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1. Introduction

Growing competition and diversity of products sup-
plied by various competitors have persuaded companies

Abstract. In this paper, a novel bi-objective mathematical model is proposed to design
a four-dimensional (i.e., part, machine, operator, and tool) Cellular Manufacturing System
(CMS) in a dynamic environment. The main objectives of this model are to: (1) Minimize
total costs including tools processing cost, costs of transporting cells between various cells,
machine setup cost, and operators’ educational costs and (2) Maximize the skill level of
operators. The developed model is strictly NP-hard and exact algorithms cannot find
globally optimal solutions in a reasonably computational amount of time. Thus, a Multi-
Objective Vibration Damping Optimization (MOVDO) algorithm with a new solution
structure that satisfies all the constraints and generates feasible solutions is proposed to
find near-optimal solutions in a reasonably computational amount of time. Since there
is no benchmark available in the literature, three other meta-heuristic algorithms (i.e.,
Non-dominated Sorting Genetic Algorithm-II (NSGA-IT), Multi-Objective Particle Swarm
Optimization (MOPSO), and Multi-Objective Invasive Weeds Optimization (MOIWO))
with a similar solution structure are developed to validate the performance of the proposed
MOVDO algorithm for solving various instances of the developed model. The result of
comparing their performances based on statistical tests and different measuring metrics
reveals that the proposed MOVDO algorithm remarkably outperforms other meta-heuristics
used in this paper.
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to use different efficient and new strategies on their
procurement, production, and distribution sections. A
significant proportion of the costs at each industrial
center are related to its manufacturing system.
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The most significant objectives of each manu-
facturing system are as follows: (a) use the capac-
ity of different facilities more efficiently, (b) increase
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different operations, (c) employ automated systems
to increase the quality and production rate, (d) de-
crease the inventory level, and (e) reduce the material
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transportation volume and increase the flexibility. A
Cellular Manufacturing System (CMS) is one of the
different types of manufacturing systems that can be
used to achieve these goals.

CMSs are one of the most efficient alternatives for
establishing systems with high diversity and produc-
tion rates. The main objective of CMSs is to minimize
materials’ flow costs. One of the main crucial steps of
designing these systems is to generate various cells in a
productive environment. Each cell involves a family of
parts with similar operations. Therefore, the machines
are assigned to each cell to perform similar operations
on each part. It is not a simple and efficient method
to handle all the processes of manufacturing products
into a single cell since the process of manufacturing
special types of products should be performed into
different segregated shops. These facts reveal the real
need for designing different cells into a manufacturing
system and assign specialized machines, operations,
and workforces to each cell to reduce inter-cellular
transportation.

A novel mixed-integer programming model is pro-
posed in this paper to consider four different features
of machines, parts, tools, and manpower in a Dynamic
CMS (DCMS). The main purpose of this model is to
find the most appropriate decisions to the following
variables so that the best possible values of conflicting
total tool processing cost minimization and skill level
maximization objectives are obtained in a reasonable
amount of computational time:

e Establishing a number of cells into different loca-
tions of a CMS;

e Locating some types of machines in the cells;

e Operationalizing a number of operators to perform
different types of operations assigned to each ma-
chine;

e Allocating parts and tools to each machine;

e Determining the optimal skill level of operators
that are going to perform various operations of the
machines located in each cell;

e Defining part transmissions between the machines
of each cell and those parts should be transferred
among different cells.

Also, major assumptions including machine capacity,
impracticality of inserting more than one specific tool
on each box, impossibility of assigning more than one
person to accomplish a job, and lifetime limitation of
tools are considered to bring the model closer to real-
world conditions.

The rest of this paper is organized as follows.
The literature of the models and developed solution
algorithms are discussed in the next section. The
problem statement and the developed model for DCMS

are discussed in Section 3. The proposed solution algo-
rithms to solve the models for small and large instances
are discussed in Section 4. The presented metrics for
evaluating the performance of multi-objective meta-
heuristic algorithms and the used method for calibrat-
ing the main parameters of the developed algorithms
are discussed in Section 5. The results and statistical
tests to compare the performance of the developed
algorithms are presented in Section 6. Finally, this
paper is concluded in Section 7.

2. Literature review

DCMS problems have attracted the attention of various
authors in recent years. Different mathematical models
have developed in the literature to formulate this prob-
lem. Also, various solution algorithms are developed to
solve different versions of this problem. So, this section
is divided into three sections to investigate the main
features of the developed models along with different
types of algorithms proposed to solve the models.

2.1. Cell Formation Problem (CFP)
The most fundamental decision that should be taken
to establish an efficient CMS is the CFP. This is the
reason why the motivated researchers attempt to define
different formations and solution algorithms to solve
this problem. Sofianopoulou [1] developed a conceptual
model for embedding a group of machines and design-
ing a medium-sized CMS. The model aims to minimize
handling costs of inter-cellular material movements. A
novel version of the Simulated Anmnealing (SA) algo-
rithm was proposed to solve medium- and large-scale
instances of the proposed model. Guerrero et al. [2]
presented a novel two-stage structure of a DCMS. To
do so, similar parts and machines were located on their
pertinent families and cells, respectively. A novel self-
organized neural network approach was implemented
to divide similar parts into each group. Then, a novel
linear model was proposed to assign the machines to
their related part family. Finally, a novel heuristic
algorithm was developed based on the main concepts
and structures of the maximum spanning tree ap-
proach for solving benchmark examples of the proposed
model. Soleymanpour et al. [3] presented a standard
version of a CFP. Some supplementary approaches were
embedded into the main mechanism of an effective
neural network approach to solve 18 various benchmark
instances. The proposed approach could obtain high-
quality solutions with a shorter computational time.
Logendran and Karim [4] presented a novel non-
linear programming model for dynamic CFP. Two ma-
jor features of a low distance between active locations
and employing various vehicles with a limited capacity
to transport commodities among different cells were
considered into the main process of designing a CMS.
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A novel Tabu Search (TS) algorithm was proposed
to solve the model’s different instances. Spiliopoulos
and Sofianopoulou [5] proposed a three-step method
for designing a DCMS. The main contribution of this
approach was to consider all the complicated compu-
tational aspects involved in the process of designing
a flexible manufacturing system. A novel version
of the TS algorithm was proposed to solve various
test problems. Also, a novel searching strategy along
with a proper combination of short- and long-term
memories was designed into the main structure of the
TS algorithm to enhance solution qualities and reduce
the amount of time required for obtaining the best
possible solutions. Prabhaharan et al. [6] developed
a novel formulation for a DCMS. The model aimed to
categorize machines and parts into various groups and
cells so that the volume of inter-cellular movements and
cell load variation were minimized. They proposed a
novel ant colony optimization algorithm to solve small-
and large-sized instances of the proposed formulation.

Defersha and Chen [7] developed a comprehensive
mathematical model for DCMS and considered two
significant features of tools availability and satisfac-
tion of machines’ needs for tools requirements in the
procedure of designing a SCMS. The above model
aimed to minimize total costs including setup costs,
tools consumption costs, and operational costs so
that various constraints including cell size limitations,
machine capacity, and machine adjacency constraints
would be completely satisfied. Saidi-Mehrabad and
Safaei [8] developed a novel mathematical model for
the SCMS. The main purpose of designing this system
was to classify parts and machines into different groups
and cells so that the total material handling costs
could be minimized. A novel neural network method
was proposed to solve the different test problems
associated with the model. Defersha and Chen [9]
proposed a novel model for a CMS and lot sizing in a
dynamic environment. The main purpose of developing
this model was to investigate the effect of lot-sizing
on product quality. The model aimed to minimize
production and quality-related costs. A novel version
of Genetic Algorithm (GA) was proposed to solve the
model.

Tavakkoli-Moghaddam et al. [10] proposed a novel
bi-objective model for a CMS in a dynamic and multi-
product environment. An efficient version of the SA
algorithm was proposed to solve small- and large-scale
instances. An exact algorithm was employed to find
optimal solutions to various test problems. The gap
between the best global solutions and solutions of the
proposed SA was less than 4%. Mahdavi et al. [11]
proposed a novel mathematical model for a hybrid cell
formation and cell layout problems. Similar parts and
machines were classified into their pertinent groups
and cells to enhance the capability of the system to

fulfill customer requirements. New performance and
neighboring criteria were employed to evaluate the
quality of the obtained solutions.

Majazi Dalfard [12] presented a new nonlinear in-
teger programming model for dynamic CFP in a CMS.
The main contribution of their model was to enhance
the capability of a manufacturing system to transport a
large number of commodities among various cells. The
main procedure of the SA algorithm was embedded in
a branch-and-bound algorithm to obtain more qualified
solutions. Paydar and Saidi-Mehrabad [13] developed
a novel mathematical formulation for a dynamic CFP.
The model aimed at ensuring the grouping efficiency
of the entire system in the case that the number
of cells required for generating different products be
unknown. Two small test problems were presented
to show the effectiveness of the proposed model. A
combination of genetic and variable neighborhood al-
gorithms was developed to solve the model. Salarian
et al. [14] developed a novel stochastic formulation for
a dynamic manufacturing system. Normal distribution
was employed to consider the uncertainty of demand
and processing time. Also, an exponential distribution
was employed to consider the parts’ inter-arrival time.
The main purpose of the model was to define a very
efficient layout for machines located in each cell so
that inter-cellular movements along with the number of
bottlenecks were concurrently minimized. Numerical
examples were provided to illustrate the efficiency of
the proposed formulation.

Bychkov and Batsyn [15] proposed a novel mixed-
integer linear model for a dynamic cell manufacturing
problem. The model aimed to determine the optimal
value of the famous grouping efficacy measure. Various
test problems of the proposed formulation were imple-
mented using CPLX software and optimal solutions
were obtained in a short time period. Zohrevand
et al. [16] proposed a novel mathematical model for
a DCMS to formulate two major concerns about
human resource aspects and the stochastic nature of
the model’s main parameters. The model aimed to
optimize two conflicting objectives of minimizing the
total costs of a CMS and maximizing the productivity
of the workforce considering for executing various jobs.
A novel heuristic algorithm obtained by combining
the main characteristics of both genetic and SA al-
gorithms was proposed to solve small- and large-scale
instances.

2.2. Resource assignment and CFP

Another important feature of cell manufacturing sys-
tems is to determine the workforce size to be assigned
to different cells. Considering workforce assignment
to the main structure of the CFP makes the solutions
closer to real-world considerations. This problem has
been considered in different research projects and the
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main purpose of some recent papers was to propose
a proper formulation for this problem or develop
solution algorithms and obtain optimal or near-optimal
solutions to small- and large-scale instances of this
problem in a reasonable computational time. Mahdavi
et al. [17] extended a two-dimensional machine-part
matrix of dynamic CFP for a three-dimensional matrix
to consider the assignment of workers to cells and bring
the model closer to real conditions of manufacturing
systems. The model aimed to minimize the number
of voids in a three-dimensional machine-part-worker
situation. The main assumption of the model was
related to assigning each worker to various types of
jobs. The solutions of various test problems were
statistically compared to the solution obtained by
previous research works to exhibit the efficiency of
the proposed algorithm. Bagheri and Bashiri [18]
proposed a novel hybrid model for a CFP, which
minimizes inter-cellular movements, machine costs, and
operator related issues at the same time. They used
an LP-metric method to aggregate different objectives
and turn the model into a single-objective one. A
branch-and-bound algorithm was employed to find
exact solutions of various test problems into a logical
computational time.

Saidi-Mehrabad et al. [19] proposed a compre-
hensive mathematical model for dynamic production
systems that integrated the production planning and
worker training which aimed to minimize the over-
head costs, maintenance, cell reconfiguration, inventory
maintenance, number of deferred orders, training and
workers’ salary costs. Paydar et al. [20] proposed a
novel formulation for a dynamic cell manufacturing
system. The model aimed to minimize various cost
components including maintenance and overhead costs,
inventory costs, system reconfiguring costs, and work-
ers’ salary and training costs. The main objective of
this model was to combine production planning, worker
training, operation sequence, and multi-period plan-
ning horizon into an efficient manufacturing system.
Various test problems were solved optimally to prove
the efficiency of the proposed model. Mehdizadeh and
Rahimi [21] proposed a novel mathematical model for
a multi-objective CFP to find an optimal assignment
of workforce, number and type of machines located
in different cells, and all the locations, in which the
cells could be established so that conflicting objectives
of inter-cellular movement minimization, machine and
operator cost minimization, and consecutive forward
flow maximization objectives are simultaneously op-
timized. Since the model was extremely NP-hard,
multi-objective SA and vibration damping optimiza-
tion algorithms were developed to solve different test
problems associated with the model. Mehdizadeh et
al. [22] proposed a novel mixed-integer programming
formulation for a bi-objective CFP. The most impor-

tant contribution of this paper was to set a resource
limitation in designing the overall structure of a CMS
and bring the model closer to real-world conditions.
They proposed a novel Multi-Objective Vibration
Damping Optimization (MOVDO) algorithm to solve
their model. Also, two other multi-objective GAs were
developed to validate the performance of the proposed
algorithm in solving large-scale instances. Feng et
al. [23] proposed a novel mathematical model for hybrid
cell formation and resource assignment problems to
define optimal assignment of machines, parts, and
workers so that all the costs relating to different stages
of establishing a CMS would be minimized. They
developed a novel hybrid version of particle swarm
optimization algorithm to solve their model.

Forghani and Fatemi Ghomi [24] formulated a
mixed-integer nonlinear mathematical model to mini-
mize the production, subcontract, material handling,
machine idleness, and handling costs. To solve the
model, a heuristic method is suggested. Hashemoghli
et al. [25] presented a non-linear mixed-integer pro-
gramming model under an uncertain environment to
minimize the total costs and total inaction workers and
machines, simultaneously. They employed GAMS to
solve their model after linearizing it.

2.3. Solution algorithms developed for solving
the DCMS

Different heuristic and meta-heuristic algorithms were
proposed in the literature to find suitable solutions
to complicated and NP-hard problems of dynamic
manufacturing systems in a reasonable amount of
time. Vakharia and Chang [26] extended TS and
SA algorithms to propose better heuristic methods for
solving a DCMS. The proposed heuristic algorithms
were employed to solve benchmark examples of a real-
world industry and obtain more qualified solutions.
Computational results illustrated that the SA algo-
rithm could obtain better results in terms of solution
quality and computational time. Ravichandran and
Chandra Sekhara Rao [27] presented a novel model
for a dynamic CFP and implemented a novel fuzzy
clustering approach to identify the best classification
of parts into different families. Also, a novel similarity
coefficient method was used to define different families
and classify similar parts into each unique family.
Numerical examples were proposed to explain the
performance of the proposed formulation.

Lozano et al. [28] proposed two novel neural
network methods of Hopfield and Potts mean field
annealing algorithms for solving a CFP. The model
aimed to minimize total transportation costs. The
proposed quadratic formulation for a CFP could em-
ploy symmetric and sequential based similarity coef-
ficients to identify distances of every two consecutive
machines. Computational results demonstrated that



N. Aghajani-Delavar et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2041-2068 2045

the developed Potts mean field annealing had a better
performance in terms of both solution quality and
computational time. Lozano et al. [29] proposed a novel
fuzzy C-mean algorithm for solving a CFP with differ-
ent part families and parallel machines. The model
aimed to minimize total inter-cellular movements and
the number of voids. Comparing obtained solutions
with other solutions reported in the literature revealed
the capability of this method to generate high-quality
solutions. Wu et al. [30] developed a novel version
of the TS algorithm to solve small- and medium-sized
instances of the proposed formulation. They embedded
a random approach along with the group and assigned
the method to the main structure of their algorithm
to generate more appropriate initial solutions. The
proposed algorithm could find the model’s optimal
solutions in a very short period.

Diaby and Nsakanda [31] developed a heuristic
method based on the Lagrange relaxation method
to create near-optimal solutions in large-scale CMSs.
Demands of parts would be satisfied through internal
production or outsourcing. The goal was to minimize
handling, manufacturing, outsourcing, and setup costs.
Lei and Wu [32] proposed a novel multi-objective TS
algorithm for solving a CFP. All the parts and machines
were categorized into different families and groups,
respectively. The first objective aimed to minimize
intra-movements and inter-movements. The second
objective aimed to minimize total cell variations. A
GA was developed to evaluate the performance of the
proposed algorithm in solving various test problems.
Computational results demonstrated that the proposed
algorithm could obtain better optimal Pareto solutions.

Wu et al. [33] developed a hierarchical GA for
solving a CFP to determine the cell and machine
layouts of a manufacturing cell system. The pro-
posed manufacturing system was mainly designed
to determine three major aspects of cell formation,
group layout, and group scheduling in a dynamic
environment. A hierarchical procedure was proposed
to design a correlated fitness function along with a
novel mutation operator into the main structure of
the GA to elaborate on the algorithm’s capability to
seek new feasible solution regions and obtain a better
solution. Computational results demonstrated that the
proposed algorithm could obtain high-quality solutions.
Mukattash et al. [34] developed three heuristic methods
to solve complicated instances of a CFP. The main
purpose of presenting their methods was to identify
the best state of assigning parts to cells so that three
major concerns about the location of parallel machines,
processing times, and processing plans could be taken
into consideration.

James et al. [35] proposed a novel grouping
GA to solve a CFP. They embedded a local search
procedure into the main structure of the GA to en-

hance the algorithm performance in obtaining better
solutions. Statistical comparisons revealed that the
proposed algorithm could obtain for all small- and
large-scale test problems. Ghotboddini et al. [36]
implemented a Bender’s decomposition algorithm on
GAMS software to solve various instances of a mixed-
integer linear programming formulation for a CFP.
The first objective of the proposed model aimed to
minimize overtime costs of employing equipment and
workforce along with reassignment costs of workforce
assigned to various jobs. The second objective is
mainly designed to maximize the workforce’ utilization
rate. Martins et al. [37] developed a novel version
of Variable Neighborhood Search (VNS) algorithm to
solve complicated CFP instances. A random ordering-
based local search procedure was embedded into the
main mechanism of the proposed algorithm to discover
more feasible regions and obtain better solutions.

Kao and Li [38] proposed a novel clustering
algorithm to solve various instances of a CFP. The main
concept of the algorithm was inspired by random meet-
ing of ants to generate initial clusters. Also, two other
living features of ants including randomization and col-
lective behavior enable algorithms to modify wrongly
clagsified parts and bring them to a better state.
Rafiei and Ghodsi [39] proposed a novel ant colony
optimization algorithm to solve NP-hard instances of
a bi-objective CFP. Also, a mutation operator of the
GA was added to the main procedure of the proposed
algorithm to elaborate diversification characteristics of
the proposed algorithm. Zeidi et al. [40] presented a
novel hybrid metaheuristic algorithm to solve intricate
examples of a nonlinear mixed-integer programming
model of a dynamic CFP. A specific procedure of the
neural network method was implemented into the main
mechanism of the GA to solve various instances of
this problem and obtain more qualified near-optimal
solutions.

Shiyas and Madhusudanan Pillai [41] proposed
a novel hybrid version of the GA to solve CFP. The
model aimed to optimize two conflicting objectives of
intercellular movements and cell heterogeneity at the
same time. The proposed algorithm was able to find
appropriate near-optimal solutions in a shorter compu-
tational time. Rezazadeh et al. [42] proposed a novel
particle swarm optimization algorithm for solving a
dynamic CFP. The main purpose of developing a novel
formulation for a CFP was to identify the optimal num-
ber of cells located in a dynamic manufacturing system
so that manufacturing, material handling, subtracting,
inventory, and production costs could be minimized.
The local search mechanism of SA was embedded into
the main structure of particle swarm optimization to
generate better solutions. Buruk Sahin and Alpay [43]
proposed a novel GA for solving NP-hard instances
of a CFP. A Taguchi method was implemented to
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calibrate the main parameters of the proposed algo-
rithm. Computational results demonstrated that the
proposed algorithm could find qualified solutions for
small- and large-scale benchmark instances of a CFP.
Durga Rajesh et al. [44] proposed a novel similarity
coefficient-based methodology to determine the main
formation of cells located in a dynamic manufacturing
system. This method could eliminate the drawbacks
of previously proposed methods and obtain more ap-
propriate solutions. Also, major criteria of a CMS
were considered to evaluate the performance of their
developed method in solving small- and large-sized
instances of the problem.

Behnia et al. [45] formulated a multi-dimensional
CMS to minimize the total number of voids and balance
the workload assigned to cells. To solve the model,
two Nested Bi-level metaheuristics were implemented.
Rostami et al. [46] formulated a dynamic virtual
CFP to maximize the total profits of the factory, the
grouping efficacy, and the number of the new product.
Multi-choice goal programming with a utility function
is used to solve the model after linearization. Ta-
vanayi et al. [47] formulated a nonlinear mixed-integer
programming model for the cooperative CMS problem
to minimize the total costs of inter-cell and intra-cell
material handling and intra-factory material handling.
The cooperative game theory method to solve the
problem of reducing costs between different companies.

A simple glimpse at the main features of the
papers discussed in Table 1 reveals that simultaneous
consideration of machine, parts, resources, and tools
into the main process of presenting a mathematical
formulation for dynamic manufacturing systems
has not been investigated yet. So, the main focus
of this paper is to propose a novel mathematical
model for a dynamic manufacturing system while
machines, tools, parts, and resources are concurrently
considered into the main structure of the proposed
formulation to bring the results closer to real-world
assumptions. In this paper, a new mathematical
model in a DCMS is proposed considering the skill
level of operators and tools as the third and fourth
dimensions simultaneously. Because cell formation and
simultaneous resource allocation are considered, it is
an integrated CMS that is closer to reality. In the case
of the solution method, fuzzy logic is used to identify
non-dominated solutions and provide an efficient
solution representation for the proposed problem.

3. Problem formulation

Our proposed problem is a DCMS in which the number
of P-parts, M-machines, O-operations, L-tools, W-
operators, C-cells, and a set of S-skill levels are
available. In this case, each part needs a set of
operations and each operation can be performed by a

set of machines, tools, and operators. Each operator
has different skill levels for each operation with a
variable cost; each machine is placed in only one cell;
and movement between cells has a cost.

3.1. Problem statement
The main purpose of developing a bi-objective mixed-
integer model for a DCMS is to:

1. Assign a specific tool to each machine;
2. Allocate each machine to several types of tools;

3. Determine the operator that should be assigned for
processing a part on each machine;

4. Classify operators in various skill levels.

The main assumptions considered for developing a
novel bi-objective model for the DCMS are given below:

e The time required for the operator to process each
part on all the machines in known;

e The machine capacity to produce semi-product ma-
terials is known and limited;

e Several similar machines are used to respond to
capacity requirements;

e Only one operator can be allocated for processing a
part on each machine;

e It is not permitted to put repetitive tools on each
tools box;

e Assigning each tool to more than one machine is not
permitted;

¢ Life time of each tool is limited;
e Operators are classified at various skill levels;

e Each machine is allowed to be assigned to more than
one tool at the same time.

3.2. Mathematical model

Indices, parameters, decision variables, objectives, and
constraints of the novel bi-objective mixed-integer pro-
gramming model proposed for the DCMS are as follows:

Indices

P Index for parts (p=1,...,P)

w Index for operators (w=1,..., W)
m Index for machines (m = M)
) Index for operation (0 =1,. O)
¢ Index for cells (c=1,..., C)

l Index for tools (I =1,...,L)

s Index for skill levels (s€

{low, medium, high})
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Table 1. Summary of recent studies on the DCMS.

Resources

Objective Solution approach
function
01{02|03|04 |MP|H|TS|SA|A|GA|VNS|PSO|SS VDO

Defersha and Chen [7]

v

v

v

Saidi-Mehrabad and Safaei [8]

<

<

Defersha and Chen [9]

<

<

Tavakkoli-Moghaddam et al. [10]

<

Mahdavi et al. [17]

Bagheri and Bashiri [18]

<

<
<

Saidi-Mehrabad et al. [19]

<

<
<

Mahdavi et al. [11]

<

Majazi Dalfard [12]

<

Salarian et al. [14]

Bychkov and Batsyn [15]

<

<

Zohrevand et al. [16]

<
<

<

Ghotboddini et al. [36]

<

Martins et al. [37]

<

Rafiei and Ghodsi [39]

<

<

Zeidi et al. [40]

<

Shiyas and Madhusudanan Pillai [41]

<

Rezazadeh et al. [42]

Buruk Sahin and Alpay [43]

Durga Rajesh et al. [44]

<

Hajipour et al. [48]

<

Tavakkoli-Moghaddam et al. [49]

v

Hajipour et al. [50]

v

v

Hajipour et al. [51]

v

v

<SS K

Notes I: Major objectives considered by different models (shown in column 2).

O1: Maximizing cell independence (minimizing inter-cellular movements);

02: Considering costs (e.g., machine operating cost, machine modification costs, machine reconfiguration cost,

and machine setup cost);

03: Considering machine utilization;

O4: Considering operators costs (e.g., operator training cost and operator allocation cost);

Note II: Solution approaches used (shown in column 3).

MP: Mathematical Programming model; H: Heuristics;

T'S: Tabu Search; SA: Simulated Annealing; A: Ant colony optimization; GA: Genetic Algorithms;

VNS: Variable Neighborhood Search; PSO: Particle Swarm Optimization; SS: Scatter Search;

S: Simulation; F: Fuzzy theory; N: Neural networks.

2047



N. Aghajani-Delavar et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2041-2068

2048

Parameters

ABw 1 if operator w can perform specific
operations of type m machine; 0,
otherwise

AMom 1 if machine type m can perform type
o operation; 0, otherwise

Pop 1 if type o operation can be performed
on part p; 0, otherwise

Ep; 1 if tool [ can be implemented for
processing part p; 0, otherwise

LM, Minimum number of machines that
should be located in cell ¢

LP, Minimum number of parts processed
by machines of cell ¢

LW, Minimum number of operators assigned
for processing various parts on the
machines, which are located in cell ¢

NM,, Number of available type m machines
located in various cells

NL, Number of available type [ tools used
for performing various operations of
the machines located in different cells

NW,, Number of available type w operators

Tpmiwse Time of processing part p on type
m machine into cell ¢ by means of
operator w with skill levels and tools [

Cpmiwse  Cost of processing part p on type
m machine into cell ¢ by means of
operator w with skill levels and tools [

Qpomws Quality level of operator w with skill
levels to perform operation type o by
machine type m on part p

CHpeer Costs of transporting part p between
cells ¢ and ¢

THpee Time required for transporting part p
between cells ¢ and ¢’

KM, All the time that machine m is
available

KW, Time required to change the cell that
operator w is assigned to it

HP, Cost required for changing the position
of part p into the cell

HL, Processing costs of tools [ into each cell

SUpom Setup cost required for performing
operation o on tool p of machine m

Bow Learning costs of operator w to
perform operations on machine m

TS5 Number of sluts that tools [ may
occupy into tools box

MC,, Maximum number of tools assigned to

machine m

Decision variables

I

pc

Gpom

Jpoc

Xpmlwsc

WHpocc’

ZU}C

TRpw

le

Gpom
DL;
DM,
TM e

JL[C

Fpomws

1 if part p is assigned to cell ¢; 0,
otherwise

1 if operation o of part p is required
to be performed by machine m; 0,
otherwise

1 if operation o of part p is processed
in cell ¢; 0, otherwise

1 if operator w with skill level s and
tool I processes part p on machine m
into cell ¢; 0, otherwise

1 if part p is transported from cells ¢
to ¢’ when operation o is completely
processed on it; 0, otherwise

1 if operator w is assigned to cell ¢; 0,
otherwise

1 if operator w is trained to work on
machine m; 0, otherwise

1 if tools [ is assigned to machine m; 0,
otherwise

1 if operation o of part p is performed
on machine m; 0, otherwise

1 if tool [ is selected to work on a
specific machine; 0, otherwise

1 if type m machine is selected to be
assigned to a specific cell; 0, otherwise
Number of type m machines that
should be assigned to cell ¢

Number of type [ tools that should be
assigned to cell ¢

1 if operator w with skill level s is
required to process the oth operation
of part p on machine m; 0, otherwise

Objective functions and constraints

L w s C

w133 33 Y

p=1m=1[=1 w=1 s=1 c=1

T,

pmlwsc CpmlwscXpmlwsc

P C
30 (-1,
p=1 =1

C )

C
+3 3N CHpeo THyew

p=1c=1c'=1

P O M

@]
(Z WHpocc’) + Z Z Z SUpomGpom
o=1

p=10=1m=1

w M
+ > BuuT R, (1)

w=1m=1
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P
DY

Mz
M=
Mw

onmws Fpo'mws

s.t.

_ p=1o=1" 1 w=1s=1
max Z2 = W
S NW,
w=1
L C
ZZXpmlwsc SDMm vamvwvsv
=1 c=1
M C
Z ZXpmlwsc S DLl Vpal7w7s7
m=1c=1
C
Z Xpmlwsc < apomABmw Vpa m, l7 w, s,
c=1
M
> IMpe > LM, Ve,
m=1

M
> TR,.,<1 Vu,
m=1

¢ W L

Z Z Z Xpmlwsc S .DMm

c=1 w=1 [=1

L
> Vi > DM, VI,
=1

c w
Z Z Xpmlwsc < le Vp,m,l,s,

c=1 w=1

Vp? m? S?

Vm,

(10)

(11)

L
> TSV < MCy ¥, (17)
=1

M W S L
I,.=min (1,2 ZZZXpmlwsc> Vp,e, (18)

m=lw=1s=11=1

S he<t v, (19)

Apom + 1> aMop, +apop — Vp,o0,m, (20)

Jpoc + Jp(o+1)c’ <1+ WHpocc’ Vpa 0,C, clv (21)

I,. €{0,1} Vp, ¢, (22)
Ipoe € {0,1} Vp, o, c, (23)
apom € {0,1} Yp,0,m, (24)
W Hpoeer € {0,1} vp,o,c,c, (25)
Xpmiwse € {0,1} Vp,m,l,w,s,c, (26)
Zwe €{0,1}  Vuw,c, (27)
TRmw € {0,1} Ym, w, (28)
DM,, € {0,1} Ym, (29)
DL, €{0,1} Vi, (30)
Vi € {0,1} vm, 1, (31)
Grom € {0,1} Vp, 0, m, (32)
Fpomuws € {0,1} Vp, o0, m,w, s, (33)

IM e, JLie > 0 and is intger Ym,,c. (34)

The first objective function (1) includes five different
components of minimizing tools processing costs, intra-
cellular transportation costs, inter-cellular transporta-
tion costs, the machines’ setup costs, and operators’
educational costs. The second objective function (2)
is mainly designed to maximize operators’ skill level.
Constraint (3) determines whether or not a machine
can be employed in a particular period to produce
various parts. Constraint (4) determines whether a tool
is used at a time interval of manufacturing various parts
or not. Constraint (5) ensures that only one operator
can be assigned for processing a part on each machine.
Constraint (6) determines if the minimum number of
machines can be assigned to each cell. Constraint
(7) identifies the minimum number of parts that can
be assigned to each cell. Constraint (8) identify a
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lower bound for the number of operators that can be
allocated to each cell. Constraint (9) ensures that
the number of machines on each type assigned to
various cells should not go beyond a predetermined
higher bound. Constraint (10) ensures that a num-
ber of the tools on each type should not be more
than a predetermined upper bound. Constraint (11)
ensures that each operator can be trained to work
on only one type of machine available on different
cells. Constraint (12) ensures that machine preparation
should be performed before starting different types of
operations. In other words, this constraint ensures
the readiness to operate when processing various types
of operations. Constraint (13) ensures that at least
one operation should be executed when performing
setup activities of that machine has been previously
completed. Constraint (14) implies that each tool can
be assigned to more than one machine. Constraint (15)
implies that each machine can be assigned to several
tools at the same time. Constraint (16) ensures
the satisfaction of the relations between two types of
decision variables. Constraint (17) ensures the capacity
satisfaction of the tools box assigned to each machine.
Constraints (18) and (19) are mainly used to guarantee
the processing of part p into cell ¢. Constraint (20)
implies that an operation can be assigned to each part
and machine if processing that operation on the part
is needed and the machine can process the operation
on the part. Constraint (21) implies that inter-
cellular transportation should be performed when two
consecutive jobs are simultaneously performed on two
various cells. Constraints (22)—(33) are mainly used to
identify various binary decision variables of the model.
Finally, Constraint (34) is mainly used to define the
positive and integer variables of the model.

Each objective function is solved without consid-
ering the other objective function and after solving
it, the other objective function solution is obtained.
Given that the first objective function is to minimize
costs and the second objective function is to maximize
quality, the conflict between the objectives is shown in
Figure 1.

1600
1400
1200
1000

800

Cost

600

400
200

0.63 0.92
Quality

Figure 1. Conflict of the objectives.

4. Solution method

4.1. Solution representation

A novel solution structure is presented in this section
to ensure the satisfaction of all the constraints and
generate feasible solutions. This structure includes c+6
rows and ¢+ w+m columns, where ¢, w, and m are the
number of cells, number of operators, and number of
machines, respectively. All the numbers are randomly
generated between 0 and 1. The numbers shown in
various vectors and columns of this structure are not
significant. So, a decoding procedure is developed into
six different steps to satisfy all the constraints and
determine the main purpose of using these numbers.
A small example with two cells, three machines, six
tools, four parts, and four operators is presented in
this section to demonstrate the procedure of satisfying
constraints. According to this example, all the tools
and machines can process different types of operations
on the parts, which are assigned to different cells
based on specific types of operations needed to be
performed on their physical structure. According to
the model’s main assumptions, the solution structure of
this example is shown in eight vectors and 13 columns,
as shown in Figure 2.

In the first section of the decoding structure, we
need to consider the first ¢ rows of solution structure for
determining the best possible assignment of machines,
tools, and operators. The first step of this section
begins by considering a counter with zero initial value
and adding one unit to it when a machine is assigned
to each cell. Therefore, the last value of this counter
equals three since the example considered in this
section includes three machines.

Firstly, the first three elements of these vectors
will be separated. Then, numbers that are higher than
0.5 will be replaced with 1 and the other numbers will
be replaced with zero. In the case that all the numbers
are lower than 0.5, the biggest number will be replaced
with one and the others will be changed to zero. This
process is shown in Figure 3. This figure shows that
Machine 1 should be assigned to cell 1 and the other
two cells should be assigned to cell 2.

The second step of this section concerns assigning
various operators to each cell. To this end, the numbers
located between counter +1 and counter +w of vectors
1 and 2 will be separated. We assume that the rows
and columns of separated numbers are indicators of
cells and operators. So, the numbers less than 0.5
will be replaced with O while the other numbers will
be replaced with 1. If no operator is assigned to one
cell, the largest number will be replaced with one and
the other numbers will be equal to zero. This process
ensures the fact that at least one operator should
be assigned to each cell. The process of operators’
assignment is schematically shown in Figure 4.
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Machine, tool and operator 055 035 011 025 061 078 043 031 017 092 054 067 026
assignment to cell 045 074 098 042 035 087 091 064 042 073 037 08 0.1
Weight 035 031 008 035 041 087 027 015 082 06 052 047 038
Part assignment 058 0.6 026 065 068 074 045 0.14 098 029 007 054 032
Cell assignment 015 019 041 075 082 079 032 071 062 067 071 082 047
Tool assignment 049 0.8 0.14 042 092 079 096 047 024 039 031 084 074
Machine assignment 0.03 044 038 077 080 019 049 045 065 071 075 028 0.68
Operator assignment 0.66 016 0.12 050 096 034 059 022 075 026 051 070 0.89

2051

Figure 2. Representation of the solution structure.
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Figure 3. Process of assigning machines to different cells.

Celll 02 0.6 0.7 0.1 |
Celz 04 03 08

Figure 4. Schematic representation of assigning
operators to the cells.

Cell 2 06 04 0.7 03 0.8 0.1
Weight 0.1 0.8 06 05 0.4 03
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Cell 1 0.33 0.20 0.56 0.63 0.43 0.67
Cell 2 0.67 0.80 0.44 0.38 0.57 0.33
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1 3 2 2 2

| Cenz 1 4 3 2 2 1

Figure 5. Schematic representation of allocating tools to
cells.

The last step of this section is related to tools
assignment. This step begins with separating the last
counter+ w + 1 element of the first ¢ + 1 rows. Then,
a process similar to the ones applied for machines and
operators’ assignment will be performed in this step to
identify the tools that should be assigned to various
cells. This process is schematically shown in Figure 5.

The second section of the decoding structure is
assigned to determining part assignment. This section
is concerned with the need to perform 2, 2, 1, and 2
operations on four various parts. So, the first seven
(i.e., 2414242) elements of the row ¢ + 2 need to be
separated. This section is performed into four steps
to assign each part to the required operations that
should be performed on that part. To do so, separated
numbers are sorted in ascending order and the first two
positions are replaced with one (because two operations
should be performed on part one). This process will be

| Part 2 2 1 1 1 1 1
| Operation 1 1 1 1 1 1 1

Figure 6. Process of assigning parts to operations.

Figure 7. Process of assigning parts and operation to
various cells.

Tool 3 5 1 3 6 5 6

Figure 8. Process of assigning tools to parts and cells.

pursued until all the parts are assigned to their required
operations. This process is mainly shown in Figure 6.

The third section of the decoding structure is
related to assigning parts and operations to different
cells. The number of activities required for processing
various parts on each cell equals seven. So, this
section begins with separating the first seven elements
of vector ¢+3. Then, the integer number obtained from
multiplying the number of cells by separated elements
of vector ¢ + 3 should be rounded up. The result of
performing this procedure is shown in Figure 7.

The fourth section of the decoding structure is
related to assigning tools to various parts and cells.
This process starts with defining a set of N numbers.
The ceil integer number resulting from multiplying IV
by numbers of vectors ¢+4 is called A. Then, the A-th
member of tools set is assigned to its pertinent part
and cell. This process is shown in Figure 8.

The fifth section of the decoding structure is
related to assigning operations to different machines
located in two cells. To do so, a machine set with
M members should be defined. Then, the ceil integer
number obtained by multiplying the elements of ¢ + 5
vector by M is called A. Then, the A-th member
of the machine set should be assigned to its relevant
operation. This process is shown in Figure 9.

The sixth section of the decoding structure is
related to assigning operators to machines. To this end,
an operator set with M’ member should be defined in
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1003 044 038 077 08 019 049
Machine 1 1 1 3 3 2 1

Figure 9. Process of assigning machines to operations.

1066 016 012 05 096 034 059
Operator 3 2 2 3 4 3 3

Figure 10. Procedure of assigning operators to machines.

each step of performing operator assignment. The ceil
integer number obtained by multiplying the elements
of vector ¢+ 6 by a number of elements of the operator
set is called A. Then, the Ath element of the operator
set should be assigned. This procedure will be pursued
until all the operators are assigned to their pertinent
machines. This process is shown in Figure 10.

4.2. MOVDO algorithm

The model proposed in this paper to formulate a
DCMS is strictly NP-hard and exact algorithms cannot
solve various test problems of the proposed model
in a reasonable computational time. Therefore, an
MOVDO algorithm is developed in this section to
determine near-optimal solutions of the model’s dif-
ferent test problems in a reasonable time. Also, three
other solution algorithms (i.e., NSGA-II, MOPSOQO, and
MOIWO) are considered to validate the performance
of the proposed MOVDO algorithm in solving small-,
medium-, and large-scale instances.

The MOVDO algorithm was firstly proposed by
Mehdizadeh et al. [52] and developed by Hajipour
et al. [53]. The main concept of this algorithm is
inspired by a damping feature of mechanical vibra-
tions. According to this algorithm, there is a logical
relationship between hybrid optimization (finding the
minimum value of an objective function subject to some
realistic constraints) and the behavior of a fluctuating
system in a damping position. When the energy
source of an oscillator is interrupted, the oscillation
range is reduced gradually and the oscillation process
stops at the end. This process is called damping.
The elastic properties of some special materials along
with probability principles are embedded into the main
structure of this algorithm to generate a new solution
on each iteration and seek other neighborhood regions
to find a better solution.

This algorithm is implemented into four various
steps of decoding problem, defining fitness function,
defining the mechanism of exploring neighborhood
solution areas, and defining vibration damping proce-
dure. A descending function is used to determine the
reduction rate of oscillation rate into various iterations.
According to this function, there is a reverse relation-
ship between the oscillation domain and the possibility
of generating a larger number of solutions. Also, this
function is mainly embedded in the main structure

of the algorithm to reduce the oscillation range into
various iterations. Therefore, the rate of generating
solutions into various iterations should be reduced. The
displacement relationship of the vibration theory can
be used as the basis of computing vibration damping
into a different iteration. Mathematical presentation
damping vibration into different iterations is obtained
as follows:

—.t

At = Aoe 2, (35)

where A, Ag, ~, and ¢ are the oscillation range, initial
oscillation range, damping coefficient, and a number of
iterations of damping loop, respectively.

A damping coefficient is a parameter of control-
ling the reduction rate of the oscillation rate. The value
assigned to this parameter is in inverse relation with
the reduction rate of the oscillation rate. Therefore,
choosing an appropriate value of this parameter to
achieve appropriate solutions in a reasonable time is
very significant. The other factor that has a great influ-
ence on both solutions’ quality and computational time
is the number of iterations that should be performed
to reach the best possible solution. Increasing the
number of iterations enables the algorithm to explore
more feasible solution areas and obtain more solutions.
Also, the main consequence of increasing the number of
iterations increases the algorithm’s convergence time.
However, increasing the level of this parameter may not
necessarily enhance the quality of the best solutions
obtained through different iterations. Another factor
that has an particular effect on the performance of the
proposed MOVDO algorithm is the stopping criterion.
Different conditions can be considered as factors in
stopping the algorithm’s implementation process. One
of these factors is the maximum number of iterations.
Another factor is to get zero value of the oscillation
range. The best value of these factors should be
calculated systematically to retain the algorithm’s ap-
propriate convergence and ensure its well performance
to achieve proper solutions.

To explain the trend of the proposed algorithm,
a pseudo code of MOVDO is exhibited, as shown in
Figure 11. Figure 12 shows the pseudo-code of non-
dominated sorting by the fuzzy concept.

4.8. Other meta-heuristic algorithms

Since there is no benchmark available to measure
the performance of the proposed algorithms, three
other meta-heuristic algorithms are developed with a
similar solution structure to evaluate the performance
of the proposed algorithm in solving the model’s small-,
medium-, and large-sized instances.

4.8.1. Non-dominated Sorting Genetic Algorithm-I1
(NSGA-II)
NSGA-II proposed by Deb et al. [54] is used to
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Begin

Initialize (X; A; Landt,t =1);
Evaluate solutions
Calculate the crowding distance (CD)
Sort population according to ranks and CDs
For j=1:nPop
P, = population
For i=1:L

A=E(Y)-E(X);

1fA<O or (1—e> > Random(0,1))

End if
Update (4 and t, A= Ae™?, t=t+1)

Until (Stop-Criterion)
End for
0, = new population

R, =FVQ,

Calculate the CD of Rj

End for
End

Input nPop (Population number, 7 (damping coefficient); and o (Rayleigh distribution constant)

Perform non-dominate sorting by fuzzy concept according to fig. 12 and calculate ranks

Y = PERTURB(X); {Generate a new neighborhood solution}

Then, X =Y ; {Accept the movement if dominates final Pareto solution}

Perform non-dominated sorting on R/ and calculate ranks

Sort population according to ranks and CDs on Rj

Create Pj+1 as size as population size (population= f;ﬂ )

Figure 11. Pseudo code of MOVDO.

For k=1:n
u(k)=0
fori=1:n
ui)=1
for j=1:m

ifyz(g)_Y/(g)<0

dom ([ _F
e (xk< [,x,)=0
elseif y; (;,)—yj ()c—k)<pj

i <75 2 fE)

Hi i
D;

else

e (5< Fi;,)=1

//calculate fuzzy J-dominance per solution in the population //

// compute fuzzy J-dominance per solution //

dom = _F dom [ _ T dom [ _ T
H (xk< x[):ﬂ (xk< x/)xﬂ, (xk< ,x/)

End

om ;> _ om = _ T

(k)= (k) + 1" (xp < x) = pu(l)x " (3 < x,)
End
End
End

Figure 12. Pseudo code of non-dominated sorting by the fuzzy concept.

evaluate the quality solutions obtained by the proposed
MOVDO. This algorithm was developed based on the
crowding distance and non-dominance techniques to
determine better solutions and find the best possible
Pareto front. This algorithm employs crossover and
mutation operators to generate new solutions. Then,

combinations of offspring and previously generated
solutions are conveyed to the next generation.

Non-dominance technique
The model proposed in this paper includes two con-
flicting objectives. We assume that X; and X, are
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two different solutions obtained by NSGA-II. Solution
X1 can be dominated by solution X, if the following
conditions are completely satisfied:

e The fitness value of solution X; should not be the
worse fitness value of solution Xo;

e At least for one objective, the fitness value of
solution X7 is better than the corresponding fitness
value of solution Xs.

The solutions that are not dominated by other solutions
are classified as the first Pareto front, and the solutions
that are merely dominated by solutions of the first
Pareto front are classified as the second Pareto. This
process is pursued until all the solutions are classified
on their appropriate Pareto front.

Crowding distance

This technique is mainly used to calculate the density
of the solutions categorized on different Pareto fronts.
This technique computes the distance of each solution
from its neighboring solutions. The following formula
can be used to compute the crowding distance value of
each solution in a two-dimensional solution space:

k P
CD Z f],7,+1 j7’L 1 ’ (36)

max ]7 min

where the number of objective functions, value of the j-
th objective of solutions 1+1 and ¢ —1 located on the p-
th Pareto front, and the minimum and maximum values
of the objective j obtained into Pareto p are denoted

P P P P 3
by k, f7iv1s i ic1s J5 maxe and f7 i, Tespectively.

Binary tournament selection operator

This operator is mainly used to select parent solutions
of the crossover operator. According to this method,
two members are randomly generated and members
with a lower rank are chosen as a parent solution. If
there is no difference between the ranks of the randomly
selected solution, the one with a higher crowding
distance value will be selected as a parent solution.

4.3.2. Multi-Objective Particle Swarm Optimization
(MOPSO) algorithm

This algorithm was first developed to solve multi-
objective constrained and unconstrained optimization
problems by Coello et al. [55]. The procedure of this al-
gorithm starts by generating random feasible solutions.
Then, an update position mechanism is employed to
improve the quality of solutions generated in various
iterations. A repository archive is used to keep non-
dominated solutions. Then, the solutions generated
by the non-dominance technique are removed from the
repository.

Update position
The main focus of the MOPSO algorithm is to use

the following equations to update the position and
velocity of the particles into two-dimensional feasible
solution space. This mechanism enables the algorithm
to enhance the quality of solutions through various
generations.

VI =W x V! + Oy x 1y x (Pbest! — X})
+ Cy x 73 X (gbestt — X1, (37)
X = X4 v (38)

where X!T1 X! VItV Pbestt, gbest! | Cy, Cs,
r1, ro and W represent a personal position of particle
1 into iterations ¢t and t + 1, the velocity of particle ¢
into iterations ¢ and ¢+ 1, the best personal memory of
particle ¢ into iterations ¢, personal and global learning
coefficients, random numbers generated between [0 1],
and inertia weight, respectively.

Leader selection

The process of selecting a leader solution begins with
classifying repository members into different grids.
Then, a roulette wheel mechanism is used to elaborate
on the possibility of choosing a grid with lower density.
One of the members of the chosen grid is selected
randomly to be known as a leader solution.

4.8.8. Multi-Objective Invasive Weeds Optimization
(MOIWO) algorithm

MOIW algorithm is developed with the same solution
structure to validate the performance of the proposed
MOVDO algorithm in solving small- to large-scale
problems. MOIWO is a population-based algorithm
that works based on the behavior of invasive weeds.
Similar to particles of MOPSO, invasive weeds of this
algorithm are expanding and generating new weeds
into the earth’s surface by their pruning method.
Firstly, they find appropriate farmlands to generate
new weeds. According to this algorithm, the seeds
that are scattered into special lands to be turned into
invasive weeds. Consequently, a new set of invasive
weeds will be generated around original weeds. The
weeds with a greater growth into different segments
of farming lands have more chances to survive. This
issue leads to an increase in the fertility rate in the
vicinity of these invasive weeds. Also, the main result
of increasing the number of sprouts is a systematic
reduction of both parent members and the distance
between newly germinated invasive weeds.

In this paper, because of the good performance
of MOIWO in Nabovati et al. [56], Keramatpour
et al. [57], and Nabovati et al. [58], this algorithm
was selected as an indicator for the efficiency of the
MOVDO algorithm.

The main steps for implementing the MOIWO
algorithm are as follows:
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e Random generation of initial solutions and evalua-
tion of their fitness values;

e Use of a fuzzy ranking method to prioritize popula-
tion members;

e Permitting each member to generate several seeds
with better population members. The seeds are
generated based on the following equation:

Seedsi :flOO’I’ (Smin + (Smax - Smin)'

) e

where seeds;, Smin, Smax, P, Tank; are the number
of seeds generated by the i-th population member,
minimum and maximum numbers of seeds gener-
ated by each seed, number of initial population,
and grade of the ith member of the population,
respectively.

e Increasing the breeding rate based on competition
and update of standard deviation. The following
equation is used to compute the standard deviation:

Oinitial — 0 final

e : n
Citer = (1termax —iter)” . —— -
1€ max

—0 final,(40)
where the index of the nonlinear formulation is denoted
by n. The value of this parameter plays a crucial role
in obtaining suitable solutions.

5. Performance metrics and parameter setting

5.1. Performance metrics

Six various metrics are considered in this section to
evaluate the performance of the proposed algorithms.
These metrics are listed as follows:

5.1.1. Mean Ideal Distance (MID)

This metric is mainly used to compute the distance
of the Pareto solutions from an ideal solution. The
solutions with a higher MID value will be better than
the other solutions. The corresponding value of this
metric is calculated as follows.

n 2 2
» ( fli—flpest ) + ( F2i—f21ee )
MID— =t S = e f2 =2

" (41)

where f1min = f1max - and p are the smallest and
largest values of all the solutions obtained by the
developed algorithm and the number of non-dominated
solutions, respectively [59].

5.1.2. Spacing Metric (SM)
This metric is mainly used to compute the uniformity of

the solutions obtained by the algorithm. The solution
with a lower spacing value will have a higher priority.
The value of this metric is computed as follows [60]:

n—1
X |d - dil
(n—1)d
where d; and d are the Euclidean distance between iter-
ative solutions of the non-dominated solutions obtained
by the algorithm, respectively.

5.1.8. Diversification Metric (DM)

This metric is used to compute the extension of the
obtained non-dominated algorithms [61]. The solution
with a higher value of this metric will have better
quality. The corresponding value of this metric is
computed by:

max min \2 max min \2
DM = \/(f]‘total - f]‘total) + (f2total - f2total)( ) )
43

max min max min
where f]‘total7 f]‘total7 fztotal’ and f2total are the
maximum and minimum values of the first and second

objectives, respectively.

5.1.4. Spread of Non-dominated Solutions (SNS)

This metric is mainly used to calculate the diversity of
the obtained non-dominated solutions. The solutions
with higher values of this metric will have better
quality. The value of this metric is computed by [61]:

n'

S (MID - Cy)?

SNS =1\| =2 T , (44)

where:

C; =1/ fi7 + foi’

5.1.5. Central Processing Unit (CPU) time
This metric is mainly used to compute the computa-
tional time required for solving various test problems.

5.2. Parameter setting

All the parameters used in this paper can be divided
into two parts including the parameters of the model
and algorithm. This section is devoted to tuning these
parameters.

5.2.1. Structure of the model’s parameters

Thirty different test problems are randomly generated
to evaluate the performance of the developed algo-
rithms that are categorized based on number of cells
(C), number of parts (P), number of skill levels (.5),
number of operations (O), number of tools (L), number
of workers (W), and number of machines (M). All the
problems are solved three times and their average is
used for evaluating the performance of the developed
algorithms. The main features of these problems are
shown in Table 2.
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Table 2. General data on test problems.

Problem P C L O W M T
1 4 2 3 2 2 3 10
2 4 2 3 2 2 3 10
3 4 2 3 2 3 3 10
4 6 2 3 2 2 3 10
5 6 2 3 2 2 3 10
6 8 2 3 2 2 3 10
7 8 2 3 3 2 3 10
8 0 2 3 3 3 4 10
9 0 2 3 3 3 4 10
10 12 2 3 3 3 4 10
11 12 2 3 3 3 4 10
12 15 3 3 4 3 4 15
13 15 3 3 4 3 4 15
14 20 3 3 4 4 5 15
15 20 3 3 4 4 5 15
16 25 3 3 4 4 5 15
17 25 3 3 4 4 5 15
18 30 3 3 4 4 5 15
19 30 3 3 4 4 5 15
20 40 3 3 4 5 6 15
21 40 3 3 4 5 6 15
22 45 4 3 5 5 6 20
23 45 4 3 5 5 6 20
24 50 4 3 5 5 6 20
25 50 4 3 5 5 6 20
26 5 4 3 5 6 7 20
27 60 4 3 6 6 7 20
28 60 4 3 6 6 7T 20
29 70 4 3 6 6 7T 20
30 70 4 3 6 6 7 20

5.2.2. Tuning algorithm parameters

The Taguchi method that is firstly proposed by
Taguchi [62] is mainly used to calibrate the perfor-
mance of the proposed meta-heuristic algorithms. This
method can be used as an alternative of a full factorial
experimental method to determine the best level of
parameters in a reasonable computational time. The
factors used in this method can be divided into two

groups: controllable and noise factors. The main
purpose of this method is to determine the best
controllable level so that the effect of the noise factor
is minimized. To do so, a signal-to-noise ratio is
used to investigate the performance of the developed
algorithms and determine the best level of parameters.
This ratio indicates the response variable’s deviation
and its corresponding value is calculated by:

(S/N) = —10log (5(52)) 7 (45)

where Y and n are the response variables and a number
of orthogonal arrays, respectively.

Since the model presented in this paper belongs
to a class of multi-objective problems and the solu-
tions obtained in each experiment are presented in
the form of Pareto solutions, a response variable of
each experiment is considered as a combination of the
metrics used for evaluating algorithms’ performance.
Therefore, the response variable presented by Rahmati
et al. [63], which encompasses two main features of
the meta-heuristic algorithms (convergence and diver-
sification), is used as a response variable of different
experiments determined by the Taguchi method. The
main advantage of using this response is to consider
convergence and divergence features of the developed
solution algorithms. Therefore, the following equation
is employed to calculate the response values of different
experiments:

MOCV = MID/DM, (46)

where MID and DM are indicators of convergence
and divergence features of solutions algorithms, respec-
tively.

To use the Taguchi method, three different levels,
as shown in Table 3, are defined for each factor. Then,
Minitab software is used to calculate optimal values of
the S/N ratio. According to this software, L° design
is used for evaluating the performance of the NSGA-
II and MODVO algorithms; meanwhile, L2 design is
used for evaluating the performance of the MOIWO
and MOPSO algorithms. Orthogonal arrays of designs
and their corresponding response values are shown in
Tables 4 to 7.

Each design is implemented three times and their
mean is used as a response value. The corresponding
value of the S/N ratio for each algorithm is shown in
Figure 13.

6. Computational result

Experimental outputs of four developed algorithms
on solving 30 different test problems in terms of five
different metrics are shown in Table 8  Also, the
average of the results in terms of previously defined
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Table 3. Algorithm parameter ranges along with their levels.

Ml;g;;)z‘ii::ve Parameters Parameter level OI:::::Zm
Level 1 Level 2 Level 3
Pc 0.7 0.8 0.9 0.9
NSG AT Pm 0.1 0.15 0.2 0.2
N-pop 100 150 200 100
Max iteration 5x N 10+ N 15+« N 15+« N
Ch 1 1.4962 2 2
Cs 1 1.4962 2 2
w 0.6 0.7298 0.9 0.6
MOPSO N-Particle 100 150 200 100
Max It 5% N 10« N 15+ N 15+« N
N-Rep 50 70 100 70
N-Grid 5 8 10 5
P-Max 100 150 200 100
Initial sigma 0.3 0.4 0.5 0.5
Max iteration 5% N 10 N 15% N 5% N
N-Pop 100 150 200 200
MOIWO Final sigma 0.01 0.03 0.05 0.01
S-Min 1 2 3 3
S-Max 5 8 10 5
N 2 3 4 4
KF 1 2 3 1
N-Archive 100 150 200 200
N-Pop 100 150 200 100
Max It 5% N 10+ N 15+« N 15+« N
MOVDO Gamma 0.005 0.05 0.5 0.005
Sigma 1 1.5 2 1.5
A 6 8 10 6

metrics for small-, medium-, and large-scale problems
are shown in Table 9. The problems are classified
into three groups of small-, medium-, and large-scale
problems. According to this classification, Problems
1 —10, 11 — 20, and 21 — 30 are considered small-,

medium-, and large-scale problems, respectively. All
the problems are coded in MATLAB software. Also,
they are solved using a PC with CoreI2 CPU and 2 GB
RAM. Moreover, the trends of all metrics over different
test problems shown in Figure 14 reveal that MOVDO
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Table 5. Computational results to tune the NSGA-II.
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Table 4. Computational results to tune MOIWO.

OI:::r Max-It N-Pop P-Max Isilg“r;:: sli‘;rrlzzli S-Min S-Max n KF N-Archive MOCV
1 1 1 1 1 1 1 1 1 1 1 0.107
2 1 1 1 1 2 2 2 2 2 2 0.1134
3 1 1 1 1 3 3 3 3 3 3 0.0589
4 1 2 2 2 1 1 1 2 2 2 0.1139
5 1 2 2 2 2 2 2 3 3 3 0.0943
6 1 2 2 2 3 3 3 1 1 1 0.0568
7 1 3 3 3 1 1 1 3 3 3 0.0695
8 1 3 3 3 2 2 2 1 1 1 0.0883
9 1 3 3 3 3 3 3 2 2 2 0.117
10 2 1 2 3 1 2 3 1 2 3 0.1175
11 2 1 2 3 2 3 1 2 3 1 0.061
12 2 1 2 3 3 1 2 3 1 2 0.1179
13 2 2 3 1 1 2 3 2 3 1 0.117
14 2 2 3 1 2 3 1 3 1 2 0.084
15 2 2 3 1 3 1 2 1 2 3 0.106
16 2 3 1 2 1 2 3 3 1 2 0.0599
17 2 3 1 2 2 3 1 1 2 3 0.0795
18 2 3 1 2 3 1 2 2 3 1 0.1141
19 3 1 3 2 1 3 2 1 3 2 0.1055
20 3 1 3 2 2 1 3 2 1 3 0.1172
21 3 1 3 2 3 2 1 3 2 1 0.0959
22 3 2 1 3 1 3 2 2 1 3 0.0525
23 3 2 1 3 2 1 3 3 2 1 0.1094
24 3 2 1 3 3 2 1 1 3 2 0.1154
25 3 3 2 1 1 3 2 3 2 1 0.0975
26 3 3 2 1 2 1 3 1 3 2 0.103
27 3 3 2 1 3 2 1 2 1 3 0.102

Run order P:r Pmut Max-It N-Pop Response

1

© o0 1 O Ot = W N

1

1
1
2
2
2
3
3
3

1

W N =W NN R W

1

2
3
2
3
1
3
1
2

1

0.069674
0.10049
0.056383
0.06884
0.094097
0.063253
0.078815
0.07052
0.063952

has better performance in terms of small-, medium-,
and large-scale MID, DM, and CPU time metrics.
Also, there is no meaningful difference between the
performances of the developed algorithms in terms of
SM and SNS metrics.

6.1. Ranking algorithms

A Multiple Attribute Decision Making (MADM)
method is developed in this section to evaluate the
overall performance of the developed algorithm and
determine the algorithm with a higher performance in
solving small-, medium-, and large-scale problems. To
do so, an AHP-PROMETHEE method is used in this
section to determine the overall priority of algorithms
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Table 6. Computational results to tune MOPSO.

Run C; C: W Max-It N-Pop N-Rep N-Grid Response
order
1 1 1 1 1 1 1 0.054988
2 1 1 1 1 2 2 0.073798
3 1 1 1 1 3 3 0.065228
4 1 2 2 2 1 1 0.085455
5 1 2 2 2 2 2 0.066644
6 1 2 2 2 3 3 0.067903
7 1 3 3 3 1 1 0.07864
1 3 3 3 2 2 0.067293
9 1 3 3 3 3 3 0.068945
10 2 1 2 3 2 3 0.101934
11 2 1 2 3 3 1 0.08617
12 2 1 2 3 1 2 0.068239
13 2 2 3 1 2 3 0.080162
14 2 2 3 1 3 1 0.063967
15 2 2 3 1 1 2 0.080303
16 2 3 1 2 2 3 0.059683
17 2 3 1 2 3 1 0.071043
18 2 3 1 2 1 2 0.083273
19 3 1 3 2 3 2 0.058213
20 3 1 3 2 1 3 0.069766
21 3 1 3 2 2 1 0.059577
22 3 2 1 3 3 2 0.072366
23 3 2 1 3 1 3 0.070046
24 3 2 1 3 2 1 0.061728
25 3 3 2 1 3 2 0.083507
26 3 3 2 1 1 3 0.059169
27 3 3 2 1 2 1 0.057342
in terms of previously defined metrics. According to are shown in Table 10.
this method, metrics and algorithms are considered as n
criteria and alternatives. This procedure is performed Z fij
at two different phases: determining criteria weights w; = % (47)

and ranking alternatives to identify the algorithm with
better performance in solving various test problems.
The computational procedure of the Analytical Hierar-
chy Process (AHP) method starts by aggregating the
opinions of three different experts to define the initial
decision matrix. Then, the following formula is used to
determine the relative weights of metrics. The results

The preference ranking organization method for en-
richment evaluation technique (PROMETHEE) is used
to rank alternatives based on the weights of criteria
obtained by AHP. This method employs preference and
indifference words to determine the overall performance
of algorithms. Also, a pairwise comparison matrix of
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Table 7. Computational results to tune MOVDO.

A Sigma Gamma Max-It N-Pop MOCV
Run 1 1 1 1 1 1 0.096598
Run 2 1 1 1 1 2 0.10548
Run 3 1 1 1 1 3 0.060166
Run 4 1 2 2 2 1 0.108211
Run 5 1 2 2 2 2 0.088769
Run 6 1 2 2 2 3 0.059021
Run 7 1 3 3 3 1 0.071328
Run 8 1 3 3 3 2 0.084099
Run 9 1 3 3 3 3 0.107389
Run 10 2 1 2 3 1 0.114387
Run 11 2 1 2 3 2 0.066034
Run 12 2 1 2 3 3 0.107968
Run 13 2 2 3 1 1 0.109632
Run 14 2 2 3 1 2 0.079993
Run 15 2 2 3 1 3 0.100861
Run 16 2 3 1 2 1 0.059857
Run 17 2 3 1 2 2 0.077809
Run 18 2 3 1 2 3 0.107935
Run 19 3 1 3 2 1 0.096043
Run 20 3 1 3 2 2 0.107713
Run 21 3 1 3 2 3 0.088635
Run 22 3 2 1 3 1 0.056473
Run 23 3 2 1 3 2 0.101529
Run 24 3 2 1 3 3 0.104666
Run 25 3 3 2 1 1 0.094701
Run 26 3 3 2 1 2 0.094234
Run 27 3 3 2 1 3 0.093068

alternatives with respect to each criterion is performed
based on a predefined superiority function in the range
of [0 1] to identify the domination of alternatives. The
following formula is used to define the dominance of
two different alternatives (a and b) with respect each
other:

Pj(a,b) = Pd;(a,b)]. (48)
The main steps of PROMETHEE to determine the

overall performance of the developed algorithms are as
follows:

e Determine the difference of alternatives with respect
to each metric. The following formula is used to

compute the difference between alternatives:

dj(a.b) = fj(a) — f;(b). (49)

This term is useful for both positive and negative
metrics in which the following conditions are satis-
fied:

fi(a) > f;(b): For positive metrics,

fi(a) < f;(b): For negative metrics.
Compute the superiority function of alternatives.

Eq. (48) is used to compute the corresponding values
of this function.
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Figure 13. S/N ratio plots of the proposed algorithms.

Compute the weighted sum of the superiority func-
tion. The following equation is used to calculate the
corresponding weighted sum values of superiority
functions for each alternative:

k

7(a,b) = Z P;(a,b)w;, (50)
k

7(b,a) = ij(b, a)w;. (51)

Compute the positive output stream that is mainly
used to compute the dominance rate of each alterna-
tive compared to other alternatives. The algorithm
with a higher value of this term will have greater
priority. The following formula can be used to
compute this term:

() = —— 3 wla,x). (52
z€EA

Compute the negative input stream. This term is
mainly used to compute the superiority of other

algorithms over each algorithm. The algorithm with
a lower value of this term will have a higher rank.
The following formula can be used to compute this
term:

1
07(a) = —= > (x,a). (53)
z€EA

Compute pure stream. This term is mainly used
to compute the overall priority of alternatives and
select the algorithm with higher performance in
solving small-, medium-, and large-scale problems.
Using this term, the alternative with a higher value
of this term will be selected as the best algorithm.
The following formula is used to compute the corre-
sponding value of this term for all alternatives and
select the best one.

#la) = ¢"(a) — ¢ (a). (54)

The result of implementing this method on decision
lab software is shown in Tables 11 to 13. The results
show that the proposed MOVDO algorithm has a
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Table 8. Experimental outputs of the four algorithms.
problen, | NSGA-TI MOPSO MOIWO MOVDO cfnp;i:;’;t
no. MID DM MID DM MID DM MID DM MID DM
1 7465 1717 6249 1731 6645 5767 5352 6033 4963 6324
2 9913 1196 5827 1559 5597 4273 5223 4579 5121 4734
3 14564 941 6698 1733 5793 3729 6255 4144 5989 4326
4 13739 2303 7886 3298 8864 5684 7636 6912 7432 7048
5 10871 2419 7926 3497 10687 7057 7916 8152 NA NA
6 19984 4964 11497 6815 14170 8096 11625 11411 NA NA
7 21487 2488 8460 5898 11039 6361 9884 8773 NA NA
8 19277 11706 15020 12833 20296 9552 14808 17663 NA NA
9 22196 5539 13183 8481 17103 8104 13556 12408 NA NA
10 37766 6732 23012 7744 17214 7880 18271 13193 NA NA
11 28346 3915 26075 8452 27471 10291 17787 13546 NA NA
12 37418 7294 29301 9825 26240 12052 23192 12561 NA NA
13 42791 5648 34439 11433 32463 15167 25732 14599 NA NA
14 42954 7077 35167 12446 34403 15444 25000 17759 NA NA
15 132823 9055 52895 11897 30122 13061 30051 19085 NA NA
16 48165 12640 40868 15306 43593 19393 25169 16539 NA NA
17 98524 32998 61609 21040 53810 16581 39997 33013 NA NA
18 90276 22102 53644 17491 46007 16721 33559 25285 NA NA
19 82186 14695 65641 25333 62694 26905 47617 37003 NA NA
20 99153 19250 72104 22182 65561 22593 52168 26215 NA NA
21 188951 24971 109700 28009 87827 25198 72899 27780 NA NA
22 142737 18937 103019 27639 94712 25775 73693 40921 NA NA
23 141422 15764 115137 30184 112730 27655 84853 38345 NA NA
24 153682 14666 123346 29297 116905 30575 92061 42174 NA NA
25 165284 11982 137614 29682 130089 34434 104849 43615 NA NA
26 182542 19126 142904 33022 138162 34411 103916 49791 NA NA
27 205600 24928 155329 36554 152827 36318 109377 39088 NA NA
28 161726 18356 124264 28990 121245 29471 88872 35475 NA NA
29 129380 14685 99411 23192 96996 23577 71098 31460 NA NA
30 226317 15486 133090 31137 162490 24731 137523 44645 NA NA
Prople | NSGA-II MOPSO MOIWO MOVDO Cfnf;sti::;t
no. SM SNS SM SNS SM SNS SM SNS SM SNS
1 270 2064 255 3053 1350 4921 805 8395 954 8832
2 203 3460 268 2958 969 3587 606 9555 1016 1104
3 182 5626 339 3520 804 3049 540 12837 897 15859
4 497 4132 602 2677 1132 4806 846 10805 1256 12865
5 700 1934 651 1117 1442 6232 1057 6912 NA NA
6 979 5404 1226 2973 1373 6731 1250 13820 NA NA
7 468 7028 1202 1428 1025 5179 967 13716 NA NA
8 2069 2897 2110 3151 1087 7656 1591 11009 NA NA
9 1003 5224 1432 2140 1243 6791 1252 12758 NA NA
10 1548 7798 1311 4968 1340 7869 1104 6969 NA NA




N. Aghajani-Delavar et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2041-2068

Table 8. Experimental outputs of the four algorithms (continued).

NSGA-II MOPSO MOIWO MOVDO Epsilon
Problem constraint
no. SM SNS SM SNS SM SNS SM SNS SM SNS
11 741 4203 1455 3848 2020 9525 989 8109 NA NA
12 1452 6078 1723 4795 2181 11484 1141 6900 NA NA
13 1274 6005 2278 5575 3372 15902 1126 8634 NA NA
14 1174 7895 1584 5857 1944 11975 1256 9684 NA NA
15 4126 18855 3012 22825 3271 12041 1837 12381 NA NA
16 2659 9259 2938 7155 3424 16514 2315 10457 NA NA
17 11223 23784 4227 13668 2864 17306 1836 15714 NA NA
18 7235 24441 3597 13546 3113 16016 1980 13470 NA NA
19 5247 14433 9071 13458 14109 36235 3225 24735 NA NA
20 6003 18697 4857 13500 2396 17160 5875 29315 NA NA
21 7181 24491 4753 28551 3475 22715 4549 28966 NA NA
22 4463 27902 4772 17618 3519 22492 5647 28557 NA NA
23 2334 19209 4739 14211 4102 25046 6083 27973 NA NA
24 2856 24017 4491 16430 4727 26571 5004 28792 NA NA
25 2313 24479 4228 16946 5644 29373 4143 29319 NA NA
26 4626 30202 4700 19359 5032 30069 4531 29424 NA NA
27 6667 36156 5041 22030 4879 32166 4488 29793 NA NA
28 4705 27649 4059 17246 4130 25931 3758 24674 NA NA
29 3764 22119 3247 13797 3304 20745 3006 19739 NA NA
30 2672 31814 5667 19734 6817 18304 6175 39369 NA NA
NSGA-II MOPSO MOIWO MOVDO Epsilon
Problem constraint
no. CPU time CPU time CPU time CPU time CPU time
(sec) (sec) (sec) (sec) (sec)
1 80 73 67 59 1807
2 116 114 83 83 3954
3 139 137 94 99 10463
4 143 148 142 115 35329
5 160 163 147 125 NA
6 170 205 195 152 NA
7 252 228 219 186 NA
8 338 263 229 221 NA
9 361 312 233 241 NA
10 409 313 298 272 NA
11 456 351 334 304 NA
12 521 384 374 341 NA
13 538 413 411 363 NA
14 539 521 467 407 NA
15 556 529 474 415 NA
16 605 548 516 445 NA
17 616 610 524 466 NA
18 642 612 606 496 NA
19 664 648 620 515 NA
20 673 659 652 529 NA
21 696 686 686 551 NA
22 740 729 710 581 NA
23 7T 734 721 595 NA
24 838 736 724 613 NA
25 871 767 750 637 NA
26 886 T 768 648 NA
27 919 806 768 665 NA
28 1010 833 769 696 NA
29 1032 953 774 735 NA
30 1071 962 768 747 NA

2063
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Table 9. Average experimental outputs of four algorithms.

Problems Algorithm SM  MID DM SNS CPU time

Average 1-10 792 17726 4000 4557 217

Average 11-20 NSGA-IT 4113 70264 13467 13365 581

Average 21-30 4158 169764 17890 26804 884

Average 1-10 940 10576 5359 2798 195

Average 11-20 MOPSO 3474 47174 15540 10423 527

Average 21-30 4570 124381 29771 18592 798

Average 1-10 1177 11741 6650 5682 170

Average 11-20 MOIWO 3869 42236 16821 16416 497

Average 21-30 4563 121398 29214 25341 744

Average 1-10 1002 10053 9327 10678 155

Average 11-20 MOVDO 2158 32027 21561 13940 428

Average 21-30 4739 93914 39329 28660 647

Average 1-4 Epsilon constraint 1031 5876 5608 9665 12888
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Figure 14. Graphs of the metrics over test problems.

Table 10. Pairwise comparison matrix of evaluating metrics.

CPU time

Metrics MID DM SM SNS Weight
(sec)
MID 1 2 1.5 3 4 0.358
DM 0.5 1 1 2 2 0.202
CPU time 0.67 1 1 2 3 0.232
SM 0.33 0.67 0.5 1 2 0.123
SNS 0.25 0.5 0.33 0.67 1 0.085
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Table 11. Results of ranking alternatives for small-sized problems.

Decision matrix

SM MID DM SNS C.PU o) Rank
time
NSGA-II 792 17726 4000 4557 217 -0.70 4
MOPSO 940 10576 5359 2798 195 -0.07 2
MOIWO 1117 11741 6650 5682 170 -0.07 3
MOVDO 1002 10053 9327 10678 155 0.84 1
Epsilon constraint 1031 5876 5608 9665 12888 —-0.85 5
Table 12. Results of ranking alternatives for medium-sized problems.
Decision matrix
SM MID DM SNS C.PU o) Rank
time
NSGA-II 4113 70264 13467 13365 581 -0.94 4
MOPSO 3474 47174 15540 10423 527 -0.31 3
MOIWO 3869 42236 16821 16416 497 0.31 2
MOVDO 2158 32027 21561 13940 428 0.94 1
Table 13. Results of ranking alternatives for large-sized problems.
Decision matrix
SM MID DM SNS C'PU o) Rank
time
NSGA-II 4158 169764 17890 26804 884 —0.64 4
MOPSO 4570 124381 29771 18592 798 —-0.26 3
MOIWO 4563 121398 29214 25341 744 0.14 2
MOVDO 4739 93914 39329 28660 647 0.75 1

better performance in solving small-, medium-, and
large-scale problems.

7. Conclusion

In this paper, a novel bi-objective dynamic Cell For-
mation Problem (CFP) was proposed under a dynamic
environment. The model aimed to minimize total costs
and maximize total operators’ efficiency. Since the
model was strictly NP-hard and exact algorithms could
not find global optimum solutions to medium- and
large-scale problems in a reasonable computational
time, a Multi-Objective Vibration Damping Optimiza-
tion (MOVDO) algorithm was proposed with a new
solution structure to solve different test problems.
Furthermore, since there is no benchmark available in
the literature to validate the performance of the devel-
oped meta-heuristic algorithm, three other algorithms
were developed with the same solution structure to
validate the performance of the developed algorithm.
The Taguchi method was used to calibrate the main
parameters of the developed algorithms and enhance
their performance in solving the models in various
instances. Statistical tests implemented to compare

the performance of the developed algorithms revealed
that the proposed MOVDO algorithm had a better
performance in terms of Mean Ideal Distance (MID),
Diversification Metric (DM), and Central Processing
Unit (CPU) time metrics. Also, there was a minor
meaningful difference among the performances of the
developed algorithms in terms of Spread of Non-
dominated Solutions (SNS) and Spacing Metrics (SM).
Finally, an AHP-PROMETHEE approach was per-
formed to evaluate theoverall performance of the devel-
oped algorithms in solving small-, medium-, and large-
scale problems. The results demonstrated that the
proposed MOVDO algorithm had a better performance
in solving various small-, medium-, and large-scale
problems.
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