
Scientia Iranica E (2022) 29(4), 2084{2098

Sharif University of Technology
Scientia Iranica

Transactions E: Industrial Engineering
http://scientiairanica.sharif.edu

Optimization of two-sided assembly line balancing with
resource constraints using modi�ed particle swarm
optimisation

M.R. Abdullah Make and M.F.F. Ab Rashid�

Department of Industrial Engineering, College of Engineering, Universiti Malaysia, Pahang, 26300 Kuantan, Malaysia.

Received 4 January 2019; received in revised form 29 July 2020; accepted 18 October 2020

KEYWORDS
Manufacturing
systems;
Assembly line
balancing;
Two-sided line;
Resource constraints;
Particle swarm
optimization.

Abstract. Two-Sided Assembly Line Balancing (2S-ALB) is essential to the production
of large-sized high-volume products, including automotive production, at assembly plants.
The 2S-ALB problem involves di�erent assembly resources such as worker skills, tools, and
machines required for the assembly. This research modeled and optimized the 2S-ALB
with resource constraints. In the end, besides favorable workload balance, the number of
resources can be optimized. For optimization purpose, particle swarm optimization was
modi�ed to reduce dependence on a single best solution. This was conducted by replacing
the best solution with the top three solutions in the reproduction process. Computational
experiment results using 12 benchmark test problems indicated that the 2S-ALB with
a resource-constrained model was able to reduce the number of resources for use in an
assembly line. Furthermore, the proposed Modi�ed Particle Swarm Optimization (MPSO)
was capable of searching for minimum solutions to 11 out of 12 test problems. The good
performance of MPSO was attributed to its ability to maintain particle diversity over
iterations. The proposed 2S-ALB model and MPSO algorithm were validated later using
an industrial case study. This research makes a two-fold contribution: (a) Proposition of
a novel 2S-ALB with resource-constrained model and (b) a modi�ed PSO algorithm with
enhanced performance.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Assembly line is a system that considers arrangement
of workstations, workers, tools, or machines, and it suc-
cessively outlines operations so as to reach completion.
It is widely used in many manufacturing industries to
cope with growing demands in manufacturing. The
assembly line is set up for the most optimum design
to meet production demands. The assembly line

*. Corresponding author. Tel.: +609-4246321;
Fax: +609-4246222
E-mail address: �aisae@ump.edu.my (M.F.F. Ab Rashid)

doi: 10.24200/sci.2020.52610.2797

system was introduced around 1900 by Henry Ford
for his automobile plants [1]. Since then, various
evolutions and progresses in the assembly line were
reported. Derived from the above idea, the balancing
approach has been developed for the assembly line,
known as Assembly Line Balancing (ALB). Balancing
an assembly line can be di�cult for most industries.
It refers to not only assigning a task to a respective
workstation but also enhancing production rate with
the desired performance level [2]. Nowadays, ALB
has become instrumental in coping with global com-
petitiveness in the industry. It classically started in
1955 when Salveson �rstly described the typical ALB
problem that focused on an e�cient and fast solution
approach to solving the line balancing problem [3].



Abdullah Make and Ab Rashid/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2084{2098 2085

Great progresses occurring from time to time have
extended classi�cation of the ALB problem.

Later, various versions of ALB problems have
been formulated to suit di�erent assembly line prob-
lems [4]. One of the ALB branches is the assembly line
that assembles large-sized and high-volume products
like an automotive assembly line. The assembly process
is conducted on both left and right sides of the prod-
uct. This problem is known as Two-Sided Assembly
Line Balancing (2S-ALB) and was �rst established by
Bartholdi in 1993 [5]. Early investigations into 2S-
ALB have inspired other researchers to further study
and extend the above work to the next level. The 2S-
ALB was built from a single-line production system,
which is identically paired parallel to the �rst side of the
assembly line. Figure 1 illustrates the 2S-ALB station
features along the conveyor belt. Contrary to the one-
sided line, the assembly process in 2S-ALB is conducted
either from the left or right side, depending on various
constraints. The 2S-ALB system is able to shorten and
save space in the assembly lines, besides reducing the
material handling of tools and �xtures.

Recently, the 2S-ALB problem has grown rapidly
and di�erent ALB versions have been adopted as
variations of the 2S-ALB problem. The 2S-ALB
variation began with the general 2S-ALB, as illustrated
in Figure 1. The general 2S-ALB consists of two
workstations facing each other along the assembly
line. This version of the problem has its advantages,
including shortening the assembly line, saving some
spaces, reducing throughput time and material han-
dling besides the cost of tools and �xtures. This general
2S-ALB has been well addressed in several research
studies [3,6{9].

Besides studying the general 2S-ALB, researchers
have combined 2S-ALB with mixed-Model Assembly
Line Balancing (MALB). The MALB is particularly
considered in levelling the workload in every worksta-
tion on the line, besides levelling the part usage. It
literally functions in achieving a balanced workload at
speci�c processing times for each assembly task while
attempting to minimize the variation in di�erent parts
over time. The combination of 2S-ALB and MALB
has led to the introduction of the implementation
of di�erent optimizations and line balancing solution
approaches [10{12]. Another case of combination with

Figure 1. Two-sided assembly line.

the 2S-ALB is Parallel Assembly Line Balancing (P-
ALB). The P-ALB is a combination of two or more
lines placed parallel to each other, which has turned
into sharing tools and �xtures to complete the entire
job. The two-sided P-ALB, which is a combination of
2S-ALB and P-ALB, is to shorten the assembly line
while steadily running during a breakdown [13{16].
This combination was discussed by Ozcan, Gokcen, and
Toklu (2010) [17] to shed light on its many bene�ts:

(i) It can help produce similar products or di�erent
models of the same production on the adjacent
lines;

(ii) It reduces the idle time and increases the e�-
ciency of the assembly lines;

(iii) It is able to complete production with di�erent
cycle times for each of the lines;

(iv) It can improve visibility and communication skills
between operators;

(v) It manages to reduce operator requirements.

Many studies have been conducted to work out the best
optimum-seeking approach, that is implementing either
heuristic or meta-heuristic method, for 2S-ALB. In an
early study, Kim et al. (2000) used Genetic Algorithm
(GA) as an optimization algorithm [18]. Then, in
2001, it was continued by Lee et al. employing the
group assignment procedure [19]. The GA approach
was also implemented by Delice et al. [20], Kucukkoc
and Zhang [15], and Taha et al. [21] to optimize 2S-
ALB. Meanwhile, Baykasoglu and Dereli adopted Ant
Colony Optimization (ACO) to optimize the 2S-ALB
[22]. They successfully applied the ACO algorithm for
a domestic product, inuencing other researchers to
deal with other sectors apart from the large-sized auto-
motive products. In addition, many other researchers
have implemented the ACO because of its favorable
performance, especially in dealing with combinatorial
problems [15,23,24]. From earlier reviews, GA and
ACO algorithms have successfully dominated other
optimization methods in terms of performance and fre-
quencies that make these algorithms more popular [13].
Besides, di�erent algorithms have been implemented
through several reported studies. For instance, Hu
et al. [25] (2008) reported the implementation of the
enumerative algorithm combined with the Ho�mann
heuristic method.

In the meantime, Particle Swarm Optimization
(PSO) algorithm was frequently implemented for 2S-
ALB. The PSO assisted with Taguchi was implemented
for 2S-ALB with multi-skilled worker assignment [26].
Researchers implemented ACO algorithm to optimize
stochastic 2S-ALB instead of deterministic time in
the majority of 2S-ALB works [27]. Meanwhile, in
2012, Chutima and Chimklai [11] proposed a PSO



2086 Abdullah Make and Ab Rashid/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2084{2098

with Negative Knowledge (PSONK) to optimize com-
plex combination with the 2S-ALB problem. After
implementing the PSONK by Delice et al. [28], they
proposed a combined selection mechanism for the
assembly task. Besides, di�erent approaches were
proposed to improve the PSO performance [28{30].
Although the advantages of PSO algorithm have been
well reported, its application and improvement are
still needed. Generally, PSO is known as a fast
optimizer with a robust algorithm, which provides a
high-quality solution. However, dedicating e�ort and
focus to achieving a single best solution in PSO leads
to premature convergence or local optimum. This
phenomenon is described as a condition in which the
convergence is stopped and is considered to express
the solution as the best. This problem occurs when
the algorithm attempts to determine the path of
searching for a direction while still following the best
earlier solution. Few parameter settings may cause a
limitation in providing the best solution given that the
PSO algorithm only requires a simple speci�cation as
a setting before generating a solution.

Despite many studies available on 2S-ALB, the
majority of these works assumed that the assembly
workstation had a similar capability to conduct the
assembly process. In a real situation, there are various
constraints that need to be considered during the
assembly line design. For example, the workforce
and machines have di�erent skills and abilities in
completing the assigned task. Proper utilization of
resources depending on their skills and precedence has
integrated the assembly line to be fully optimized.
Besides, with proper use of the machine, one can solve
the issue of inadequate space for the assembly line in
allocating the required machines to the workstation [6].

In order to overcome the limitation, this paper
considers the resources required to conduct a speci�c
assembly task. By considering the assembly resource
constraints, a number of resources can be optimized.
For optimization purpose, the PSO is modi�ed to
reduce the dependence of the algorithm on a single
best solution. The proposed modi�cation is expected to
improve the exploration ability of the algorithm. Sec-
tion 2 of this paper presents the 2S-ALB with resource
constraints. Section 3 presents the proposed Modi�ed
Particle Swarm Optimization (MPSO) algorithm. The
computational experiment is set up and the results are
discussed in Section 4. Finally, Section 5 summarizes
and concludes the research work.

2. 2S-ALB with resource constraints

The 2S-ALB is a modi�ed structure that is essentially
formed from the one-sided ALB problem. The main
objective of this problem is to enhance the production
rate and increase the line e�ciency. Flexibility to

produce a large number of large-sized products in a
two-sided assembly line con�guration practically pro-
vides many bene�cial advantages, including the ability
to shorten the line length, save spaces on the lines,
increase the line e�ciency by reducing the number
of workstations, and reduce the material handling
cost of tools and �xture. Normally, on a two-sided
assembly line, a pair of lines placed opposite to each
other is represented. Figure 1 illustrates the two-sided
assembly line possessing left and right sides of the lines
in which the workstation is clamped together between
the moving conveyors.

A comprehensive study intended for forming the
notion of balancing 2S-ALB problem was presented
[31]. Derived from a particular task relation called
`precedence relation graph' which is built using circles
and arrows, the example of precedence relation graph
with nine tasks is depicted in Figure 2. Each circle rep-
resents an assigned task, while the linked arrows rep-
resent each relation between the tasks. The associated
data of each processing time and operational direction
are speci�ed on top of each circle (assign task). Three
types of operational direction are considered: Left (L),
Right (R), and Either (E). On left and right sides,
the execution is outright and should be actualized for
the following position. Meanwhile, for either direction
side, the task could be executed on any side of the
workstation, either on the left or right side.

Then, an assembly data is presented in the
precedence matrix, as shown in Table 1. This matrix
consists of one and zero values that represent the
assembly relation information of the precedence graph.
In Table 1, the relation of each task is transformed from
the precedence relation graph, adopting `i' and `j' as
the present and the next assigned tasks, respectively.
The value of one in the precedence matrix indicates
the predecessor link of `i' task to the next task `j'.
This means that there is a precedence relationship to
be examined. Meanwhile, the zero value implies no
precedence relation between tasks i and j.

Besides the precedence matrix, a data matrix
is also required to store the assembly information

Figure 2. Precedence relation graph.



Abdullah Make and Ab Rashid/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2084{2098 2087

Table 1. Precedence matrix.

i=j 1 2 3 4 5 6 7 8 9

1 0 0 0 1 0 0 0 0 0
2 0 0 0 0 1 1 0 0 0
3 0 0 0 0 0 1 0 0 0
4 0 0 0 0 0 0 1 0 0
5 0 0 0 0 0 0 1 1 0
6 0 0 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0

Table 2. Data matrix.

Task Time Side Resources

1 2 1 1 2 0
2 3 3 3 0 0
3 2 2 2 3 0
4 3 1 1 0 0
5 1 3 3 0 0
6 1 2 2 3 0
7 2 2 1 2 3
8 2 1 2 0 0
9 1 2 1 3 0

for the 2S-ALB with resource constraints. The data
matrix (Table 2) expresses the assembly information
such as processing time, assembly side, and resources
details. For the side column, three di�erent operational
direction values indicate di�erent sides. In this column,
values `1', `2', and `3' are allocated to the left-side, ei-
ther side, and value right-side operations, respectively.
The resource details are coded in numbers in order to
express di�erent resources. It is important to note that
the number of resources for one assembly task is not
limited to three, as shown in Table 2. In cases where
the number of resources is larger, the matrix can be
expanded to �t the entire data.

2.1. Problem assumptions and notations
The general assumptions of the problem are as follows:

� Task times and resources used (machine, tools, and
worker) are known and deterministic;

� Tasks have preferences regarding the operational
directions (sides), i.e., left, either, or right sides;

� Every task can be done only upon the completion of
all its immediate predecessors;

� The maximum operational cycle time is �xed and
cannot be exceeded;

� Every task cannot be split between workstations and
must be assigned to exactly one workstation;

� Tasks with positive zoning must be operated on the
same workstation;

� Tasks with negative zoning could not be assigned to
the same workstation;

� Parallel tasks and parallel stations are not allowed;
� The skill level of each worker is ignored to provide

a similar working pace of assembly task;
� The working travel times are ignored and no inven-

tory (work in progress) is allowed;
� Any machine and tool breakdowns are not consid-

ered and the assembly process is constantly per-
formed.

The notations of this mathematical formulation
are summarized below:
J Number of mated workstations

j = 1; 2; :::; J
I Number of one-sided workstations

i = 1; 2; :::; I
F 1, if there is any space available on the

operating time, otherwise, 0
N Number of resources utilization

n = 1; 2; :::; N
Xms 1, if the mated workstation j is utilized

for both sides of the line, otherwise, 0
Ys 1, if the mated workstation j is utilized

for only one side of the line, otherwise,
0

mt Maximum processing time t =
1; 2; :::; T

rt Operational time of the task on the
workstation j

pv Maximum gap value in space
availability

qv Minimum gap value in space
availability;

Rs 1, if resource is utilized in workstation
j, otherwise, 0

2.2. Mathematical formulation and constraints
The mathematical model for 2S-ALB with resource
constraints is presented below. In this problem, four
optimization objectives are considered. The �rst
optimization objective as in Eq. (1) is to minimize
the mated workstation, f1. The second optimization
objective in Eq. (2) is to minimize the number of
workstations, f2. A mated workstation consists of a
pair of left and right workstations on the assembly line.
Meanwhile, the number of workstations calculates the
total individual workstations. The third optimization
objective is to minimize idle time, f3, as presented in
Eq. (3). Finally, the fourth optimization objective to
minimize the number of resources, f4, is presented in



2088 Abdullah Make and Ab Rashid/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2084{2098

Eq. (4). By using the number of resources as one of
the optimization objectives, the number of resources
can be minimized. This can be achieved by assigning
the assembly task that uses a similar resource on one
workstation.

f1 =
JX
j=1

Xms; (1)

f2 =
JX
j=1

2JXms +
IX
i=1

Ys; (2)

f3 =
TX
t=1

(mt � rt) +
TX
t=1

F (pv � qv); (3)

f4 =
NX
n=1

Rs; (4)

X
K

k (xik1 + xik2)�X
K

k (xjk1 + xjk2) = 0

(i; j) 2 ZPij ; (5)X
K

k (xik1 + xik2)�X
K

k (xjk1 + xjk2) 6= 0

(i; j) 2 ZNij ; (6)

nX
i=1

tixijk + sjk � CT; (7)

sjk =
UX
u=1

xujk
�
tsu+1 � tfu�+

�
CT � tfu�

u 2 Qjk; (8)X
k2f1;3;5;:::;m�1g

xjk = 1 8j 2 L; (9)

X
k2f2;4;6;:::;mg

xjk = 1 8j 2 R; (10)

X
k=1

xjk = 1 8j 2 E: (11)

Besides the optimization objectives in Eqs. (1) to (4),
several constraints are also considered to ensure the
feasibility of the generated solution. Constraint (5)
enables di�erent tasks to be assigned to the same work-
station. Meanwhile, Constraint (6) limits the assigned
task on the same workstation as di�erent prescribed
equipment. Constraints (7) and (8) are related to
controls and ensure the maximum operational cycle
time not be exceeded. Constraints (9), (10), and

(11) involve each assigned task assigned to only one
workstation, which is either left or right.

In this work, the weighted sum approach is used to
deal with the multi-objective problem. Therefore, the
optimization objectives considered in this work need to
be normalized because they have di�erent ranges. For
this purpose, fi is normalized to the range of [0, 1] as
follows:bf1 =

fi � fimin

fimax � fimin

: (12)

The minimum and maximum optimization objectives
are de�ned as follows:

f1min = 0; (13)

f1max = f2min ; (14)

f2min =
Pn
i=1 ti
ctmax

; (15)

f2max =
Pn
i=1 ti

max (ti)
; (16)

f3min = 0: (17)

The �tness function for this problem is presented as
follows:

f3max = f2max � ctmax �
nX
i=1

ti; (18)

f4min = rtype � 1; (19)

f4max =
X

r; (20)

f = w1 bf1 + w2 bf2 + w3 bf3 + w4 bf4: (21)

w1, w2, w3, and w4 were set to 0.25.

3. Modi�ed Particle Swarm Optimisation
(PSO)

PSO is a meta-heuristic searching method that is
inspired by the swarming behavior of ocking birds.
This mechanism is particularly based on the migrating
birds' population and their ying directions. Every
single migrating bird is considered a particle, which
usually adjusts its searching or ying direction ac-
cording to previous ying experience. Each particle
represents a potential solution with a certain position
(current solution), velocity (magnitude and direction
towards the optimal solution), and �tness value (per-
formance measure of the speci�c problem). Compared
to other evolutionary approaches including ACO and



Abdullah Make and Ab Rashid/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2084{2098 2089

GA methods, PSO is respectively known to have faster
convergence towards the optimal solution [32].

The PSO algorithm begins with the initialization
procedure, where each particle represents the popu-
lation in a D-dimensional vector as the possible con-
structed solution, Xi = (xi1; xi2; :::; xiD), and velocity,
Vi = (vi1; vi2; :::; viD). Then, each solution is evaluated
in terms of the objective function. Since the PSO is
coded using a real number, a topological sort procedure
is applied to match with the combinatorial problem in
2S-ALB. For example, in Figure 2, let X1 = (4.81,
7.90, 2.12, 6.91, 6.63, 4.09, 0.27, 3.54, 3.95). The
topological sort begins with identifying the candidate
task without precedence. In Figure 2, tasks 1, 2,
and 3 are the candidate tasks. In this situation, x11,
x12, and x13 are compared to determine the selected
task. Since x12 is the highest, task 2 is selected and
stored in a feasible solution, F1 = [2]. The selected
task is then removed from the precedence graph. This
approach is repeated until all the tasks from the graph
are selected. For this example, the decoded feasible
solution is F1=[251483697].

Next, the particle best solution (Pbest) and global
best (Gbest) solution are updated. Pbest refers to the
current best solution for a particular particle, while the
Gbest is the overall best solution. The Pbest and Gbest
solutions are used to update the velocity and position
of the solution. The following formula is used to update
velocity (Eq. (22)) and position (Eq. (23)):

V t+1
i =wV ti + c1r1

�
Pbestti �Xt

i
�

+ c2r2
�
Gbestt �Xt

i
�
; (22)

Xt+1
i = Xt

i + V t+1
i : (23)

In Eq. (22), t denotes the iteration number, while w is
the inertia weight for regulating the previous e�ect of
historical velocities. On the other hand, c1 and c2 are
the acceleration coe�cients, while r1 and r2 are random
numbers between [0, 1]. The Pbest, Gbest, and particle
position are updated until the speci�c iteration number
is reached.

Previously, many studies have proposed di�erent
approaches to reducing premature convergence in PSO.
Premature convergence in soft computing occurs be-
cause of the lack of diversity in the solution during the
iteration process. In PSO, this phenomenon is directly
related to velocity and position-updating procedures.
The solution position is inuenced by Pbest and Gbest
with some randomness by r1 and r2. The Pbest,
however, only a�ects a speci�c particle, compared with
Gbest, which a�ects all the particles to move towards
it. In case where Gbest is not updated (no better
solution found) in a few consecutive iterations, there
is a possibility for the majority of the particles to

reach the Gbest. This situation reduces the solution
diversity.

To overcome this problem, this work proposed
considering the top three best solutions instead of only
the single solution in Gbest. For this purpose, the
single solution in Gbest is replaced with the average
of the three best solutions.

Gbestt =
�
gt1 + gt2 + gt3

�
=3: (24)

In Eq. (24), gt1, gt2, and gt3 represent the solution par-
ticles in the �rst, second, and third ranks, respectively,
for the tth iteration. In the modi�ed PSO, the Gbest is
replaced with the new Gbest in Eq. (24). The reason to
consider the top three solutions for Gbest is to improve
the solution diversity. In the proposed mechanism,
the particle position follows the average position from
the three best solutions. Furthermore, the possibility
that all the three solutions remain out updated is lower
than that for the single Gbest solution in the original
PSO. This mechanism makes the search direction more
diverse and reduces the chance of getting trapped in
local optima.

To prove this concept, a simple test using Ras-
trigin function is conducted. For this function, the
optimum point is (0, 0). In this test, only six particles
are used. The �rst particle is set as (0, 0), while
the remaining �ve particles are randomly generated
using the same pseudorandom number generator for
both PSO and MPSO. The purpose of setting the �rst
particle as the optimum point is to observe the particle
movement over the iteration. For this purpose, the
iteration is set only to 10. The particle positions for
the �rst, �fth, and tenth iterations are captured. All
other parameters for PSO and MPSO are the same.

Figure 3(a) and (b) present the particle movement
for PSO and MPSO. In Figure 3(a), all particles move
directly towards the Gbest (i.e., point (0, 0)) during
the �fth iteration. At iteration 10, the particles only
search for the solution around the Gbest within a
limited range. Meanwhile, in MPSO, the particles are
capable of maintaining diversity at the �fth and tenth
iterations (Figure 3(b)). Although the searching range
over the iteration becomes smaller, the particles in
MPSO do not directly move towards the best solution.
Therefore, it is expected that the MPSO will have a
better exploration ability. The MPSO procedure is
presented in Figure 4.

3.1. Coe�cient tuning
MPSO algorithm consists of three coe�cients that
determine the algorithm performance. They are inertia
(w), cognitive (c1), and social (c2) coe�cients which are
found in Eq. (22). The inertia coe�cient determines
how much the current velocity a�ects the position.
Meanwhile, the cognitive and social coe�cients con-
trol the exploration and exploitation of the candidate



2090 Abdullah Make and Ab Rashid/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2084{2098

Figure 3. Particle movement for (a) PSO and (b) MPSO.

Figure 4. Procedure of modi�ed PSO

Table 3. Coe�cient level for Taguchi design.

Coe�cient Low Medium High

w 0.8 1 1.2
c1 1 1.4 1.8
c2 1 1.4 1.8

solution in a search space, respectively. In order to
identify the best coe�cient value for MPSO to optimize
2S-ALB with resource constraint, an experiment using
Taguchi design was conducted. For this experiment,
the coe�cients were set to three levels, as in Table 3.
For this purpose, a Taguchi design with L9 orthogonal
array was used.

To assess the coe�cient performance, three sam-
ple problems were chosen among di�erent problem
size categories [18,33]. The selected problems were

optimized using MPSO with di�erent coe�cient values.
For each experiment setting, 20 repetitions were made
and the �tness mean was calculated as output param-
eter. Based on the experiments conducted, the mean
�tness for each experiment is presented in Table 4.

Taguchi analysis using the signal-to-noise ratio of
\smaller is better" was used to analyze the output.
Figure 5 shows the main e�ect plot for the signal-to-
noise ratio. Based on the main e�ect plot, coe�cient
c1 gives the highest e�ect, followed by c2 and w.
According to the �gure, the MPSO performance was
better when using lower inertia weight, w. Lower
w allows the solution to be more diverse and open
to changes. Meanwhile, for c1 and c2, the medium
level was preferable in both coe�cients. This indicates
that the exploration and exploitation levels must be
balanced to achieve a good-quality solution. Based on



Abdullah Make and Ab Rashid/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2084{2098 2091

Table 4. L9 Taguchi orthogonal array.

Experiment no. w c1 c2 Mean �tness

1 0.8 1 1 0.3729

2 0.8 1.4 1.4 0.2853

3 0.8 1.8 1.8 0.3351

4 1 1 1.4 0.3123

5 1 1.4 1.8 0.3249

6 1 1.8 1 0.4124

7 1.2 1 1.8 0.4692

8 1.2 1.4 1 0.3243

9 1.2 1.8 1.4 0.3255

Figure 5. Main e�ect plot for signal-to-noise ratios.

the main e�ect plots, the optimum coe�cients levels
for MPSO are w = 0:8, c1 = 1:4, and c2 = 1:4.

4. Results and discussion

4.1. Computational experiment
A computational experiment is conducted to mea-
sure the performance of the Modi�ed PSO (MPSO)
to optimize 2S-ALB with resource constraints. For
this purpose, 12 benchmark test problems are se-
lected according to small, medium, and large sizes.
The test problems are adopted from di�erent sources
[3,5,7,18,19,33,34]. Based on a range of problem sizes
used in the literature, the small-sized problem is an
assembly problem with less than 20 tasks. Meanwhile,
the large-sized problem is a problem with more than
80 tasks. The assembly problem with a range of 20
to 80 tasks is considered to be medium in size. The
detail of the test problems is presented in Table 5.
Due to the lack of large-sized test problems, problems
T83 and T111 are adopted from a simple ALB problem
and the assembly directions (i.e., left, right, or either)
are randomly generated. These benchmark problems,
however, did not consider the resources required to
conduct an assembly task. Therefore, the assembly

Table 5. Test problem category and sources.

Size Problem Number
of tasks

Data
source

Small
T4 4 [7]

T9 9 [18]

T12 12 [18]

T16 16 [19]

Medium
T24 24 [18]

T47 47 [34]

T65 65 [19]

T70 70 [3]

Large
T83 83 [33]

T111 111 [33]

T148 148 [5]

T205 205 [19]

resources are also randomly generated for each of the
assembly tasks.

MPSO is then compared with GA, ACO, and
PSO in terms of performance. These algorithms are
chosen because of their popularity in optimizing 2S-
ALB problem. According to the earlier survey on
the ALB problem, 70% of the problem was optimized
using GA, ACO, and PSO algorithms [35]. A recent
survey on 2S-ALB reveals that the GA and ACO
were popular algorithms to optimize 2S-ALB according
to the frequencies [13]. For computational purpose,
the population size for all algorithms is 30 and the
maximum iteration is 500. The optimization run is
repeated for 20 times with di�erent pseudorandom
numbers for each of the cases.

The optimization results for the 2S-ALB with
precedence constraints are presented in Table 6 to
Table 8 based on the problem size. For the result of the
small-sized problem in Table 6, all the algorithms are
able to generate the same �tness and objective function
value for T4 and T9 problems. On the other hand, for
the T12 problem, MPSO exhibits the best �tness of all
other algorithms. For this problem, MPSO is able to
search for a solution with a smaller number of resources
while maintaining other optimization objectives. In the
T16 problem, all the algorithms are able to converge to
the best solution, but ACO is of better performance in
terms of consistency. For this problem, ACO is able to
reach an optimum solution for every optimization run.

The results of the medium-sized problem in Ta-
ble 7 indicate that the MPSO and ACO lead in
terms of algorithm performance. The MPSO reaches
minimum �tness and minimum average �tness in three



2092 Abdullah Make and Ab Rashid/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2084{2098

Table 6. Small-sized problem comparison.

Test problem Algorithm Minimum
�tness

Maximum
�tness

Average
�tness

Standard
deviation

f1 f2 f3 f4

T4

ACO 0.5505 0.5505 0.5505 0.0000 1 2 7 4
GA 0.5505 0.5505 0.5505 0.0000 1 2 7 4
PSO 0.5505 0.5505 0.5505 0.0000 1 2 7 4

MPSO 0.5505 0.5505 0.5505 0.0000 1 2 7 4

T9

ACO 0.3094 0.3094 0.3094 0.0000 2 4 3 8
GA 0.3094 0.3094 0.3094 0.0000 2 4 3 8
PSO 0.3094 0.3094 0.3094 0.0000 2 4 3 8

MPSO 0.3094 0.3094 0.3094 0.0000 2 4 3 8

T12

ACO 0.2531 0.2531 0.2531 0.0000 2 4 3 11
GA 0.2531 0.2531 0.2531 0.0000 2 4 3 11
PSO 0.2531 0.4380 0.3051 0.0733 2 4 3 11

MPSO 0.2455 0.2531 0.2470 0.0031 2 4 3 10

T16

ACO 0.2151 0.2151 0.2151 0.0000 2 4 6 12
GA 0.2151 0.4710 0.2506 0.0873 2 4 6 12
PSO 0.2151 0.5076 0.4099 0.1065 2 4 6 12

MPSO 0.2151 0.4068 0.2343 0.0590 2 4 6 12

Table 7. Medium-sized problem comparison.

Test problem Algorithm Minimum
�tness

Maximum
�tness

Average
�tness

Standard
deviation

f1 f2 f3 f4

T24

ACO 0.1899 0.1930 0.1920 0.0011 2 4 4 26

GA 0.1899 0.1970 0.1927 0.0025 2 4 4 26

PSO 0.1899 0.2144 0.2023 0.0096 2 4 4 26

MPSO 0.1899 0.2073 0.1925 0.0053 2 4 4 26

T47

ACO 0.2697 0.3186 0.2989 0.0216 5 9 11702 88

GA 0.3031 0.3270 0.3164 0.0079 5 10 13415 90

PSO 0.2973 0.3231 0.3059 0.0077 5 10 10945 95

MPSO 0.1731 0.1776 0.1753 0.0020 4 8 2237 73

T65

ACO 0.2586 0.2718 0.2674 0.0041 6 12 565 118

GA 0.2612 0.3857 0.3332 0.0566 6 12 649 113

PSO 0.2524 0.3822 0.2725 0.0388 6 12 469 113

MPSO 0.2491 0.2603 0.2569 0.0052 6 12 385 116

T70

ACO 0.4230 0.4432 0.4339 0.0052 6 10 273 97

GA 0.5492 0.6939 0.6205 0.0577 6 11 646 106

PSO 0.4277 0.4556 0.4379 0.0096 6 10 303 99

MPSO 0.4260 0.4393 0.4316 0.0048 6 10 293 98



Abdullah Make and Ab Rashid/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2084{2098 2093

Table 8. Large-sized problem comparison.

Test problem Algorithm Minimum
�tness

Maximum
�tness

Average
�tness

Standard
deviation

f1 f2 f3 f4

T83

ACO 0.4420 0.4497 0.4472 0.0032 6 11 39716 109
GA 0.4886 0.4917 0.4906 0.0014 6 12 47593 118
PSO 0.4329 0.4951 0.4598 0.0309 6 11 37109 107

MPSO 0.4324 0.4524 0.4400 0.0079 6 11 36944 107

T111

ACO 0.3931 0.4206 0.4115 0.0109 7 13 67520 144
GA 0.3212 0.4126 0.3737 0.0474 6 12 50709 136
PSO 0.3177 0.4249 0.3952 0.0439 6 12 48681 135

MPSO 0.2989 0.3276 0.3200 0.0120 6 12 37365 135

T148

ACO 0.2648 0.3682 0.3070 0.0553 5 10 565 119
GA 0.2609 0.4228 0.3580 0.0865 5 10 515 118
PSO 0.3623 0.4134 0.4003 0.0214 6 11 938 123

MPSO 0.2533 0.3608 0.3092 0.0460 5 10 405 122

T205

ACO 0.2343 0.2399 0.2362 0.0023 5 10 4375 127
GA 0.2363 0.3532 0.3236 0.0492 5 10 4575 126
PSO 0.2343 0.3514 0.2990 0.0594 5 10 4375 127

MPSO 0.2308 0.2366 0.2348 0.0023 5 10 4055 126

Table 9. Frequency of the rank for di�erent algorithms.

Algorithm Rank 1 Rank 2 Rank 3 Rank 4 Average
rank

M
in

im
um

�t
ne

ss

ACO 5 3 3 1 2.00
GA 4 2 1 5 2.58
PSO 4 5 2 1 2.00

MPSO 11 1 0 0 1.08

A
ve

ra
ge

�t
ne

ss

ACO 5 6 0 1 1.75
GA 2 2 3 5 2.92
PSO 2 0 6 4 3.00

MPSO 9 3 0 0 1.25

cases. In the meantime, the ACO found minimum
�tness in two cases while achieving minimum average
in only one case. In T24, all the algorithms are able
to search for minimum �tness; however, the ACO
has better consistency. In T47 and T65 problems,
the MPSO dominates the best minimum and average
�tness among the algorithms. Meanwhile in T70, the
ACO is able to search for better minimum �tness, while
the proposed MPSO has better average �tness and
standard deviation.

Table 8 presents the optimization result for the
large-sized problem. For this class of the problem,
MPSO is consistently able to search for better mini-
mum �tness than the compared algorithms. In terms
of average �tness, the MPSO has a better average in

three cases, while the ACO has a better average rate in
the remaining one case. The MPSO consistently �nds
minimum mated workstation, number of workstations,
and idle time in all cases of the large-sized problem.

Next, a standard competition ranking method
was used to analyze the results. In this approach, the
algorithm with the best result was assigned Rank 1,
while the worst one was ranked fourth. In case where
the performance is tied, a similar rank is given and
the next position is left empty. Table 9 presents the
frequency of the rank for every algorithm in terms of
minimum and average �tness.

Based on Table 9, the proposed MPSO is only
ranked �rst and second for both minimum and average
�tness, respectively. For minimum �tness, the MPSO



2094 Abdullah Make and Ab Rashid/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2084{2098

is able to search for the best solution in 91.6% of
the problems. At the same time, the MPSO obtains
better average �tness in 75% of the problems, while the
remaining 25% is in the second place. The MPSO is
characterized by better average rank for minimum and
average �tness. In both categories, the MPSO scores
1.08 and 1.25 in average rank, respectively.

The nearest challenger to MPSO is the ACO
algorithm. The ACO obtains the average rank 2.00
for minimum �tness while gets 1.75 for average �tness.
Meanwhile, the PSO algorithm has the same average
rank as ACO for minimum �tness, yet in the last
position for average �tness. It is exhibited that the
PSO converges to di�erent angles in the search space
for di�erent optimization runs. For this reason, the
PSO comes out with a di�erent solution at di�erent
runs, which makes the �tness too diverse. For di�erent
angles, this behavior exhibits exclusive advantages
because the algorithm explores di�erent sides of the
search space. However, it requires a high number of
repetitions for the optimization run.

Figures 6 and 7 present the average rank by
problem size for minimum and average �tness. In
general, these �gures show that for ACO, GA, and
PSO, the performance of the algorithm becomes worse
when the problem size increases. This trend is related

Figure 6. Minimum �tness by problem size.

Figure 7. Average �tness by problem size.

to the size of the search space. When the problem size
increases, the number of possible solutions excessively
increases because of permutation combination. This
makes the searching process harder, thus requiring an
e�cient algorithm. In contrast, the MPSO is able
to maintain performance throughout di�erent problem
sizes.

Figures 8, 9, and 10 present the mean convergence
for small-, medium-, and large-sized problems, respec-
tively. For the small-sized problem, the MMFO conver-
gence is almost stagnant at iteration 180. Meanwhile,
in the medium-sized problem, the MMFO convergence
is roughly stable at iteration 300. Even then, a few
small improvements remain to take place until the end.
For the large-sized problem, the convergence can still
be observed to occur until the end of the run.

In the small-sized problem where the search space
is relatively small, the MMFO algorithm manages to
converge faster. This can be observed from the steep
slope for the �rst 75 iterations in Figure 8. On the other
hand, the early MMFO convergence in the medium-
sized problem is intermixed between steep and short
at slopes. Meanwhile, the longer at slope can be

Figure 8. Convergence plot of small size problem.

Figure 9. Convergence plot of medium size problem.



Abdullah Make and Ab Rashid/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2084{2098 2095

Figure 10. Convergence plot of large size problem.

observed in the case of the large-sized problem with
periodical steep slopes. The patterns of convergence in
small-, medium-, and large-sized problems are a�ected
by the size of search space. When the problem size
increases, the number of possible solutions increases.
Furthermore, in the small-sized problems, tiny changes
in the assembly sequence allocate a greater e�ect to the
�tness value than the larger-sized problems because of
the ratio between the changes and problem size.

4.2. Case study validation
A case study was conducted to validate the proposed
model and algorithm to optimize 2S-ALB with re-
source constraints. The case study was conducted at
an automotive assembler and focused on underbody
assembly, which consisted of 34 assembly tasks. The
assembly process on the studied line was conducted
manually and it mainly involved the spot welding
process. The existing assembly data are presented in
Table 10. Currently, the production line is targeted to
assemble 25 units of rear axle per day. Considering nine
working hours per day, the desired cycle time should
not exceed 22 minutes.

This problem has been modeled using the pro-
posed 2S-ALB model and then, optimized using the
MPSO algorithm. Since the company is expected to
produce 25 units per day, the desired cycle time of
22 minutes is used for the optimization. Table 11
shows assignment of assembly tasks for existing and
optimized layouts. Based on the existing layout, the
actual cycle time is 25 minutes obtained at stations
2R and 5R. Meanwhile, for the optimized layout, the
actual achieved cycle time is 21 minutes, which is found
at stations 2L, 2R, and 3L. The optimized layout still
utilizes 5-mated workstations and 10 workstations as
in the existing layout, but it comes out with better
cycle time, idle time, and total number of the resources
used. According to the optimized layout, resource
numbers and total idle time experienced 14.7% and
75% reduction rates, respectively.

Table 10. Assembly data for the underbody assembly.

Task Precedence Time
(minute)

Side Resource

1 { 9 Left M1

2 1 3 Left M2

3 { 5 Either M1

4 2 7 Left M3

5 { 8 Either M1

6 { 6 Right M2

7 5 3 Either M1, M3

8 4 12 Left M1, M2

9 3 4 Either M1, M4

10 8 2 Left M3

11 7 7 Either M1

12 6 2 Right M2

13 12 3 Right M4

14 11 12 Either M3

15 10 16 Left M3

16 9 5 Either M4

17 14 2 Either M3

18 17 5 Right M3, M4

19 13 2 Right M4, M5

20 15, 16 2 Left M5

21 20 2 Left M6

22 20 3 Either M7

23 21 7 Left M5, M7

24 22 4 Either M7, M8

25 18, 19 9 Either M5

26 25 4 Right M6, M10

27 23 6 Left M7

28 24 4 Either M8

29 27, 28 6 Left M7

30 26 2 Either M7, M8

31 30 11 Either M8, M9

32 26 4 Right M6, M7

33 32 5 Right M9, M10

34 31 3 Either M9, M11

Figure 11 shows the sensitivity of the obtained
solution from MPSO optimization. In this test, the
cycle time for 2S-ALB was simulated 5000 times
through randomly varying assembly tasks from 5 to
10% using Gaussian distribution. The nonconformance
percentage represents the cases that simulated cycle
times exceeding the desired cycle time (i.e. 22 minutes).
Based on the �gure, to achieve nonconformance of less



2096 Abdullah Make and Ab Rashid/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2084{2098

Table 11. Assembly task assignment for existing and optimized layouts.

Layout Station Task Time
(minute)

Resource Cycle time
(minutes)

Total idle
(minutes)

E
xi

st
in

g
la

yo
ut

1L 1, 2, 3, 4 24 M1, M2, M3

25 64

1R 5, 6, 7 17 M1, M2, M3

2L 8, 9, 10 18 M1, M2, M3, M4

2R 11, 12, 13, 14 25 M1, M2, M3, M4

3L 15, 16 21 M3, M4

3R 17, 18, 19 9 M3, M4, M5

4L 20, 21, 22, 23, 24 18 M5, M6, M7, M8

4R 25, 26 13 M5, M6, M10

5L 27, 28, 29 16 M7, M8

5R 30, 31, 32, 33, 34 25 M6, M7, M8, M9, M10, M11

O
pt

im
iz

ed
la

yo
ut

1L 1, 2, 5 20 M1, M2

21 16

1R 3, 6, 7, 12 20 M1, M2, M3

2L 4, 8, 10 21 M1, M2, M3

2R 11, 14, 17 21 M1, M3

3L 15, 20 21 M3, M5

3R 9, 13, 16, 18, 19 19 M1, M3, M4, M5

4L 21, 22, 24, 28, 30 17 M6, M7, M8

4R 25, 26, 32 17 M5, M6, M7, M10

5L 23, 27, 29 19 M5, M7

5R 31, 33, 34 19 M8, M9, M10, M11

Figure 11. Sensitivity of optimised layout.

than 10%, the maximum assembly time variation is
8.34%.

The case study results indicate that the proposed
2S-ALB with the resource-constrained model can be
applied to real-life problems. The result also proves
that the proposed MPSO is capable of suggesting a
better production layout with a shorter cycle time, idle
time, and also total number of resources. In addition,
the solution provided by MPSO enjoys good exibility
in terms of assembly time variation.

5. Conclusion and future work

This paper presented a Two-Sided Assembly Line
Balancing (2S-ALB) with resource constraints. In
contrast to the majority of existing works that assume
all workstations have similar capabilities, this research
considered the assembly resources including tools,
machines, and workers to be minimized during the
line balancing. For optimization purposes, Modi�ed
Particle Swarm Optimization (MPSO) was introduced
by considering the top three solutions as the global
best (Gbest) instead of one best solution in PSO
algorithm. This change was made to maintain the
solution diversity over the iterations.

A computational experiment was conducted by
using 12 benchmark test problems in small, medium,
and large sizes. The optimization results of MPSO
were compared with those from popular algorithms
for 2S-ALB, including Genetic Algorithm (GA), Ant
Colony Optimization (ACO) and PSO algorithms. The
computational experiment results indicate that the
proposed MPSO has the capacity to search for the
best solution in 11 out of 12 test problems. Unlike
the compared algorithms, the MPSO is capable of
maintaining performance even when the problem size



Abdullah Make and Ab Rashid/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2084{2098 2097

increases. Besides, the results also indicate that the
proposed model for 2S-ALB with resource constraints
can reduce the number of resources in an assembly line.
It is essential that the assembly line be made in an
e�cient way. This result was proven through a case
study where the optimized solution by MPSO could
reduce the number of resources up to 14.7% compared
to the existing layout. At the same time, the optimized
case study problem also managed to reduce cycle time
and idle time.

Modi�cation to the Gbest has made the MPSO
be more dynamic in terms of search direction. This
change has two-fold advantages. The �rst advantage is
that the proposed MPSO is of better exploration, which
increases the chance to obtain an optimum solution.
Meanwhile, the second advantage is that the possibility
for the algorithm to get trapped in local optima could
be reduced. This study, however, has a drawback in
terms of multi-objective handling. Since this study ap-
plied the weighted sum approach to the multi-objective
problem, the result highly depended on the weight used
for each optimization objective. Currently, a similar
weight was assigned to all optimization objectives. A
future study should determine a suitable weight for
di�erent optimization objectives. Finally, the pareto
optimality concept for multi-objective handling is sug-
gested to have a better understanding of the optimum
solution.

Acknowledgement

The authors would like to acknowledge the Ministry of
Higher Education, Malaysia and Universiti Malaysia,
Pahang for funding this research under FRGS grant
RDU1901108 (FRGS/1/2019/TK03/UMP/02/3).

References

1. Alavidoost, M.H., Tarimoradi, M., and Zarandi,
M.H.F. \Fuzzy adaptive genetic algorithm for multi-
objective assembly line balancing problems", Applied
Soft Computing, 34, pp. 655{677 (2015).

2. Saif, U., Guan, Z., Wang, B., et al. \Pareto lexico-
graphic �-robust approach and its application in ro-
bust multi objective assembly line balancing problem",
Frontiers of Mechanical Engineering, 9(3), pp. 257{264
(2014).

3. Tuncel, G. and Aydin, D. \Two-sided assembly line
balancing using teaching-learning based optimization
algorithm", Computers and Industrial Engineering,
74(1), pp. 291{299 (2014).

4. Saif, U., Guan, Z., Wang, B., et al. \A survey on
assembly lines and its types", Frontiers of Mechanical
Engineering, 9(2), pp. 95{105 (2014).

5. Bartholdi, J.J. \Balancing two-sided assembly lines:
A case study", International Journal of Production
Research, 31(10), pp. 2447{2461 (1993).

6. Purnomo, H.D., Wee, H., Rau, H., et al. \Two-sided
assembly lines balancing with assignment restrictions",
Mathematical and Computer Modelling, 57(1{2), pp.
189{199 (2013).

7. Chutima, P. and Naruemitwong, W. \A Pareto
biogeography-based optimisation for multi-objective
two-sided assembly line sequencing problems with a
learning e�ect", Computers and Industrial Engineer-
ing, 69(1), pp. 89{104 (2014).

8. Khorasanian, D., Hejazi, S.R., and Moslehi, G. \Two-
sided assembly line balancing considering the rela-
tionships between tasks", Computers and Industrial
Engineering, 66(4), pp. 1096{1105 (2013).

9. Duan, X., Wu, B., Hu, Y., et al. \An improved arti�cial
bee colony algorithm with MaxTF heuristic rule for
two-sided assembly line balancing problem", Frontiers
of Mechanical Engineering, 14, pp. 241{253 (2019).

10. Yuan, B., Zhang, C., Shao, X., et al. \An e�ec-
tive hybrid honey bee mating optimization algorithm
for balancing mixed-model two-sided assembly lines",
Computers & Operations Research, 53, pp. 32{41
(2015).

11. Chutima, P. and Chimklai, P. \Multi-objective two-
sided mixed-model assembly line balancing using par-
ticle swarm optimisation with negative knowledge",
Computers and Industrial Engineering, 62(1), pp. 39{
55 (2012).

12. Simaria, A.S. and Vilarinho, P.M. \2-ANTBAL: An
ant colony optimisation algorithm for balancing two-
sided assembly lines", Computers & Industrial Engi-
neering, 56(2), pp. 489{506 (2009).

13. Abdullah Make, M.R., Ab Rashid, M.F.F., and Razali,
M.M. \A review of two-sided assembly line balanc-
ing problem", The International Journal of Advanced
Manufacturing Technology, 89(5{8), pp. 1743{1763
(2017).

14. Tapkan, P., �Ozbakir, L., and BaykasoØlu, A. \Bee al-
gorithms for parallel two-sided assembly line balancing
problem with walking times", Applied Soft Computing
Journal, 39, pp. 275{291 (2016).

15. Kucukkoc, I. and Zhang, D.Z. \Type-E parallel two-
sided assembly line balancing problem: Mathematical
model and ant colony optimisation based approach
with optimised parameters", Computers and Industrial
Engineering, 84, pp. 56{69 (2015).

16. Kucukkoc, I. and Zhang, D.Z. \A mathematical model
and genetic algorithm-based approach for parallel two-
sided assembly line balancing problem", Production
Planning and Control, 26(11), pp. 874{894 (2015).

17. �Ozcan, U., G�okcen, H., and Toklu, B. \Balancing par-
allel two-sided assembly lines", International Journal
of Production Research, 48(16), pp. 4767{4784 (2010).

18. Kim, Y.K., Kim, Y., and Kim, Y.J. \Two-sided as-
sembly line balancing: A genetic algorithm approach",
Production Planning & Control, 11(1), pp. 44{53
(2000).



2098 Abdullah Make and Ab Rashid/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2084{2098

19. Lee, T.O., Kim, Y., and Kim, Y.K., \Two-sided
assembly line balancing to maximize work relatedness
and slackness", Computers and Industrial Engineering,
40(3), pp. 273{292 (2001).

20. Delice, Y., K�z�lkaya Aydo�gan, E., and �Ozcan, U.
\Stochastic two-sided U-type assembly line balancing:
a genetic algorithm approach", International Journal
of Production Research, 54(11), pp. 3429{3451 (2016).

21. Taha, R.B., El-Kharbotly, A.K., Sadek, Y.M., and
A�a, N.H. \A genetic algorithm for solving two-
sided assembly line balancing problems", Ain Shams
Engineering Journal, 2(3{4), pp. 227{240 (2011).

22. Baykasoglu, A. and Dereli, T. \Two-sided assembly
line balancing using an ant-colony-based heuristic", In-
ternational Journal of Advanced Manufacturing Tech-
nology, 36(5{6), pp. 582{588 (2008).

23. Kucukkoc, I. and Zhang, D.Z. \Mixed-model parallel
two-sided assembly line balancing problem: A ex-
ible agent-based ant colony optimization approach",
Computers and Industrial Engineering, 97, pp. 58{72
(2016).

24. Zhang, Z., Hu, J., and Cheng, W. \An ant colony
algorithm for two-sided assembly line balancing prob-
lem type-II", Advances in Intelligent Systems and
Computing, 213, pp. 369{378 (2014).

25. Hu, X., Wu, E., and Jin, Y. \A station-oriented
enumerative algorithm for two-sided assembly line
balancing", European Journal of Operational Research,
186(1), pp. 435{440 (2008).

26. Fattahi, P., Samouei, P., and Zandieh, M. \Simul-
taneous multi-skilled worker assignment and mixed-
model two-sided assembly line balancing", Interna-
tional Journal of Engineering, 29(2), pp. 211{221
(2016).

27. Chiang, W., Urban, T.L., and Luo, C. \Balancing
stochastic two-sided assembly lines", International
Journal of Production Research, 54(20), pp. 6232{6250
(2016).

28. Delice, Y., Aydo�gan, E.K., �Ozcan, U., et al. \Bal-
ancing two-sided U-type assembly lines using modi�ed
particle swarm optimization algorithm", 4OR, 15(1),
pp. 37{66 (2017).

29. Li, Z., Janardhanan, M.N., Tang, Q., et al. \Co-
evolutionary particle swarm optimization algorithm for
two-sided robotic assembly line balancing problem",
Advances in Mechanical Engineering, 8(9), pp. 1{14
(2016).

30. Tang, Q., Li, Z., Zhang, L., et al. \A hybrid particle
swarm optimization algorithm for large-sized two-
sided assembly line balancing problem", ICIC Express
Letters, 8(7), pp. 1981{1986 (2014).

31. Make, M.R.A., Rashid, M.F.F., and Razali, M.M.
\Modelling of two-sided assembly line balancing prob-
lem with resource constraints", in IOP Conference
Series: Materials Science and Engineering, 160(1),
pp. 1{9 (2016).

32. Adnan, M.A. and Razzaque, M.A. \A comparative
study of particle swarm optimization and cuckoo
search techniques through problem-speci�c distance
function", In International Conference of Information
and Communication Technology, ICoICT 2013, pp.
88{92 (2013).

33. Scholl, A. Benchmark Data Sets by Scholl, Assembly
Line Balancing Data Dets & Research Topics (1993).
http://assembly-line-
balancing.mansci.de/salbp/benchmark-data-
sets-1993/.

34. Rubiano-Ovalle, O. and Arroyo-Almanza, A. \Solving
a two-sided assembly line balancing problem using
memetic algorithms", Ingenieria y Universidad, 13(2),
pp. 267{280 (2009).

35. Rashid, M.F.F., Hutabarat, W., and Tiwari, A. \A
review on assembly sequence planning and assem-
bly line balancing optimisation using soft comput-
ing approaches", The International Journal of Ad-
vanced Manufacturing Technology, 59(1{4), pp. 335{
349 (2012).

Biographies

Muhammad Razif Abdullah Make is a part-time
MSc graduate researcher at College of Engineering,
Universiti Malaysia, Pahang. He is currently a Mechan-
ical Engineer at a plantation company in Malaysia.

Mohd Fadzil Faisae Ab Rashid is an Associate
Professor and Researcher at the Department of Indus-
trial Engineering, College of Engineering, Universiti
Malaysia, Pahang. His research interest is in manu-
facturing system optimization. He is also a Chartered
Engineer under the Institution of Mechanical Engi-
neers.




