AEC method by
assigning distinct values to ei 2 [mi;Mi]. Ultimately,
the values of objectives with regard to di�erent values
of ei generate the Pareto frontier.

4.3. Robust Optimization Approach (ROA)
Generally, the robust solution in an optimization prob-
lem under uncertainty conditions is a solution that
acts justi�ably with respect to uncertain data in most
cases with less deviance than the optimal value of the
objective function. Consider the general form of a
linear optimization problem as Constraint (29):

min cTx;

s.t.:

Ax � b: (29)

The above-mentioned optimization model will be an
uncertain one if at least one of the components of the
c and b vectors or the matrix A is uncertain. Here, � =
[c; A; b] is de�ned as parameters of Model (29). Con-
sider the set U as all possible states for � (parameters of
the problem). Clearly, if jU j = 1, the above-mentioned
model is a deterministic optimization one. However, in
most real-world problems, we have jU j > 1; hence, an
uncertain optimization problem is obtained. Therefore,
robust optimization methods are used in the state of
jU j > 1. One of the robust optimization methods
is the interval method of Ben-Tal et al. [32], which
is an extension of the Soyster's strict method [33].
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Accordingly, the interval method considers a closed
bounded interval for the model parameters. In this
case, the robust solution in most possible cases is made
feasible for the corresponding intervals. In order to
clarify this method, consider the following uncertain
optimization problem:

min z =
X
j

fa0jxj + eb0;
s.t.:X
j

faijxj � ebi 8 i = 1; 2; � � � ;m; (30)

where for each i = 0; 1; 2; � � � ;m: faij 2 [aLij ; aUij ] andebi 2 [bLi ; bUi ]. Now, we de�ne:faij = aij + �ij � caij ; (31)ebi = bi + �i � bbi; (32)

where aij and bi are the nominal values for the
parameters, and caij and bbi are the maximum pertur-
bations of each parameter from its nominal value. The
relationship between the nominal values for parameters
and their associated maximum perturbations is de�ned
through Eqs. (33) and (34).

aij =
aLij + aUij

2
; caij = aij � aLij ; (33)

bi =
bLi + bUi

2
; bbi = bi � bLi : (34)

According to the above-mentioned de�nitions, it can
be shown that the variations of each parameter/data of
Model (31) at its corresponding interval are equivalent
to the variation in its corresponding � value at the
[�1; 1] interval. Note that if a parameter of the problem
is deterministic, the upper and lower bounds of its
corresponding uncertain interval are equal and also
equal to the nominal value. Followed by normalizing
the uncertainty interval of each parameter, Model (30)
can be rewritten as Model (35), where all values of �ij;�i
are at the [�1; 1] interval.

min z =
X
j

a0jxj + b0 +
X
i

�jb�a0jxj + �0 � bb0;
s.t.:X
j

aijxj +
X
j

�ijb�aijxj � bi + �i � bbi;
8 i = 1; 2; � � � ;m: (35)

Followed by normalization in the interval robust
method, Model (36) is considered as the robust coun-
terpart of Model (30), where �i is the control param-

eter of the uncertainty level in each constraint.

min z = max
�j ;�0

 X
j

a0jxj + b0 +
X
j

�jb�a0jxj

+ �0 � bb0!;
s.t.:

X
j

aijxj + �i � max
�ij ;�i

0@X
j

�ijb�aijxj � �i � bbi1A � bi
8 i = 1; 2; � � � ;m: (36)

In the following, three prominent uncertainty spaces
are described. These uncertainty spaces will be further
used for controlling the uncertain parameters of the
HHCRSP.

4.3.1. Box uncertainty space
In case �'s vary independently at the [�1; 1] inter-
val in the objective function and each constraint of
Model (36), the uncertainty space is called box uncer-
tainty space. According to Li et al. [34], Model (37) is
the robust counterpart of the model based on the box
uncertainty space.

min z;

s.t.:

z �X
j

a0jxj + b0 +  0

0@X
j

ca0j jxj j+ bb01A ;

X
j

aijxj +  i
X
j

caij jxj j � bi �  i � bbi
8 i = 1; 2; � � � ;m; (37)

where the parameter  shows the risk aversion level
or uncertainty coverage in the parameters of each
constraint. Note that if  = 0, it can be implied
that uncertain parameters are replaced with nominal
values. In addition, if  = 1, the uncertainty coverage
is considered as full, and the robust optimal solution
obtained from Model (36) will be feasible in all possible
cases for uncertain parameters.

4.3.2. ELL uncertainty space
Suppose that in Model (36), �ij 's are constrained based
on the ellipsoidal relationship (38).

k�ijk2 =
sX

j

�2
ij � 
2

i

8 i = 0; 1; 2; � � � ;m; �ij 2 [�1; 1]: (38)
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The uncertainty space is called the ELL uncertainty
space. According to Li et al. [34], the robust counter-
part of the model based on the ELL uncertainty space
is equivalent to Model (39):

min z;

s.t.:;

z �X
j

a0jxj + b0 + 
0

0@sX
j

(ca0jxj)
2 + bb02

1A ;

X
j

aijxj + 
i
X
j

(caijxj)2 � bi � 
i � bbi2
8 i = 1; 2; � � � ;m; (39)

where the parameter 
 shows the risk aversion level or
uncertainty coverage in each constraint. Note that if

 = 0, similar to the Box uncertainty space, uncertain
parameters are replaced with the nominal values. In
addition, if 
 = 1, uncertainty coverage is fully applied
in the de�ned ELL set. Moreover, if the control
parameters  and 
 are equal in both Box and ELL
uncertainty spaces, the Box uncertainty space is always
greater than the ELL uncertainty space and the Box
will be more risk averse.

4.3.3. PH uncertainty space
Suppose that in Model (36), �ij 's are constrained based
on the polyhedral relationship (Eq. (40)):

k�ijk1 =
X
j

j�ij j � �i

8 i = 0; 1; 2; � � � ;m; �ij 2 [�1; 1]: (40)

According to [34], the robust counterpart of the model
based on the PH uncertainty space is equivalent to
Model (41):

min z;

s.t.:

z �X
j

a0jxj + �0 � t0;

t0 � ca0j jxj j and t0 � bb0 8 j = 1; 2; � � � ; n;X
j

aijxj + �i � ti � bi;

ti � caij jxj j and ti � bbi 8 j=1; 2; � � � ; n; (41)

where the parameter � indicates the risk aversion
level or uncertainty coverage in the parameters of each
constraint. In this case, if � = 0, uncertain parameters

are replaced by nominal values. In addition, if � = 1,
the whole uncertainty of the de�ned PH set will be
covered. For equal control parameters ( = 
 = �),
the Box state covers most uncertainties and the ELL
state covers a space less than Box and more than PH.
Figure 5 clearly illustrates the uncertainty spaces in the
presence of two uncertain parameters for cases of the
Box, ELL, and PH uncertainty spaces.

In the HHCRSP model presented in this study,
the parameters of travel time between two nodes
( ^timei�j) and the visit time of each patient (v̂timei)
were considered uncertain in the form of intervals.
For each uncertain parameter, an uncertainty interval
was de�ned as gdata 2 [dataL; dataU ] based on which
the nominal value data = dataL+dataU

2 and deviation
value ddata = dataU � data can be obtained. Once
the nominal values and deviation of each uncertain
parameter are calculated, the robust counterparts can
be determined based on each of the Box, ELL, and PH
methods. The robust counterparts of Relation (14),
containing two uncertain parameters of ( ^timei�j) and
(v̂timei), are represented by using robust methods of
Box, ELL, and PH through Relations (42), (43), and
(44), respectively:8>>><>>>:

(Box)
tkj �tki + timei!j + vtimei

+  ij
�
\timei!j + \vtimei

�
+ (xkij � 1)M ;

8 k 2 K; i; j 2 N (42)

8>>>>><>>>>>:
(Ell)
tkj � tki + timei!j + vtimei

+
ij

r� \time2
i!j+ \vtimei

2�
+(xkij � 1)M ;

8 k 2 K; i; j 2 N
(43)

Figure 5. The uncertainty space in Box, ELL, and PH
states.
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8>>>>><>>>>>:
(PH)
tkj �tki + timei!j + vtimei

+�ij � tij+(xkij�1)M ; 8 k2K; i; j2N;
tij � \timei!j 8 i; j 2 N;
tij � \vtimei 8 i; j 2 N

(44)

where ^timei�j 2 [timeLi�j � timeUi�j ] and v̂timei 2
[vtimeLi �timeUi ] are taken into consideration, and their
nominal values and deviations are de�ned as follows:

� timei!j = (timeLi!j+timeUi!j)
2 ,

� \timei!j = timeUi!j � timei!j ,
� vtimei = (vtimeLi +vtimeUi )

2 ,

� \vtimei = vtimeUi � vtimei.

5. Computational results

To solve the developed Mixed Integer Linear Pro-
gramming (MILP) model, the CPLEX Solver in the

GAMS software version 24.7.1 was used on a personal
computer with the important features of the \Central
Processing Unit (CPU): CoreTM i5 2.5 GHz" and
\Random Access Memory (RAM): 6.0 GB". Since no
benchmark data was available for the problem, the
numerical example was randomly generated, in which
one HCC with a speci�ed location planned to schedule
�ve nursing teams to serve 25 nursing patients daily
and determine their travel routes. Among all 25
patients at this care center, there are seven EP that
should be necessarily visited. It is desirable that
nursing teams visit other patients (18 non-emergency
patients), as well. The general information about the
HHCRSP test problem is given in Table 9.

In Table 10, a two-dimensional coordinate is
de�ned for each patient that shows his/her location.
Based on the de�ned coordinates, their Euclidean
distance is obtained to determine the nominal value
of the time parameter for the displacement between
every two nodes of the network. It is assumed that the
time is proportional to the distance between the two

Table 9. The general information about the HHCRSP test problem.

Patients
Optimal

time window
[�c � �c]

Maximum
permissible

deviation from
time window

Visit duration
(in distance)

v̂timec 2 �vtimeLc � timeUc �
Patient's

sensitivity
coe�cient �c

Location
X Y

1 [20{40] 10 [5{10] 1 15 7
2 [15{50] 10 [5{10] 1 11 4
3 [30{40] 15 [10{20] 1.3 8.5 1
4 [60{70] 10 [10{15] 1 9.5 16
5 [40{60] 10 [5{10] 1 2 2.5
6 [30{50] 10 [5{10] 1 17 13
7 [45{72] 10 [10{20] 1.5 4 15
8 [33{63] 10 [10{20] 1.2 15 15
9 [55{72] 10 [10{20] 1.6 13 9
10 [43{74] 15 [10{20] 1.1 7 6.5
11 [35{80] 10 [5{10] 1 18 4.5
12 [52{92] 20 [10{15] 1 19 18
13 [74{93] 15 [5{10] 1 18.5 9.5
14 [61{85] 10 [5{10] 1 16 1
15 [70{95] 10 [10{20] 1.4 1 10
16 [68{93] 15 [5{10] 1 1.5 19
17 [82{100] 10 [10{20] 1.2 14.5 13
18 [95{104] 10 [5{10] 1 8 18
19 [83{110] 15 [5{10] 1 5 10
20 [90{100] 10 [5{10] 1 13 18.5
21 [85{120] 15 [5{10] 1 2 7.5
22 [75{118] 10 [10{15] 1 11.5 13.5
23 [92{110] 10 [10{15] 1 8 12
24 [80{115] 20 [5{10] 1 1 13
25 [90{105] 10 [5{10] 1 5.5 4

HCC Starting from 0 | | | 10 10
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Table 10. Information on patient in the numerical study of the HHCRSP.

Planning
period

No. non-emergency
patients

No. emergency
patients

Total
patients

No.
nurses

No.
HCC

1 18 7 25 5 1

Table 11. Information on nurses in the numerical study of HHCRSP.

Nurse 1 Nurse 2 Nurse 3 Nurse 4 Nurse 5

vmk 6 6 6 6 6
amk 100 100 100 100 100

nodes. For the perturbation component in the value of
this uncertain parameter, a random number between
10% and 40% is generated. This coe�cient for the
parameter \timei!j is multiplied by the nominal value.

Other patient information (emergency vs non-
emergency, sensitivity coe�cient, optimal time window
of visit, etc.) is shown in Table 10. In addition,
Tables 11 and 12 provide information about nurses
(nurses' skills, availability of each nurse, and the
number of patients that each nurse can visit per day,
etc.).

Table 12. Information on nurses' skills in the numerical
study of HHCRSP.

bkc
Nurse

1
Nurse

2
Nurse

3
Nurse

4
Nurse

5
1 1 1 1 0 1
2 0 1 1 1 1
3 1 1 1 1 1
4 1 1 1 0 1
5 0 1 0 0 1
6 1 1 1 0 1
7 0 1 1 1 1
8 1 1 1 0 1
9 1 0 1 0 1
10 1 0 0 1 1
11 0 1 1 1 0
12 1 0 0 1 1
13 1 1 0 1 1
14 0 1 1 1 0
15 1 1 1 1 1
16 0 1 1 0 0
17 1 1 1 1 1
18 0 1 1 0 1
19 1 1 1 1 1
20 1 0 0 1 1
21 1 0 0 1 1
22 0 1 1 1 0
23 1 0 1 1 1
24 1 1 1 1 1
25 1 1 1 1 1

5.1. Solving the model using FGP and robust
optimization based on the Box
uncertainty set

The numerical example is solved using the FGP method
and robust optimization in a way that uncertain pa-
rameters are controlled by a Box uncertainty space
with the control parameter  = 0:8. Tables 13 and
14 show the optimal values of objectives as well as
the payo� matrix of objectives, respectively, obtained
from solving the model through FGP and robust
optimization based on the Box uncertainty space. A
pairwise comparison between the trends of objectives
in Table 14 con�rms that there is a contradiction
between the objectives of the proposed optimization
model. Given the maximum and minimum values of
each objective function in the payo� matrix, the G1,
G2, and G3 goals, de�ned for all the three objectives
of the model, are as follows:

(M1 = 11 & m1 = 0)! G1 =
11� F1

11
;

(M2 = 9:64 & m2 = 0)! G2 =
9:64� F2

9:64
;

(M3 = 14 & m3 = 3)! G3 =
F3 � 3

11
:

Assume that the weights of all model objectives are the
same, i.e., w1 = w2 = w3 = 1. The objective function

Table 13. Optimal values of the objective functions
(FGP and robust optimization based on the Box
uncertainty set).

F1 F2 F3

0 0 14

Table 14. Payo� matrix (FGP and robust optimization
based on the Box uncertainty set).

Payo�
(i; j)

F1 F2 F3

F1 0 11 11
F2 9.64 0 0
F3 3 14 14
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of the FGP method, which should be maximized, is
calculated as follows:

ZFGP = w1G1 + w2G2 + w3G3

=
11� F1

11
+

9:64� F2

9:64
+
F3 � 3

11
:

Accordingly, the optimal solution presented in Table 15
is obtained using the FGP method. Table 16 shows the
state of each patient's visit as well as the nurse assigned
to any patient according to the FGP method. Figure 6
shows the route of each nurse for visiting the patients
based on the FGP method.

Table 15. Optimal solution of the numerical example
based on the FGP method.

F1 F2 F3

5 5.32 8

5.2. Solving the model using AEC and robust
optimization based on the Box
uncertainty set

In order to use the AEC method, the payo� matrix
must �rst be obtained. The payo� matrix of the FGP
method can also be used for the AEC method. In this
regard, the payo� matrix presented in Table 14 should
be employed. Accordingly, the minimum, maximum,
and range of variations to each objective are as follows:

(M1 = 11 & m1 = 0)! R1 = 11;

(M2 = 9:64 & m2 = 0)! R2 = 9:64;

(M3 = 14 & m3 = 3)! R3 = 11:

In the proposed AEC method, the third objective is set
as the main objective function and the �rst and second
objectives are bounded using the upper limit of "1 and

Table 16. Patients' visits in the optimal solution of the FGP method (E: Emergency, NE: Not-Emergency).

Patient
status

Visited (1)
Not visited (0)

Visiting in optimal
time window

The assigned
nurse

1 NE 1 1 K2

2 NE 1 0 K2

3 E 1 1 K4

4 NE 1 0 K3

5 NE 0 0 |

6 NE 1 0 K5

7 E 1 1 K3

8 E 1 1 K5

9 E 1 0 K5

10 E 1 1 K4

11 NE 1 0 K2

12 NE 1 0 K5

13 NE 1 0 K5

14 NE 0 0 |

15 E 1 1 K1

16 NE 0 0 |

17 E 1 1 K2

18 NE 1 0 K3

19 NE 1 0 K1

20 NE 0 0 |

21 NE 1 0 K1

22 NE 1 0 K3

23 NE 1 1 K3

24 NE 0 0 |

25 NE 1 0 K4
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Figure 6. Nurses' paths for patient visits based on the FGP method in the numerical study of HHCRSP.

Table 17. Pareto solutions obtained from the AEC
method.

Pareto
solution

F3 F2 F1 "1

1 3 9.64 0 0

2 5 8.42 1 1

3 5 7.23 2 2

4 6 7.01 3 3

5 7 6.93 4 4

6 8 5.32 5 5

7 9 4.76 6 6

8 10 4.12 7 7

9 11 3.67 8 8

10 12 2.11 9 9

11 13 1.43 10 10

12 14 0 11 11

"2. As a result, we will have "1 2 [m1 = 0;M1 = 11],
"2 2 [m2 = 0;M2 = 9:64], and '2 = R3

R2
= 11

9:64 = 1:14.
Table 17 shows the Pareto solutions obtained from the
AEC method. Figure 7 demonstrates the 3D diagram
of the Pareto front obtained from the AEC method.
The balance between the �rst and second objectives
and the balance between the �rst and objectives based
on the AEC method are given in Figures 8 and 9,
respectively. Again, Figures 8 and 9 con�rm the

Figure 7. The 3D diagram of the Pareto front obtained
from the AEC method.

contradictions between the objectives of the proposed
model.

As observed in the Pareto front diagram of the
AEC method, one of the Pareto solutions obtained
from the AEC method is equal to a solution previously
obtained through the FGP method. In the AEC
method, unlike the FGP method, a set of Pareto
solutions can be obtained. The decision-maker selects
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Figure 8. The balance of the �rst and second objectives
based on the AEC method.

Figure 9. The balance of the �rst and third objectives
based on AEC method.

one of the Pareto solutions for implementation. An
important question may arise here: Which solution
should be selected from the set of Pareto solutions of
AEC method? To answer this question, Mean Ideal
Distance (MID) criterion is of great help. Given the

optimal solutions reported in Table 14, (F �1 = 0; F �2 =
0; F �3 = 14), it is considered as the ideal solution.

According to the payo� matrix and due to the
contradiction between the objective functions, there
is surely no feasible solution that optimizes the �rst,
second, and third objective functions simultaneously.
Although �nding an ideal solution in most real-world
problems is di�cult, a feasible solution can be chosen
that minimizes the maximum deviation of objectives
from the ideal solution. If we assume that F =
(F1; F2; F3) is an e�cient solution to the Pareto so-
lution set, its ID criterion is calculated as follows:
ID(F; Ideal) = max fw1 jF1 � F �1 j ; w2 jF2 � F �2 j ;

w3 jF3 � F �3 jg :
Given the equal weights of all objective functions,
the ID for the above-mentioned numerical example is
expressed as follows:
ID(F; Ideal) = max fF1; F2; 14� F3g :

Table 18 shows the values of the ID criterion for
all Pareto solutions obtained from the AEC method.
According to this criterion, Pareto solution no. 6 (F1 =
5; F2 = 5:32; F3 = 8) and Pareto solution no. 7
(F1 = 6; F2 = 4:76; F3 = 9) with ID = 6 have the
lowest ID, hence selected. It should be noted that
the Pareto solution No. 6 is the same as one solution
already obtained from the FGP method. If we are to
choose only one solution among the Pareto solutions,
the solution no. 7 is more favorable since it has the
least total weighted deviation from the ideal values
(considering equal weights).

5.3. Solving the model using FGP and robust
optimization based on ELL and PH
uncertainty sets

In this section, the solution of the proposed model

Table 18. values of the ID criterion for all Pareto solutions obtained from the AEC method.

Pareto
solution

Value of ID
criterion

Deviation of the
3rd objective from

the optimal solution

Deviation of the
2nd objective from

the optimal solution

Deviation of the
1st objective from

the optimal solution
1 11 11 9.64 0
2 9 9 8.42 1
3 9 9 7.23 2
4 8 8 7.01 3
5 7 7 6.93 4
6 6 6 5.32 5
7 6 5 4.76 6
8 7 4 4.12 7
9 8 3 3.67 8
10 9 2 2.11 9
11 10 1 1.43 10
12 11 0 0 11
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Table 19. Changing the objective values by changing the
value for the control parameter  (Box uncertainty set).

 F1 F2 F3

0 2 4.69 10
0.1 2 4.23 9
0.2 3 4.63 9
0.3 3 4.87 9
0.4 4 4.93 8
0.5 4 5.32 8
0.6 4 5.32 8
0.7 5 4.68 8
0.8 5 5.32 8
0.9 6 5.41 7
1 7 6.12 7

Table 20. Changing the objective values by changing the
value for the control parameter 
 (ELL uncertainty set).


 F1 F2 F3

0 2 4.69 10
0.1 2 4.02 10
0.2 3 4.82 10
0.3 3 4.11 9
0.4 3 5.97 9
0.5 4 4.02 9
0.6 4 4.98 9
0.7 4 4.81 8
0.8 5 4.23 8
0.9 6 5.12 8
1 6 5.78 8

Table 21. Changing the objective values by changing the
value for the control parameter � (PH uncertainty set).

� F1 F2 F3

0 2 4.69 10
0.1 2 3.89 10
0.2 3 4.04 10
0.3 3 4.02 9
0.4 3 5.00 9
0.5 3 4.21 9
0.6 4 4.52 9
0.7 4 5.03 9
0.8 4 4.71 9
0.9 4 5.41 9
1 5 5.23 8

obtained from the FGP is analyzed by changing the
uncertainty space from the Box to the ELL and PH
ones as well as the values of the control parameters  ,

, and �. As shown in Tables 19, 20, and 21, upon
increasing the values of the control parameters, the
objective values will be more distant than the ideal
state despite more coverage of the uncertainty space.
In addition, for spaces  = 
 = �, the solution

Figure 10. The e�ect of di�erent robust approaches on
the �rst objective value using FGP method.

Figure 11. The e�ect of di�erent robust approaches on
the second objective value using FGP method.

Figure 12. The e�ect of di�erent robust approaches on
the third objective value using FGP method.

always encounters more strictness in the Box space.
Consequently, the objective values of the Box space
usually overcome those of the ELL and PH spaces.
Figures 10, 11, and 12 con�rm this statement. In the
state of  = 
 = � = 0, which is called the nominal
state, the results of all the three robust approaches are
the same.
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5.4. Validation of the proposed robust
optimization models

First, consider the general form of the following uncer-
tain optimization problem.

min Z = eC � x;
s.t.:eAx � eb:

The solution x�(M) is obtained by solving the
above-mentioned optimization model. Assume that
(Cd; Ad; bd) are the deterministic values of the pa-
rameters of the above-mentioned problem and Z�d is
the optimal value of the objective function in the
deterministic state. In this case, jZ�d � Cd � x�(M)j
takes a value close to zero. In case the deterministic
parameters are not available, the problem should be
simulated. In any simulation run, the problem is �rst
converted into a deterministic state and then, solved.
Suppose that the deterministic optimization problem
is simulated N times as follows:
fmin Zdi = Cdi � xjAdix � bdi ; i = 1; 2; � � � ; Ng ;

where (Cdi ; Adi ; bdi) are the certain values of the pa-
rameters in the simulation run. Here, JF is de�ned as
a subset of these problems for which x�(M) is feasible.
In addition, JUF shows a subset of these problems
where x�(M) violates at least one of the constraints
(jJF j+ jJUF j = N). In addition, UFi is de�ned as the
set of violated constraints of the problem i in JUF . The
sensitivity coe�cient for each percent of deviation from
the optimality is represented by cO and the sensitivity
coe�cient for each percent of violation for a constraint
by cF . Therefore, an indicator fundamentally based
on feasibility and optimality concepts is proposed to
validate the solution approach, which is de�ned as
follows [35,36]:

Criteria =
1
N

 
cO
X
i2JF

��Z�di � Cdi � x�(M)
����Z�di��

+cF
X
i2JUF

X
k2UFi

��Akdi � x�(M)� bkdi
����bkdi��
!
:

Obviously, the smaller the criterion value, the more

valuable the solution approach to solving the problem
under uncertainty. As mentioned earlier, in the math-
ematical model of the HHCRSP, such parameters as
travel time, displacement of nurses, and duration of
visit for each patient are uncertain, each considered
as an interval. According to the above-mentioned
validation procedure, the numerical experiment is sim-
ulated 10 times by random initialization of uncertain
parameters, and the outputs of the ROAs based on
the Box, ELL, and PH uncertainty sets are com-
pared.

Table 22 shows the di�erent values of the pro-
posed indicator for all expressed approaches when the
sensitivity coe�cients of optimality (cO) and feasibility
(cF ) take the values of 0 and 1, respectively. All control
parameters of the Box, ELL, and PH approaches are
considered as 0.8. According to the obtained results, if
we consider only the optimality criterion (cO = 1), the
nominal approach will outperform other approaches.
The PH approach, which is less strict than both Box
and ELL, covers smaller uncertainty space, thus yield-
ing better results regarding this criterion. However, if
we consider only the feasibility criterion (cF = 1), the
Box approach that covers more uncertainty space will
yield the best result regarding this criterion. Finally, if
we consider both the optimality and feasibility criteria
(cF = cO = 1), the obtained results from all three
approaches will be almost the same. In this case,
the performance of the robust approach based on ELL
uncertainty set is a slightly better than those of other
approaches. Table 23 summarizes the output of the
validation procedure.

Tables 24 and 25 compare the nominal, Box,
ELL, and PH approaches in terms of feasibility and
optimality criteria, respectively. Although the nom-
inal approach exhibits a relatively good performance
in terms of optimality criterion, it will not be still
acceptable given that the feasibility criterion has been

Table 23. Preferred approach based on the proposed
indicator.

cO = 1, cF = 0 Nominal

cO = 0, cF = 1 Box

cO = 1, cF = 1 Box, PH, and ELL
are almost the same

Table 22. Values of the proposed indicator for the given approaches in case the cO and cF take the values of 0 and 1,
respectively.

Nominal Box
( = 0:8)

ELL
(
 = 0:8)

PH
(� = 0:8)

cO = 1, cF = 0 0.09 0.18 0.14 0.11

cO = 0, cF = 1 0.26 0.05 0.08 0.13

cO = 1, cF = 1 0.35 0.23 0.22 0.24
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Table 24. A comparison between the nominal, Box, ELL,
and PH robust approaches in terms of feasibility criterion.

Test
problem

Box
(%)

ELL
(%)

PH
(%)

Nominal
(%)

1 0 0 0 0
2 0 0 0 13
3 0 0 0 0
4 0 4 7 10
5 9 0 0 0
6 9 17 25 34
7 0 0 0 0
8 0 0 12 18
9 0 0 0 0
10 13 21 29 41

Table 25. A comparison between the nominal, Box, ELL,
and PH robust approaches in terms of optimality criterion.

Test
problem

Box
(%)

ELL
(%)

PH
(%)

Nominal
(%)

1 22 19 15 12
2 7 5 4 NA
3 19 17 12 11
4 3 NA� NA NA
5 7 6 4 1
6 NA NA NA NA
7 8 6 3 0
8 6 3 NA NA
9 17 15 12 8
10 NA NA NA NA

�Note: The problem was infeasible.

considered; instead, the Box, ELL, and PH approaches
exhibit better performance.

6. Sensitivity analysis

According to Table 16 and the results obtained from
the FGP based on the Box robustization method with
the control parameter  = 0:8, the optimal objective
values were calculated as (F1 = 5; F2 = 5:32; F3 = 8).
In case the value of the �rst objective function in the
payo� matrix in Table 15 is optimal (i.e., all patients
are visited or the number of patients not visited is 0),
the values of the second and third objective functions
are not very favorable. In this case, objective values
are (F1 = 0; F2 = 9:64; F3 = 3).

Obviously, the number of nurses in the HCC and
their skills in visiting patients has a signi�cant impact
on the three objectives de�ned in the HHCRSP. In the
speci�ed numerical study, �ve nurses are held account-
able to visit 25 patients. To analyze the sensitivity of

Table 26. Impact of changing available budget (number
of nurses) on the second and third objectives (FGP and
robust optimization based on the Box uncertainty set).

Added
budget

($)

No. of
nurses
added

F1 F2 F3

30 1 0 5.01 11

60 2 0 4.12 15

90 3 0 3.97 17

120 4 0 4.09 19

150 5 0 5.12 22

180 6 0 0 25

210 7 0 0 25

Figure 13. Sensitivity analysis of objective values
relative to the number of nurses.

the objectives to the number of nurses, assume that the
costs of adding each nurse and total available budget
to hire new nurses are equal to C and B units (B is a
multiple of C), respectively. As a result, the number
of new nurses to be hired is obtained by V = B=C. In
this numerical example, the daily cost of adding each
nurse is considered to be $30. Therefore, a minimum
additional budget of $180 is needed to hire six other
nurses; hence, all patients will be visited in a favorable
TW with no tardiness/earliness (see Table 26). In
the latter case (spending $180 to hire six new nurses),
the objective values are (F1 = 0; F2 = 0; F3 = 25).
Table 27 shows the trend of changing the objective
values in response to variations in the available budgets
which are proportional to hiring a number of new
nurses. In other words, this table shows the degree
of improvement in objectives with any increase in the
budget (or number of nurses). Figure 13 shows a clear
trend of changing all three objectives of HHCRSP in
response to changing the number of nurses (1-12).
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Table 27. Variations in the values of the objective functions at each budget level (FGP and robust optimization based on
the Box uncertainty set).

Added budget
($)

Added no.
of nurses

F1 F2 F3

Absolute
reduction

of F1

Absolute
reduction

of F2

Absolute
increase

of F3

0 (The current answer) 0 5 5.32 8 | | |
30 1 3 4.39 13 2 0.93 5
60 2 2 4.37 16 3 0.95 8
90 3 2 3.23 19 3 1.91 11
120 4 1 5.21 22 4 0.12 14
150 5 1 2.27 24 4 2.95 16
180 6 0 0 25 0 5.32 17

7. Conclusion and future research

In this paper, an Mixed Integer Linear Program-
ming (MILP) model was proposed to deal with the
Home Health Care Routing and Scheduling Problem
(HHCRSP) considering three patient-oriented objec-
tives. The �rst objective was to minimize the number
of patients who have not been visited yet. The second
objective was to minimize the maximum deviation from
the optimal time window. Finally, the third objective
was to maximize the number of patients visited in their
optimal time window. To cope with the HHCRSP,
�rst, nurses were assigned to patients and followed by
allocation, each nurse's route in each work shift was
determined. Finally, the starting time of visiting each
patient was determined according to their optimal time
window.

Considering the feedbacks from decision-makers
in the Home Health Care (HHC) companies, nurses en-
counter distinct uncertainties namely road and weather
conditions, driving skills, diagnosing time, etc. when
carrying out a prede�ned schedule to visit patients.
As nurses were authorized to adjust their plan in case
of unpredictability, the �nal planning might not be
optimal for strategic decision-making. Given this, two
key elements namely \the time spent for relocation of
nurses between patients" and \the duration of visit
for each patient" were considered uncertain. The
current study formulated an HHCRSP from the robust
optimization perspective and particularly, controlled
the non-deterministic variables based on the three
prominent uncertainty spaces called Box, ELL, and PH
uncertainty sets.

In order to solve the proposed multi-objective
optimization model, both Fuzzy Goal Programming
(FGP) and Augmented Epsilon Constraint (AEC)
methods based on the Box uncertainty space were
employed. Unlike the FGP method, AEC method
yielded a set of Pareto solutions. MID criterion was
indicative of the fact that two Pareto solutions with
identical ID values were characterized by the lowest

ID and one of them was the same as one solution
already obtained from the FGP method. Further, the
comparative numerical results revealed that regardless
of the type of the uncertainty set, increasing the value
of each control parameter for spaces  = 
 = � made
the objective values farther than the ideal ones. In
other words, in the state of  = 
 = �, the solution
always was bound to higher strictness in the Box space,
and the objective values for the Box space usually
conquered those for the ELL and PH spaces. In the
nominal state when  = 
 = � = 0, all the three robust
approaches did not di�er from each other in terms
of results. In addition, an indicator basically based
on feasibility and optimality concepts (cF ; cO) was
presented to validate the robust approaches. In case
only the optimality criterion was considered (cO = 1),
the nominal approach would outperform others. On the
contrary, if only the feasibility criterion was considered
(cF = 1), the Box approach that could cover a larger
uncertainty space would yield the best result in terms
of this criterion. Finally, if both the optimality and
feasibility criteria were considered (cO = cF = 1), the
results from all the three approaches were almost the
same. Finally, the sensitivity analysis of the number of
available nurses revealed that hiring at least six other
nurses guaranteed visiting all patients in a favorable
time window with no tardiness/earliness.

There are also numerous other interesting exten-
sions to this publication worthy of further considera-
tion. Therefore, we plan to extend our work by adding
other real-life practical constraints in the model such as
the continuity of care by considering a longer planning
horizon. For future research, the following areas seem
to be attractive:

� Considering the possibility of rescheduling nurses'
programs in response to the unpredicted absence of
nurses, cancelation by patients, etc.;

� Considering sustainability issues, e.g., green trans-
portation;



2668 A. Hosseinpour-Sarkarizi et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2647{2669

� Considering the continuity of care as a constraint or
objective in the proposed optimization model;

� Considering some issues related to the convenience
and comfort of nurses. For instance, nurses choose
their own working hours and determine which pa-
tients they prefer to visit.
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