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Abstract. Congestion problems with processor vacations are characterized by high
intricacy and explicit transient solutions to these problems are exceptionally di�cult to
apply. These solutions are essential to studying the dynamic behavior of computing
systems over a �nite period and they are predominantly utilized within a state-of-the-
art design architecture for a real-time I/O system. Motivated by the above �nding, this
study adopts mathematical concepts, namely continued fractions and generating function,
to derive explicit expressions for transient-state probabilities. Transient-state probabilities
of the processing delay problem with a single processor, which adopts the multiple-vacation
policy to save power consumption and thermal trip error with discouragement and feedback,
are obtained in terms of modi�ed Bessel functions using the properties of the conuent
hypergeometric function. Given the inaccessibility of the processor, discouraging behaviors
like balking and reneging on job requests are likely to appear. Routing back for the service
feedback for the processed job request is also critical to maintaining Quality of Service
(QoS). Considering the performance of the I/O system, the expected value of the state of
the computing system using stationary queue-size distribution is derived.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Queues or waiting lines tend to exist at critical
points in the job request/processor journey in I/O
and computing systems. They may appear in ser-
vice systems, computer and communication systems,
manufacturing and production systems, check-in and
check-out systems, etc. Irrespective of where queue
occurs, they may perpetually �nd an opportunity to
emphatically or adversely impact the experience of
job requests and the pro�ciency of the processing
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system. Not only the bene�ts of the well-managed
queue are many, but also the negative e�ects of poor
management on the improvement of the computing
system are signi�cant. A well-managed queue can
reduce the impatient behavior (timeout) associated
with job requests, improve the overall perception of the
computing system, increase the conversion between job
requests and processors, optimize service allocation,
and encourage positive word of mouth. In contrast, a
poorly managed queue reduces satisfaction of correctly
processed job requests, diminishes job request loyalty,
decreases repeat requests, and attenuates e�ciency and
productivity.

Availability of processing facilities is one of the
critical issues of queue management in the I/O system.
The scheduling of vacation of the processing facility
is an essential feature of interest in a well-managed
computing system to make a balance among idle time,
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extra cost, unavailability, power consumption, thermal
trip error, etc. When the processing facility is o�,
the processor does not process the job requests and
enters the sleeping mode or may be busy performing
some secondary job requests. In general, the vacation
schedule commences whenever there is no job request
in the computing system for processing and it takes
repeated vacations until there is at least one job request
in the system to seek the processing facility at the end
of the random duration of the vacation.

In case of the imbalance between the job request's
waiting and processing facility, longer waiting, job
request delay, blocking, rise in discouragements, and
job request loss are experienced. Whenever the balance
between job requests and processing facility is exposed
to disruption, common reactions of job requests include
the following:

(a) Impatient behaviors (timeout) like balking: A job
request may decide that the queue is too long, thus
leaving the processing facility;

(b) Reneging: A job request may join the processing
facility, but become impatient and leave the facil-
ity without taking the intended process.

A well-managed computing system deals with such
issues strategically to prevent job request loss and
delay. These reluctant behaviors associated with job
requests can be reduced or moderated through proper
strategies like publishing the estimated waiting times,
considering virtual computing, monitoring the queues
in real time, etc.

The feedback loop for job requests about the sat-
isfaction and dissatisfaction experienced in processing
is critical. This information is an important source
for the processing facility provider to improve and
address the needs and demands of those applicants
with job requests. Through feedback collection or
inspection, a job request that has already received
a unit of processing routes back to the waiting line
and under some decision rules receives another unit
of processing. The feedback or inspection procedures
provide a computing framework for requests, jobs, or
packets that must be reworked. A broad class of
such computing systems appears in computer modeling
with round-robin models and foreground-background
models. In this paper, such a computing system is
referred to as a queue with feedback.

The design of a well-managed processing system
is perfected after much micro or macro analysis of
the experiences gained during trials of the developing
phases. The transient analysis is a prominent tool
to develop a stable computing system. A designing
framework is established from the beginning state to a
steady state. This framework involves time-dependent
tracking of the pros and cons of the system to �nally

determine proper input parameters and conditions
to ensure better system output. Transient analysis
is seldom available in the literature, even for the
simple computing model, despite its usefulness and
necessity in designing a better service system. This
gap has motivated us to suggest a simple procedure to
evaluate the transient solution to the issue of complex
computing systems. For this purpose, this study
establishes time-dependent queue-size distribution in
terms of continued fraction using the properties of the
conuent hypergeometric function.

The purpose of this study is threefold. The �rst
purpose is to study the job applicant's discouraging
behavior and feedback with respect to the computing
system as well as the processor's multiple vacations.
The second purpose is to identify the conditions for
the existence and to derive the explicit expression of
transient queue-size distribution in terms of continued
fraction and modi�ed Bessel function using properties
of the conuent hypergeometric function. This objec-
tive is the kernel of this research. The third purpose
is to compute the queue indices in terms of transient
probabilities to give system performance at a glance
for proper management and to validate the proposed
procedure for some known results for existing models
as a particular case.

The remainder of the paper is structured as
follows. In Section 2, the literature review and sur-
vey are conducted to identify the research gap. In
Section 3, the governing forward di�erential-di�erence
equations are given along with prominent assumptions
and notations for the proposed computing model. The
properties of the conuent hypergeometric function
are highlighted in Section 4. In Section 5, the tran-
sient queue-size distribution of the proposed model
is generated. The expected value for the number of
job requests in the system is derived using queue-size
distribution in Section 6. In Section 7, a number of par-
ticular cases are presented to validate our �ndings. In
Section 8, the concluding remarks are summarized and
the future directions and limitation are highlighted.

2. Literature review

Today, we live in the world of Internet of Things
(IoT) technology or a fast-paced society. However,
one remaining issue is `waiting', which is a recurrent
phenomenon at the multiplex, mall, bank or even
communication, computer computing, or in di�erent
ways of travel. Well-managed computing systems can
play a major role in the processing environment. Most
packets, jobs, or requests are familiar with the pros
and cons of each computing system. Di�erent state-of-
the-art designs of computing systems can greatly a�ect
the experience of data, requests, jobs, or consumers
and, also, cause the problem of queue or waiting like
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reneging and balking. Many research pieces have
contributed to the development of the design of a better
computing system with di�erent behavior types of job
applicants and processor-oriented mechanism since the
commencement of computing theory.

Speci�cally, many researchers have paid consider-
able attention to vacation queue and impatient behav-
ior associated with job requests. An exhaustive survey
of computing models with vacations was provided by
Doshi [1], who presented an overview of some general
decomposition results and the associated methodology.
Over the last decade, many relevant new results have
been obtained for the single and multiple processor
queues with vacations (c.f., [2{9]). Thomasian [10]
obtained the mean delay cycle for the M=G=1 queueing
system using the Vacationing Server Model (VSM) in
which the delay cycle was initiated with arrival during
a vacation and ended with an empty queue and then,
a vacation restarted. Recently, Banik and Ghosh [11]
analyzed the �nite-bu�er single processor computing
system with vacation(s), assuming that the arrivals
followed a Batch Markovian Arrival Process (BMAP)
and went through processing according to a non-
exhaustive gated-limited service discipline. Shekhar et
al. [12] used a metaheuristic scheme to devise optimal
strategies for emergency vacationing queueing model.

The impatient (timeout) behaviors of the cus-
tomer(s), like balking and reneging, were �rst investi-
gated by Haight [13,14]. After that, many researchers
have used these revenue cut-throat job request be-
haviors in several real-time computing scenarios as
mobile networking, computer communication, assem-
bly system, machine repair problem, etc. (c.f., [15{
17]). Selvaraju and Goswami [18] derived a closed
form of expressions for the transient-state probability
distribution for the queueing model with the impatient
behavior of the customer(s) and two di�erent vacation
policies (single and multiple). Lately, researchers have
determined equilibrium conditions for di�erent types
of queueing circumstances as well as impatience of
customers (c.f., [19{23]). Shekhar et al. [24] used a
matrix-geometric technique to compute the queue-size
distribution for queueing model with Bernoulli sched-
uled vacation and retention of the reneging customer.

In the past, many academicians or researchers
expressed interests in presenting di�erent and easy-
to-use approaches to determine queue-size distribution
for di�erent computing models with realistic design
parameters using many di�erent mathematical con-
cepts. Time-dependent probabilities can be expressed
in terms of Bessel functions (c.f., [25]). Varshney et
al. [26] employed the di�usion approximation method
to obtain transient probability distribution for the
multi-server queueing model with balking. Al-Seedy et
al. [27] obtained the closed-form queue size distribution
using a generating function and some Bessel func-

tion properties for the multi-server queueing model.
Ammar et al. [28] discussed the single-server queue
with a �nite waiting space, discouraged arrivals and
reneging, and obtained time-dependent probabilities
in terms of the eigenvalues of a symmetric tridiag-
onal matrix. Ammar [29] provided an elegant ex-
plicit solution for the queue with two heterogeneous
servers associated with impatient behavior. Using
the generating function and Bessel function properties,
Kumar and Sharma [30] explored the transient multi-
server queue with balking and retention of reneging
customers.

The feedback loop of the job requests is essential
to the Quality of Service (QoS) in processing-based
computing systems. Atencia and Moreno [31] analyzed
a discrete-time Geo[X]=GH=1 retrial queue in which
each call after service either immediately returned to
the orbit for another service with some probability or
left the system forever with complementary probability.
Several studies (c.f., [32{38]) existing in the literature
have shown that the served customer or processed job
provides feedback at a service completion instant due to
unsatisfaction. Recently, Chang et al. [39] analyzed an
unreliable server retrial queue with customers' feedback
and impatience to investigate the economic viability of
systems. With the help of the supplementary variable
technique, Rajadurai et al. [40] obtained steady-state
probabilities via generating function for the system
size for a single-server feedback retrial queueing system
with multiple working vacations and vacation interrup-
tion. Forghani and Fatemi Ghomi [41] explored the
applicability of the processor-based queueing system in
di�erent sectors.

3. Model description

This study considers a single-processor computing
system with First-Come First-Serve (FCFS) service
discipline and realistic behavior of job requests and
processor. The following assumptions and notations
are considered to structure the proposed computing
system and to develop the governing equations:

� From the in�nite population of the prospective
job requests, jobs arrive at the computing system
following the Poisson process with mean arrival rate
�;

� If the processor is available and idle, the job request
is immediately processed; otherwise, it adds the
waiting queue to a space with in�nite capacity;

� The job request processing time durations are inde-
pendent and identically distributed (i.i.d.) exponen-
tial random variables with parameter �;

� For maintaining the state-of-the-art design and qual-
ity of the service, the processor seeks feedback from
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the served job requests. The processed job request
leaves the computing system with the probability �
or routes back the queue to provide feedback with
complementary probability 1� �;

� On the completion of the services for all waiting job
requests, the processor opts for a vacation to take a
rest or to diminish idle time or rendering service cost
or thermal break error or power consumption. The
processor's vacation time is an exponential random
variate with the meantime 1=�;

� At the epoch of the vacation end, if the computing
system is empty, the processor recommences another
vacation for random duration and repeatedly con-
tinues until the system has at least one job request
waiting in the system;

� If the processor is not available for service due to
vacation, some job requests may exhibit impatience
(timeout) behavior. If the processor is on vacation,
the job requests may balk with probability � from
the system without joining the computing system.
The job requests may also renege without being
served after waiting for some random periods when
the processor is on vacation. The time-to-renege
against the system follows an exponential distribu-
tion with meantime 1=�.

For modeling purposes, the state of the computing
system is de�ned as follows:

S(t) �

8>>><>>>:
0; The processor is in vacation state

at any instant of time t
1; The processor is in busy state at

any instant of time t

N(t) � Number of the waiting job requests in
the system at time t:

Hence, f(S(t); N(t)); t � 0g is a Continuous Time
Markov Chain (CTMC) on the state space 
 =
f(0; 0)g [ f(s; n); s = 0; 1 & n = 1; 2; � � � g. Therefore,
the governing transient-state probabilities are de�ned
as follows:

P0;n(t) = ProbfS(t) = 0; N(t) = ng; n � 0;

P1;n(t) = ProbfS(t) = 1; N(t) = ng; n � 1:

Using the above-de�ned assumptions and nota-
tions, we develop the governing Chapman-Kolmogorov
di�erential-di�erence equations of order and degree one
for the studied model. On balancing the rates of inow
and outow in each state, we have the following set of
di�erential equations:

dP0;0(t)
dt

= ��P0;0(t) + �P0;1(t) + ��P1;1(t); (1)

dP0;1(t)
dt

=� ���� + � + �
�
P0;1(t) + �P0;0(t)

+ 2�P0;2(t); (2)

dP0;n(t)
dt

=� ���� + n� + �
�
P0;n(t) + ���P0;n�1(t)

+ (n+ 1)�P0;n+1(t); n � 2; (3)

dP1;1(t)
dt

=�(��+�)P1;1(t)+�P0;1(t)+��P1;2(t); (4)

dP1;n(t)
dt

=� (��+ �)P1;n(t) + �P1;n�1(t)

+ ��P1;n+1(t) + �P0;n(t); n � 2: (5)

The system of di�erential-di�erence equation
(Eqs. (1){(5)) with initial conditions P0;0(0) = 1
and Ps;n(0) = 0; s = 0; 1 and n � 1, i.e., there
is no job request in the computing system to be
processed at time t = 0, can be solved using Laplace
transformation, properties of conuent hypergeometric
function, modi�ed Bessel function, and generating
function to compute the transient-state probabilities.

4. Conuent hypergeometric function

This section presents the de�nition and properties
of the special function and conuent hypergeometric
function, used for deriving an explicit expression of
transient queue-size distribution in terms of contin-
ued fraction for the studied computing problem with
the processor's vacation and job request's feedback
and discouragement. The conuent hypergeometric
function is a solution to the conuent hypergeometric
equation, which is a degenerate form of a hypergeo-
metric di�erential equation in which two of the three
regular singularities merge into irregular singularity.
The conuent hypergeometric function, 1F1(a; c; z), is
de�ned as in�nite sum:

1F1(a; c; z) = 1 +
a
c
z
1!

+
a
c

(a+ 1)
(c+ 1)

z2

2!
+ � � �

=
1X
k=0

(a)k
(c)k

zk

k!
; c 6= 0;�1;�2; � � � ;

(6)

where (�)k is the rising factorial function that can be
represented as follows:

(�)k =
�(�+ 1)

�(�� k + 1)
; k = 0; 1; 2; � � �

From the above de�nition, for a = 0, we have:

1F1(0; c; z) = 1:

To generate the values of the function for di�erent
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values of a and c, the recurrent relation for the
conuent hypergeometric function is as follows:

c(c� 1) 1F1(a� 1; c� 1; z)� az 1F1(a+1; c+1; z)

=c(c�1�z) 1F1(a; c; z): (7)

It is established here that the quotient of two hyper-
geometric functions may be expressed as a continued
fraction. It is useful for the algebra with a conuent
hypergeometric function. The following identity is
identi�ed:

1F1(a+1; c+1; z)
1F1(a; c; z)

=
c

(c� z)+ (a+1)z
(c�z+1)+ (a+2)z

(c�z+2)+
...

:

On simpli�cation, it can be rewritten as follows:

c 1F1(a; c; z)
1F1(a+ 1; c+ 1; z)

� (c� z)

=
(a+ 1)z

(c� z + 1) + (a+2)z
(c�z+2)+ (a+3)z

(c�z+3)+
...

: (8)

For the conuent hypergeometric function, we have the
following results:
1X
k=0

(a)k
(c)k

yk

k! 1F1(a+ k; c+ k;x) = 1F1(a; c;x+ y): (9)

Some values of a and c yield solutions that can be
expressed in terms of other known functions. When
a is a non-positive integer, Kummer's conuent
hypergeometric function, if de�ned, is a generalized
Laguerre polynomial. Given that the conuent
di�erential equation is a limit of the hypergeometric
di�erential equation as the singular point at 1 is
moved towards the singular point at 1, the conuent
hypergeometric function can be given as a limit of the
hypergeometric function.

5. Transient analysis

This section derives an explicit expression for tran-
sient queue-size distribution for the computing system
under consideration using the mathematical concepts
of generating function, continued fractions, and some
properties of conuent hypergeometric function. For
this purpose, the following sequel is used.

5.1. Laplace transform
Laplace transform is an integral transform that con-
verts a function of a real variable t into a function
of a complex variable s. It transforms di�erential
equations into algebraic equations and convolution into
multiplication. We de�ne Laplace transformation of
state probabilities and their derivatives as follows:

ePi;j(s) = L(Pi;j(t)) =
1Z

0

e�stPi;j(t)dt; 8 i; j;

L
�
dPi;j(t)
dt

�
= s ePi;j(s)� Pi;j(0); 8 i; j:

Through the de�ned Laplace transform, the system
of governing di�erential-di�erence equations is trans-
formed as a system of linear equations as follows:

s eP0;0(s)�1=�� eP0;0(s)+� eP0;1(s)+�� eP1;1(s); (10)

s eP0;1(s) =� ���� + � + �
� eP0;1(s) + � eP0;0(s)

+ 2� eP0;2(s); (11)

s eP0;n(s) =� ���� + n� + �
� eP0;n(s) + ��� eP0;n�1(s)

+ (n+ 1)� eP0;n+1(s); n � 2; (12)

s eP1;1(s)=�(��+�) eP1;1(s)+� eP0;1(s)+�� eP1;2(s);
(13)

s eP1;n(s) =� (��+ �) eP1;n(s) + � eP1;n�1(s)

+�� eP1;n+1(s)+� eP0;n(s); n � 2: (14)

5.2. Evaluation of P1;n(t), n � 1 in terms of
P0;n(t)

De�ne the generating function:

P (z; t) =
1X
n=1

P1;n(t)zn: (15)

Using some algebraic manipulation with Eqs. (5) and
(6), the following partial di�erential equation is estab-
lished:
@P (z; t)
@t

=
�
�(�+ ��) + �z +

��
z

�
P (z; t)

+ �
1X
n=1

P0;n(t)zn � ��P1;1(t); (16)

which, upon integration, gives:

P (z; t)=�
tZ

0

1X
m=1

P0;m(y)zme�(�+��)(t�u)e(�z+
��
z )(t�u)du

� ��
tZ

0

P1;1(u)e�(�+��)(t�u)

e(�z+
��
z )(t�u)du: (17)

For � = 2
p
��� and  =

q
�
�� , it is well known from

the theory of Bessel function that:
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eP0;n(s)eP0;n�1(s)
=

���

(s+ ��� + � + n�)� (n+1)����
(s+���+�+(n+1)�)� (n+2)����

(s+���+�+(n+2)�)�
...

:

Box I

e(�z+
��
z )t =

1X
n=�1

(z)nIn(�t);

where In(:) is the modi�ed Bessel function of the �rst
kind. Upon comparing the coe�cient of the power of
z, i.e., zn; n = 1; 2; : : :, on both sides of Eq. (17), we
have:

P1;n(t) = �
tZ

0

1X
m=1

P0;m(y)n�mIn�m(�(t� u))

e�(�+��)(t�u)du+��
tZ

0

P1;1(y)nIn(�(t�u))

e�(�+��)(t�u)du; n = 1; 2; : : : : (18)

The above equation also holds for n = �1;�2; � � � with
the left-hand side replaced by zero, i.e., P1;n(t) = 0.
Using I�n(:) = In(:) for n = 1; 2; � � � , we have the
following:

�
tZ

0

1X
m=1

P0;m(u)�n�mIn+m(�(t�u))e�(�+��)(t�u)du

+ ��
tZ

0

P1;1(u)nIn(�(t�u))e�(�+��)(t�u)du=0;

n = 1; 2; : : : (19)

Hence, Eqs. (18) and (19) give P1;n(t) in terms of
P0;n(t):

P1;n(t) = �
tZ

0

e�(�+��)(t�u)
1X
m=1

n�mP0;m(y)

� fIn�m(�(t� u))� In+m(�(t� u))gdu;

n = 1; 2; : : : (20)

5.3. Evaluation of P0;n(t), n � 2 in terms of
P0;0(t)

In this sub-section, the expression for P0;n(t) is ob-
tained as continued fraction using the identities of con-
uent hypergeometric function. Eq. (12) is structured
as follows:

eP0;n(s)eP0;n�1(s)
=

���

(s+�+�+n�)�(n+1)�
n eP0;n+1(s)eP0;n(s)

o ;
which can be further structured as a continued fraction
as shown in Box I. Using the identity equation (Eq. (8))
of the conuent hypergeometric function discussed in
Section 4, the above expression can be expressed in
terms of conuent hypergeometric function:eP0;n(s)eP0;n�1(s)

=
���
�

1F1

�
(n+ 1);

�
s+�
� + n+ 1

�
;
�����

�

���
s+�
� + n

�
1F1

�
n;
�
s+�
� + n

�
;
�����

�

�� : (21)

On iterative substitution and algebraic manipulation,
the expression for eP0;n(s) in terms of eP0;0(s) is obtained
as follows:eP0;n(s) =

�
���
�

�n 1
nQ
i=1

�
s+�
� + i

�
1F1

�
(n+ 1);

�
s+�
� +n+1

�
;
�����

�

��
1F1

�
n;
�
s+�
� +n

�
;
�����

�

�� eP0;0(s);

n = 2; 3; : : :eP0;n(s) = e	n(s) eP0;0(s); n = 2; 3; : : : (22)

On taking the inverse Laplace transform, we have:

P0;n(t) = 	n(t) � P0;0(t); n = 2; 3; : : : (23)

where 	n(t) is the inverse Laplace transform of e	n(s),
which will be evaluated in Subsection 5.6, and �
represents the convolution between the two functions.

5.4. Evaluation of P0;0(t)
From Eq. (10), we obtain:eP0;0(s) =

1

(s+ �)� � eP0;1(s)eP0;0(s)
� �� eP1;1(s)eP0;0(s)

: (24)

After putting n = 1 into Eq. (19), we have the following
expressions:
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P1;1(t) = �
tZ

0

e�(�+��)(t�u)
1X
m=1

1�mP0;m(y)

� fI1�m(�(t� u))� I1+m(�(t� u))g du;
(25)

and:

P0;1(t) = 	2(t) � P0;0(t); (26)

respectively. Hence, Eqs. (25) and (26) give:

eP0;0(s) =
1X
k=0

kX
r=0

(�1)k�k
�
k
r

���
�

�k e	r
2(s)

(s+ �)k+1

( 1X
m=1

 
��p�2 � �2

�

!m e	m(s)

)k�r
;
(27)

where � = (s + �� + ��) which, upon inverse Laplace
transform, yields:

P0;0(t) = ��
1X
k=0

kX
r=0

(�1)k�k
�
k
r

���
�

�k
e��t t

k

k!

�	r
2(t) �

( 1X
m=1

1�m(Im(�(t� y))

�Im+2(�(t�y)))�e�(�+��)t �	m(t)

)�(k�r)
;
(28)

where � denotes the convolution, while �(k� r) stands
for the (k � r)-times convolution.

5.5. Evaluation of P0;1(t)
Similarly, we obtain the algebraic expression of P0;1(t).
From Eq. (11), we have:�

s+ ��� + � + �
� eP0;1(s) = � eP0;0(s) + 2� eP0;2(s);

eP0;1(s) =
��

s+ ��� + � + �
� eP0;0(s)

+
2��

s+ ��� + � + �
� eP0;2(s); (29)

which, upon inverse Laplace transform, yields:

P0;1(t) =�e�(���+�+�)t � P0;0(t)

+ 2�e�(���+�+�)t � P0;2(t): (30)

5.6. Evaluation of 	n(t); n � 2
Finally, for obtaining all transient-state probabilities,
we should derive the expression for 	n(t). From
Eq. (22), we have:

e	n(s) =
�
���
�

�n 1
nQ
i=1

�
s+�
� + i

�
1F1

�
(n+1);

�
s+�
� +n+1

�
;
�����

�

��
1F1

�
n;
�
s+�
� +n

�
;
�����

�

�� ; n�2:
(31)

By using the de�nition of Eq. (7) for conuent hyper-
geometric function, we have:

1F1

�
(n+ 1);

�
s+�
� + n+ 1

�
;
�����

�

��
nQ
i=1

�
s+�
� + i

�
= �n

1X
k=0

�n+k
k

�
(����)k

n+kQ
i=1

(s+ � + i�)
; n � 2; (32)

which can be written into partial fractions as follows:

1F1

�
(n+ 1);

�
s+�
� + n+ 1

�
;
�����

�

��
nQ
i=1

�
s+�
� + i

�
= �n

1X
k=0

�
n+ k
k

������
�

�k n+kX
i=1

(�1)i�1

(i� 1)!(n+ k � i)!
1

s+ � + i�
; n � 2: (33)

We also have:

1F1

�
1;
s+ �
�

+ 1;
����
�

�
=
1X
k=0

�����
�k

kQ
i=1

(s+ � + i�)

=
1X
k=0

�����
�k eak(s); (34)

where:ea0(s) = 1; and

eak(s) =
1

kQ
i=1

(s+ � + i�)

=
1

�k�1

kX
r=1

(�1)r�1

(r � 1)!(k � r)!
1

s+ � + r�
;

k = 1; 2; : : : (35)

Using the identity equation (Eq. (6)) from Section 4 for
conuent hypergeometric function, we have:
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�
1F1

�
n+ 1;

s+ �
�

+ n+ 1;
����
�

���1

=
1X
k=0

ebk(s)(���)k; n � 2; (36)

where:ebk(s) = 1;

and:ebk(s)

=

�������������

ea1(s) 1 � � �ea2(s) ea1(s) 1 � � �ea3(s) ea2(s) ea1(s) � � �
...

...
... � � �eak�1(s) eak�2(s) eak�3(s) � � � ea1(s) 1eak(s) eak�1(s) eak�2(s) � � � ea2(s) ea1(s)

�������������
;

k = 1; 2; : : :

ebk(s) =
kX
i=1

(�1)i�1eai(s)eak�1(s); k = 1; 2; : : : (37)

Hence, substituting the results of Eqs. (33) and (36),
into Eq. (31) gives:e	n(s) = (���)j

�
n+ j
j

�ean+j(s)
1X
k=1

�
���
�k ebk(s);

n � 2; (38)

which, upon inverse Laplace transform, gives a required
expression as follows:

	n(t) =
�
���
�j �n+ j

j

�
an+j(t) �

1X
k=1

�
���
�k bk(t);

n � 2; (39)

where:

ak(t) =
1

�k�1

kX
r=1

(�1)r�1

(r � 1)!(k � r)!e�(�+r�)t;

k = 1; 2; : : : ; (40)

bk(t) =
kX
i=1

(�1)i�1ai(t) � bk�1(t);

k = 2; 3; : : : and b1(t) = a1(t): (41)

6. Performance measure

Systematic observation of the state of the computing
system is vital to enhance the performance and improve
decision-making. In the case of the computing system,

performance index is primarily delivered through the
expected value of the number of the job requests. Let:

N(t) � Number of job requests in the computing
system at time t:

Hence, the expected number of job requests in the
computing system at time t is:

E(N(t)) =
1X
n=1

n(P0;n(t) + P1;n(t)): (42)

Initially, at t = 0, we assume that there is no job
request to be processed in the computing system.
Hence:

E(N(0)) =
1X
n=1

n(P0;n(0) + P1;n(0)) = 0:

Upon di�erentiating Eq. (42) with respect to t, we have:

dE(N(t))
dt

=
1X
n=1

n
�
P0;n(t)
dt

+
P1;n(t)
dt

�
: (43)

Substituting the value from Eq. (1) into Eq. (5) and
using mathematical manipulation, we get the following
di�erential equation from Eq. (43):

dE(N(t))
dt

= �P0;0(t) + ���
1X
n=1

P0;n(t)

� �
1X
n=1

nP0;n(t) + (�� ��)
1X
n=1

P1;n(t); (44)

which, upon integration, gives:

E(N(t)) = �
tZ

0

P0;0(y)dy + ���
1X
n=1

tZ
0

P0;n(y)dy

� �
1X
n=1

tZ
0

nP0;n(y)dy+(����)
1X
n=1

tZ
0

P1;n(y)dy;
(45)

where the explicit expressions for P0;n(t) and P1;n(t)
have already been derived in Eqs. (20) and (23).

7. Special cases

For the justi�cation and docility of the studied comput-
ing system, we have relaxed one or more assumptions
and found that our model is similar to the models
available in the existing literature. The viability of the
analytical proof is not possible due to its complexity,
even if more assumptions are relaxed.

The following are some special cases that we can
be derived from the developed model after eliminating
one or more assumptions:

Case 1: For � = 1, i.e., the job request leaves the
system after being processed without feedback loop.
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The proposed model and results coincide with the
results of the model proposed in [42]. The model is
reduced into a single-server computing model with
impatient behavior and multiple vacations;
Case 2: By limiting the vacation parameter as � ! 0
and setting the feedback parameter as � = 1, the
proposed model resembles the computing model with
balking and reneging proposed by the authors in [27].
They also computed the transient solution for queue-
size distribution in a similar manner;
Case 3: If we set the balking probability � = 0
and reneging parameter � = 0, our model exhibits
the result, which was obtained by Kalidass and
Ramanath [43]. They studied M=M=1 computing
model with multiple vacations for server.

8. Conclusion

This study attempted to �nd a time-dependent solution
for a single-processor Poisson queue in a computing
system with job request feedback and discouragement
(timeout) behaviors, namely balking and reneging and
processor's multiple vacations. A closed-form explicit
expression was derived for the queue-size distribution
analytically by employing continued fractions, Laplace
transforms, generating functions, and using the prop-
erties of conuent hypergeometric function. Then, a
mean for the state of the computing system was estab-
lished processing facility providers. The present study
provided a basic idea so that queueing theorists would
determine the transient solution of queueing problems
and service providers use the design parameters for
better services.

This research can be extended in the future with
more realistic phenomena related to the waiting line
problems like single and multiple vacations, Bernoulli
vacation, working vacation, vacation interruption, im-
perfect service, multi-processor, processor breakdown,
catastrophe, etc. Due to the computational complex-
ity involved, many variants of the queue may not
be applicable for its extension like jockeying, �nite
population, etc. For such variants, we must choose
numerical techniques for deriving the transient queue-
size distribution.
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