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Abstract. Changing the structure of supply chains to move towards less polluting
industries and better performance has attracted many researchers in recent studies. Design
of such networks is a process associated with uncertainties and control of the uncertainties
during decision-making is of particular importance. In this paper, a two-stage stochastic
programming model is presented for the design of a green closed-loop supply chain network.
In order to reach the environmental goals, an upper bound of emission capability that
would help governments and industries to control greenhouse gas emissions was considered.
During the reverse logistics of this supply chain, waste materials were returned to the
forward ow by the disassembly centers. To control the uncertainty of strategic decisions,
demand and the upper bound of emission capacity with three possible scenarios were
considered. To solve the model, a new accelerated Benders decomposition algorithm along
with Pareto-optimal-cut was used. The e�ciency of the proposed algorithm was compared
with the regular Benders algorithm. The e�ect of di�erent numerical values of parameters
and probabilities of scenarios on the total cost was also examined.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

In the design of supply chain networks, several concepts
are considered. One of these concepts is greenness.
Today, with the expansion of collaboration between
various components of supply chains along with the
spread of globalization, increased pollution due to
industrialization, and the establishment of environ-
mental restrictions by governments, in addition to
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costs reduction and improvement of the quality of
�nal product in the design of supply chains, green
technology is gaining more and more attention of the
researchers. According to the report of the World
Commission on Development and Environment, the
aim of supply chain designing is to \meet the needs of
the present without compromising the ability of future
generations to meet their own need" [1].

Another issue in the design of networks is the
concept of open-loop and close-loop supply chains.
Close-loop supply chains are often employed in order to
reduce return products and waste as well as to increase
e�ciency. In a provided supply chain network, the
return ow includes several types of materials: end of
use (EOF), end of life (EOL), unused raw materials,
and so on. Usually many companies neglect recycling
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of EOL materials, while new regulatory frameworks
in Europe and in the United States have several
aims: waste prevention, recycling, disposal options,
etc. Therefore, these frameworks require supply chains
to be reconstructed [2].

Last but not the least, handling the uncertainty
caused by strategic decisions is another issue. In
supply chains, decisions are often divided into several
strategic, tactical, and operational categories based on
multiplicity criteria and timing. Strategic decisions
are large-scale chain-level decisions that outline the
structure of the supply chain. These decisions include
determining the location and capacity of the facility,
how suppliers provide raw materials, and various meth-
ods of production and transportation. Tactical and
operational decisions have shorter horizons and regu-
late the ow of products between various components
of a supply chain. Strategic decisions are important
for signi�cant investments and have direct impact on
other decisions. One important point is that the long
time span of these decisions cause uncertainty that
should be taken into account when predicting future
conditions [3].

Based on these basic concepts, the aim of this
research is to design a new green complex supply chain
with both direct and reverse ows. It should also be
noted that for the design of this Green Supply Chain
(GSC), a Mixed Integer Linear Programming (MILP)
model was used. This model locates appropriate
candidates for a facility site discretely and establishes
the ow of facilities as well. Our model also deter-
mines the transportation method between the various
components of supply chain. To control the emission of
greenhouse gases, an upper bound of emission capacity
was used. Governments or oversight bodies determine
such an upper bound. Since strategical and tactical de-
cisions in the network design were made in two phases,
the two-stage stochastic scenario-based programming
approach was used for uncertainty modeling. Also,
for the �rst time, both the demand and the upper
bound of the emission capacity were modeled based on
stochastic probability scenarios. To solve the problem,
a new accelerated decomposition Benders algorithm
was used. The proposed Benders algorithm has a
much better performance than the regular Benders
algorithms. Also, the non-deterministic parameters
and the probabilities of occurrence of scenarios were
analyzed under di�erent circumstances.

Di�erent sections of this study are categorized
as follows: Section 2 gives an overview of the past
research and the existing literature gaps. Section 3
presents goals, assumptions, application of research,
and the stochastic scenario based model along with
introducing the sets, parameters, and decision vari-
ables. Section 4 describes the novel accelerated Benders
algorithm and �nally, Section 5 presents experimental

examples and sensitive analysis for the suggested algo-
rithm.

2. Literature review

Many studies have been done on the design of the
supply chain networks. Yang et al. [4] in their arti-
cle designed a closed-loop supply chain with various
production and reproduction rings. Their supply
chain consisted of a producer, distributor, supplier and
collector. They incorporated only the economic goals.
Che et al. [5] o�ered a supplier selection model that
considered a discount policy. In their model, they only
considered the goal of maximizing supplier revenue and
defects and used Particle Swarm Optimization (PSO)
to solve the problem. Moncayo-Mart��nez and Zhang [6]
presented a supply chain with the goal of reducing
costs and delivery times in a multi-objective model.
To solve their model, they used Pareto Ant Colony
algorithm. In the design of this supply chain, like many
others, environmental goals and uncertainty were not
taken into consideration. However, today, the optimal
supply chain performance depends on the realization
of environmental aims and realistic modeling based
on uncertainty in the parameters. Regarding supply
chains with environmental considerations in addition
to economic factors in their design, Jamshidi et al.
[7] presented a multi-objective model for an open-
loop supply chain that in addition to minimizing
transportation, maintenance, and back order costs,
minimized emissions of greenhouse gases. Tognetti et
al. [8] provided a model for a sustainable three-level
supply chain. For the �rst time, their model reached
sustainability goals in supply chains. Shaw et al. [9]
also provided a multi-objective model for designing
a sustainable open-loop supply chain and solved it
using Benders algorithm. Varsei and Polyakovskiy [10]
designed a sustainable wine supply chain. They used
two integrated integer programming models and a real
case to test the model. Devikaa et al. [11] presented
an MILP model that considered �nancial and environ-
mental goals in a closed-loop supply chain. Nurjanni
et al. [2] presented a new modeling of the GSC network
design, which perfectly met the sustainability goals and
considered direct and reciprocal ows simultaneously.
In their model, transportation methods between the
four components of the supply chain were also de-
termined. Among the studies that have considered
uncertainty and used a fuzzy approach to modeling,
Mohammed and Wang [12] presented a multi-objective
model for designing a meat supply chain with the goal
of minimizing the cost of transportation, the amount
of CO2 emissions from transport, and the time of
transfer and distribution as well as maximizing the
delivery rate. They used fuzzy parameters to model
uncertainty in the open-loop supply chain. Soleimani



2580 Kalantari Khalil Abad and Pasandideh/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2578{2592

and Kannan [13] designed a closed-loop network of
multi-layer supply chains in which sustainability goals
were realized. In their model, fuzzy parameters were
used to model uncertainty. They also developed an
extended genetic algorithm to solve the model. Imran
et al. [14] developed a model for a medical supply
chain. They treated the medical and pharmaceutical
complaints received by the manufacturer with uncer-
tainty and in a fuzzy manner. Some other researchers
have also used fuzzy methods in their studies [15{18].
In order to control the uncertainty, methods based on
probability theory such as stochastic programming and
robust optimization have also been used. Paydar et
al. [19] developed a multi-objective model for a closed-
loop supply chain for the collection and distribution
of motor oil whose aim was to maximize pro�ts and
minimize risk. They used robust stochastic program-
ming to model uncertainty. Amin et al. [20] in their
single-objective model designed a multi-product, multi-
cycle supply chain that considered both the forward
and backward ows. In their model, they considered
demand and supply parameters as uncertain. Many
other studies have also used stochastic programming
approaches, robust optimization, and a combination
of both to control uncertainty [21{25]. Regarding the
studies that focus on both sustainability and uncer-
tainty based on probability theory in the supply chain,
Rezaee et al. [26] presented a two-stage stochastic
model in a green open-loop supply chain. They used
the carbon trading scheme in their model and treated
carbon demand and price parameters with uncertainty.
Pasandideh et al. [27] developed a sustainable supply
chain using a nonlinear and multi-objective model
that minimized the average and variance of supply
chain costs. They used stochastic (probabilistic) pro-
gramming to model uncertainty. Banasik et al. [28]
designed a closed-loop chain that realized economic
and environmental goals. They implemented the
proposed model in the mushroom industry, improving a
company's pro�ts by 11% and reducing environmental
impacts by 28%. Heidari-Fathian and Pasandideh [29]
presented an MILP model for a green blood supply
chain. They treated the demand and supply of blood
with uncertainty and developed the problem by using
robust stochastic programming. To solve the model,
they used the Lagrangian relaxation algorithm.

The novelties of the present study include the
following:

� Modelling perspective: For the �rst time, a
mathematical model is o�ered with all features in-
cluding closed loop, greenness, determination of the
transportation method with cost and environmental
considerations, and incorporation of the uncertainty
issue in the demand and upper bound of emission

capacity for the design of a green closed-loop supply
chain.

� Solution method: Our major contribution is to
develop two exact decomposition methods including
regular Benders and accelerated Benders decom-
position algorithms with the Pareto-optimal-cut to
solve a green closed-loop network design problem.
Benders decomposition-based approaches have been
widely used in solving a supply chain network, but
this is the �rst time that an accelerated Benders
decomposition algorithm with Pareto-optimal-cut is
employed to solve the GSC network design problem
with uncertainty control. To better illustrate the
gaps in the previous studies, Table 1 is presented.

3. Problem description and assumptions

The process of supply chain network design involves the
adoption of strategic and operational decisions. During
this process, the aim of both locating appropriate
candidates for facility sites and the ow between the
facilities is cost reduction, but some factors inuence
this process, including the uncertainty associated with
the decision-making process and environmental pollu-
tion, which has become one the most prevalent global
issues. Nowadays, for this reasons, in the design of
complex networks, three elements are very important
in modeling: (1) reaching economic and environmental
goals, (2) handling uncertainty, and (3) determining
the transportation mode.

The presented novel mathematical model creates
a complex network of plants, warehouses, customers,
and disassembling centers as shown in Figure 1. The
objectives of this GSC network include: (1) increasing
the quality of output products, (2) reducing costs
(production, re-production, collection, storage, and
transportation costs), (3) reducing waste from EOL
products, (4) reducing greenhouse gas emissions, and
(5) controlling the uncertainties of strategic decisions.
The model also considers several methods of trans-
portation between the components of the supply chain
(road, rail, sea, air, etc.). The transportation method
is selected based on cost and greenhouse gas emissions
of the model.

The ow in this closed-loop supply chain is di-
vided into three categories: (1) direct ow of intact
products from factory to customer, (2) reverse ow
of EOL products passed from the customer to the
disassembly centers and returned to the main path, and
(3) ow of EOU product returns to the mainstream
after collecting from customers and recycling. These
reverse ows reduce waste.

The assumptions of the proposed model are as
follows:

� The model is single-product and single-period;
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Table 1. A summary of the mathematical models in the literature and the gaps covered by this article.
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Ramudhin et al. [30] 2010
p

{ MO Min total cost, total emissions
p

{ {

Yang et al. [4] 2010 {
p

SO Max pro�t { { {

Kamali et al. [31] 2011
p

{ MO
Min late delivered item;

defective item; max total pro�t
{ { {

Pati et al. [32] 2013
p p

SO Min total cost { { {

Ozkir and Basligil [33] 2013 {
p

MO
Max pro�t, price and

customer satisfaction
{ { {

Paydar et al. [19] 2017 {
p

MO Min risk of collection, max pro�t {
Robust

optimization
{

Jamshidi et al. [7] 2012
p

{ MO
Min transportation,

handling and back order cost,

min total emissions

p
{ {

Tognetti et al. [8] 2015
p

{ MO Min cost, total CO2 released
p

{ {

Shaw et al. [9] 2016
p

{ MO Min cost, min total emissions
p

{ {

Rezaee et al. [26] 2017
p

{ SO Min cost and total emissions
p Stochastic

scenario based
{

Pasandideh et al. [27] 2015
p

{ MO Min mean and variance of total cost
p Stochastic

programming
{

Mohammed and Wang [12] 2017
p

{ MO

Min total cost of

transportation and implementation,

distribution time, total emissions

Max delivery rate

p
Fuzzy parameters {

Ruimin et al. [34] 2016
p p

MO Min total cost, total emissions
p Robust

optimization
{

Soleimani and Kannan [13] 2017 {
p

MO
Min lost working days,

max environmental

considerations, total pro�t

p
Fuzzy parameters {

Amin et al. [20] 2017
p p

SO Max pro�t {
Stochastic

scenario based
{

Nurjanni et al. [2] 2017
p p

MO Min total cost, total emissions
p

{
p

Jerbia et al. [35] 2018
p p

SO Max total pro�t {
Two stage stochastic

scenario based
{

Mohammadi et al. [36] 2019
p p

MO

Max total revenue,

service level and social

responsibility, min

environmental impacts

p multi-stage stochastic

programming

approach

{

This paper
p p p

SO Min total cost
p Stochastic

scenario based

p

� For all greenhouse gas emissions, upper bound of
emission capability is considered;

� Shortage is not allowed;

� Demand of customers and the upper bound of
emission capacity are considered as uncertain pa-
rameters;

� A non-negligible percentage of customer demand is
considered as the minimum quantity of disposable
products. Consequently, a certain percentage of the
disposable products is considered as the minimum
of recyclable materials;

� A certain percentage of waste products and a per-
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Figure 1. Linking of the ows between di�erent sectors of the green supply chain network.

centage of reproducible products are assumed to be
de�nite parameters;

� All costs are considered without using the conversion
factor of the present value to the future value.

3.1. Model indices
Table 2 presents the indices of plants, warehouses,
customers and disassembly centers. Indices are also
de�ned for the transportation method from plants to
warehouses, warehouses to customers, customers to
disassembly centers, and disassembly centers to plants.
Yet, another index is de�ned for possible scenarios.

3.2. Model parameters
Table 3 illustrates the parameters of the problem in
hand. As it is known, upper bound of emission
capacity (caps) and customer demand (dsk) are based
on probable scenarios for their occurrence. These two
parameters are independent of each other. Therefore,
the total number of probable scenarios is equal to
the outcome of the multiplication of the number of

scenarios for the upper bound of emission capacity by
the customer demand parameter. According to the
principle of the occurrence probability of independent
events, the probability of these parameters is equal to
the result of multiplying the probability of each one.

3.3. Model decision variables
Tables 4 and 5 state the decision variables of the
problem. Binary variables are related to strategic
decisions that are used to locate facilities in discrete
locations. Continuous variables also relate to opera-
tional decisions that make ow between facilities.

3.4. Model formulation
In the modeling, the objective function of the problem
consists of two parts: (1) strategic decisions and (2)
operational decisions. In the �rst part, �xed costs
are set for the construction of plants, warehouses, and
disassembly centers. The second part of the objective
function consists of two parts: (1) variable costs and
(2) shipping costs. Variable costs are foreseen for

Table 2. Problem indictors.

Index Description

I Index for plants (i = 1; 2; :::; jIj)
J Index for warehouses (j = 1; 2; :::; jJ j)
K Index for customers (k = 1; 2; :::; jKj)
L Index for DSs (l = 1; 2; :::; jLj)
M Index for transportation options from plants (m = 1; 2; :::; jM j)
N Index for transportation options from warehouses (n = 1; 2; :::; jN j)
O Index for transportation options from customers (o = 1; 2; :::; jOj)
P Index for transportation options from DCs (p = 1; 2; :::; jP j)
S Index for scenarios (s = 1; 2; :::; jSj)
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Table 3. Problem parameters.

Parameter Description
cpi Fixed cost for establishing plant i 2 I
cwj Fixed cost for establishing warehouse j 2 J
cdl Fixed cost for establishing DC l 2 L
c0pi Unit variable cost for producing a unit product in plant i 2 I
c0wj Unit variable cost for handling a unit of product in the warehouse j 2 J
c0ck Unit variable cost for collecting a unit of product to be disposed from customer k 2 K
c0dl Unit variable cost for disassembling a unit of product to be disposed in DC l 2 L
c0ri Unit variable cost for reproducing a unit product in plant i 2 I
c00pi;j;m Unit transportation cost from plant i to warehouse j by the transportation method m
c00wj;k;n Unit transportation cost from warehouse j to customer k by the transportation method n
c00ck;l;o Unit transportation cost for collecting unit of product from customer k to DC l by the transportation method o
c00dl;i;p Unit transportation cost from DC l to plant i by the transportation method p
epi Rate of released CO2 to produce one unit of product in plant i
ewj Rate of released CO2 to handle and store one unit of product in warehouse j
edl Rate of released CO2 to disassemble one unit of product to be disposed in DC l
eri Rate of released CO2 to remanufacture one unit of product to be dismantled in plant i

e00pm CO2 released by the transportation method m to forward a unit of product from factory to warehouse
for a unit distance

e00wn CO2 released by the transportation method n to forward a unit of product from warehouse to
customer for a unit distance

e00co CO2 released by the transportation method o to collect a unit disposal from customer to DC for a
unit distance

e00dp CO2 released by the transportation method p to ship a unit of product to be dismantled from DC
to plant for a unit distance

upi Maximum production capacity of plant i
uwj Maximum storage and handling and processing capacities of warehouse j
udl Maximum disassembly capacity of DC l
uri Maximum reproduction capacity of plant i
pi;j;m Transportation rate from pant i to warehouse j by the transportation method m
wj;k;n Transportation rate from warehouse j to customer k by the transportation method n
ck;l;o Transportation rate for collecting a unit of product from customer k to DC l by the transportation method o
dl;i;p Transportation rate from DC l to plant i by the transportation method p
spi;j Distance between plant i and warehouse j
swj;k Distance between warehouse j and customer k
sck;l Distance between customer k and DC l
sdl;i Distance between DC l and plant i
� Minimum percentage of units of product to be disposed to be collected from a customer
�0 Minimum percentage of units of product to be dismantled to be shipped from a DC
dsk Demand of customer k in scenario s

caps Upper bound of emission capacity of CO2 released in scenario s, which is determined by the
government and regulatory bodies

�s Probability of scenario s

the production and re-production of each unit of the
product in the factory, control and storage in the
warehouse, the collection of the product from the
customer, and the disassembly of the product in the
disassembly center. Also, for all shipments between
the supply chain components, the cost is calculated
separately. The second part of the objective function,

which includes variable costs and the cost of moving
parts, is considered uncertain under limited scenarios.
Given that decisions are made in two di�erent instances
and strategic decisions of the �rst stage a�ect the
decisions of the second stage, the model is presented
as a two-stage stochastic programming. The sum of
the three mentioned parts (�xed costs, variable costs,
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Table 4. Binary decision variables of the problem.

Notation Description

Fpi

8<:1 if plant i is established

0 o:w

Fwj

8<:1 if warehouse j is established

0 o:w

Fdl

8<:1 if DC l is established

0 o:w

and shipping costs) is the stochastic objective function
of the problem.

min z =
IX
i=1

cpiFpi +
JX
j=1

cwjFwj +
LX
l=1

cdlFdl

+
SX
s=1

�s
0@ IX
i=1

c0pi
JX
j=1

MX
m=1

PW s
i;j;m

1A
+

SX
s=1

�s
0@ JX
j=1

c0hj
KX
k=1

NX
n=1

WCsj;k;n

1A
+

SX
s=1

�s
0@ KX
k=1

c0ck
JX
j=1

NX
n=1

WCsj;k;n

1A
+

SX
s=1

�s
0@ JX
j=1

c0dl
KX
k=1

OX
o=1

CIsk;l;o

1A
+

SX
s=1

�s
 

IX
i=1

c0ri
LX
l=1

PX
p=1

IP sk;l;p

!

+
SX
s=1

�s
0@ IX
i=1

JX
j=1

MX
m=1

c00pi;j;mPW s
i;j;m

1A

+
SX
s=1

�s
0@ JX
j=1

KX
k=1

NX
n=1

c00wj;k;nWCsj;k;n

1A
+

SX
s=1

�s
 

KX
k=1

LX
l=1

OX
o=1

c00ck;l;oCIsk;l;o

!

+
SX
s=1

�s
 

LX
l=1

IX
i=1

PX
p=1

c00dl;i;pIP sl;i;p

!
: (1)

CO2 emission released by the production and
reproduction at the plants, storage and control in the
warehouses, and disassembly in DCs is equal to TE(1).
CO2 released in various methods via transportation be-
tween the components is also equal to TE(2). Relation
(4) indicates that the total gas released by TE(1) and
TE(2) must be less than or equal to the upper bound
of emission capacity (caps).

TE(1) =
IX
i=1

epi
JX
j=1

MX
m=1

PW s
i;j;m

+
JX
j=1

ewj
KX
k=1

NX
n=1

WCsj;k;n

+
LX
l=1

edl
KX
k=1

OX
o=1

CIsk;l;o

+
IX
i=1

eri
LX
l=1

PX
p=1

IP sl;i;p; (2)

TE(2) =
MX
m=1

e00pm
IX
i=1

JX
j=1

pi;j;mspi;jPW s
i;j;m

+
NX
n=1

e00wn
IX
i=1

JX
j=1

wj;k;nswj;kWCsj;k;n

Table 5. Continuous decision variables of the problem.

Notation Description

PW s
i;j;m

Amount of unit product shipped from plant i to warehouse j by the transportation
method m in scenario s

WCsj;k;n
Amount of unit product shipped from warehouse j to customer k by the transportation
method n in scenario s

CIsk;l;o
Amount of unit product to be disposed collected from customer k to DC l by the transportation
method o in scenario s

IP sl;i;p
Amount of unit product to be dismantled shipped from DC l to plant i by the transportation
method p in scenario s



Kalantari Khalil Abad and Pasandideh/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2578{2592 2585

OX
o=1

e00co
KX
k=1

LX
l=1

ck;l;osck;lCIsk;l;o

+
PX
p=1

e00dp
JX
j=1

KX
k=1

dl;i;psdl;iIP sl;i;p; (3)

TE(1) + TE(2) � caps8s 2 S: (4)

Relations (5){(8) are capacity constraints. Rela-
tion (5) indicates that the total amount of materials
sent from a plant to various warehouses should be as
large as the capacity of the plant. In Relation (6),
the total of all materials from di�erent plants to a
warehouse should be as large as the capacity of the
warehouse. Relation (7) represents the total products
shipped from di�erent customers to each DC. This
value should not exceed the capacity of that disassem-
bly center. Relation (8) also shows that the total of
products shipped from each DC to plants should be as
large as the reproduction capacity of that plant.

JX
j=1

MX
m=1

PW s
i;j;m � upiFpi8i 2 I; s 2 S; (5)

IX
i=1

MX
m=1

PW s
i;j;m � uwjFwj8j 2 J; s 2 S; (6)

LX
l=1

OX
o=1

CIsk;l;o � udlFdl8l 2 L; s 2 S; (7)

LX
l=1

PX
p=1

IP sl;i;p � uriFpi8i 2 I; s 2 S: (8)

Output ow from each warehouse must be less
than or equal to the input ow. This is the case in
Relation (9). This constraint is used for material ow
balances.

IX
i=1

MX
m=1

PW s
i;j;m �

KX
k=1

NX
n=1

WCsj;k;n8j 2 J; s 2 S:
(9)

Relation (10) indicates that the sum of products
coming from di�erent warehouses to a customer should
not be less than customer demand since shortage in our
model is not allowed.

JX
j=1

NX
n=1

WCsj;k;n � dsk8k 2 K; s 2 S: (10)

Relation (11) states that products that are col-
lected from each customer for di�erent DCs should
not be greater than the total customer demand that

can be provided by the company. Each customer can
return the defective product to DCs as much as the
total demand.

LX
l=1

OX
o=1

CIsk;l;o � dsk8k 2 K; s 2 S: (11)

Relations (12) and (13) force the model to estab-
lish a reverse ow in the supply chain. In Relation (12),
the model is forced to send a minimum percentage of
customer demand to the DCs. Relation (13) also forces
the model to send a minimum percentage of return and
output products to the factory for re-production.

LX
l=1

OX
o=1

CIsk;l;o � �� dsk8k 2 K; s 2 S; (12)

IX
i=1

PX
p=1

IP sl;i;p � �0 �
KX
k=1

CIsk;l;o8l 2 L; s 2 S: (13)

The presented model is an MILP. Fpi, Fwj , and
Fdl are binary variables for the construction of plants,
warehouses, and DCs. PW s

i;j;m, WCsj;k;n, CIsk;l;o, and
IP sl;i;p are continuous variables for setting up the ow
between various components of the GSC.

Fpi; Fwj ; Fdl 2 f0; 1g ; (14)

PW s
i;j;m � 0;WCsj;k;n � 0; CIsk;l;o � 0; IP sl;i;p � 0:

(15)

4. The proposed solution method

Since the proposed MILP model has high computa-
tional complexity, it seems necessary to provide an
e�ective solution method that can achieve the optimal
solution in a limited number of iterations. Benders
algorithm is one of the exact decomposition methods
�rst proposed in [37]. This algorithm is based on �xing
the hard variables. The process of �xing hard variables
is called relaxation. With the relaxation of these
variables in the solution, the complexity of the problem
can be greatly reduced. As Benders decomposition
is known as a method that achieves converged quite
slowly [38], we propose a novel solution method in
order to accelerate the solution algorithm. The process
of the proposed algorithm is shown in Figure 2. The
details of the Benders reformulation of the MIP model,
along with the proposed accelerator of the algorithm,
are presented in what follows.

4.1. Reformulation of the regular Benders
decomposition method

As mentioned, the prevalent Benders decomposition
approach is the �rst one proposed to solve the model.
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Figure 2. Steps followed in the proposed accelerated
Benders algorithm to get the optimal solution.

The regular Benders decomposition method has been
widely used in recent studies on the supply chain net-
work design [39,40]. The general steps of a typical Ben-
ders algorithm to achieve the optimal solution through
upper and lower bound convergence is as follows.

4.1.1. Solving the Master Problem (MP)
In this study, binary variables of constructing facilities
were considered as hard variables because, in solving
a problem, the procedure for dealing with integer
variables varies with other variables. Also, the degree
of complexity depends on the number of the discrete
variables. After the hard variables are determined, MP
model is written. MP is a model that only possesses
hard variables. After solving, if our MP model has an
in�nite response, we select a feasible solution.

4.1.2. Solving the Dual Sub-Problem (DSP)
Sub-Problem (SP) is a model that contains all the
variables of the problem except the hard variables.
DSP is a dual SP. DSP model is solved by using
the feasible solution to the MP problem. First, for
each constraint of the SP model, a dual variable is
determined. In this study, all constraints apply to
the SP model. Dual variables of the problem for each
constraint are �s, �si , "sj , �sj , �sk, �sk, �sl , �sk , �sl , and !si ,
respectively. The form of the DSP model is as follow:

maxZDSP = �
SX
s=1

�S :caps �
IX
i=1

SX
s=1

upi:Fpi:�si

�
JX
j=1

SX
s=1

uwj :Fwj :"sj +
KX
k=1

SX
s=1

dsk:�
s
k

�
KX
k=1

SX
s=1

dsk:�
s
k �

LX
l=1

SX
s=1

udl:Fdl:�sl

+
KX
k=1

SX
s=1

�:dsk:�
s
k �

IX
i=1

SX
s=1

uri:Fpi:!si ; (16)

s.t.:
(�epi � e00pm:pi;j;m:spi;j):�s � �si � "sj + �sj

� (c0pi + c00pi;j;m):�s8i; j;m; s; (17)

(�ewj � e00wn:wj;k;n:swj;k):�s � �sj + �sk

� (c0hj + c00wj;k;n):�s8j; k; n; s; (18)

(�edl � e00co:ck;l;o:sck;l):�s � �sk � �sl + � sk

� (c0ck + c0dl + c00ck;l;o):�s8k; l; o; s; (19)

(�eri � e00dp:dl;i;p:sdl;i):�s + �sl � !si
� (c0ri + c00dl;i;p):�s8l; i; p; s; (20)

�s � 0; �si � 0; "sj � 0; �sj � 0; �sk � 0; �sk � 0;

�sl � 0; � sk � 0; �sl � 0; !si � 0: (21)

4.1.3. Calculating the lower bound
In each iteration of the algorithm, for each corner point
of the DSP problem, an optimality cut is added to the
MP problem. Also, DSP model may have an in�nite
response due to the extreme directions. To solve this
problem, feasibility cut is added to the MP. Considering
these changes, the MP model in iterations of more than
one is as follows:

min Z 0L; (22)

s.t.:

Z 0L �
IX
i=1

cpi:Fpi +
JX
j=1

cwj :Fwj +
LX
l=1

cdl:Fdl

�
SX
s=1

(caps):�s(w) �
IX
i=1

SX
s=1

(upi:Fpi):�
s(w)
i

�
JX
j=1

SX
s=1

(uwj :Fwi):"
s(w)
j +

KX
k=1

SX
s=1

(dsk):�s(w)
k

�
KX
k=1

SX
s=1

(dsk):�s(w)
k �

LX
l=1

SX
s=1

(udl:Fdl):�
s(w)
l

+
KX
k=1

SX
s=1

(�:dsk):� s(w)
k �

IX
i=1

SX
s=1

(uri:Fpi)

:!s(w)
i 8i; j; k; l; w = 1; :::;W; (23)
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�
SX
s=1

(caps):�s(r) �
IX
i=1

SX
s=1

(upi:Fpi):�
s(r)
i

�
JX
j=1

SX
s=1

(uwj :Fwi):"
s(r)
j

+
KX
k=1

SX
s=1

(dsk):�s(r)k �
KX
k=1

SX
s=1

(dsk):�s(r)k

�
LX
l=1

SX
s=1

(udl:Fdl):�
s(r)
l +

KX
k=1

SX
s=1

(�:dsk):� s(r)k

�
IX
i=1

SX
s=1

(uri:Fpi):!
s(r)
i � 0

8i; j; k; l; r = 1; :::; R; (24)

Fpi; Fwj ; Fdl 2 f0; 1g ; (25)�
�s(w); �s(w)

i ; "s(w)
j ; �s(w)

j ; �s(w)
k ; �s(w)

k ; �s(w)
l ; �s(w)

k ;

�s(w)
l ; !s(w)

i

�
2 E�; (26)�

�s(r); �s(r)i ; "s(r)j ; �s(r)j ; �s(r)k ; �s(r)k ; �s(r)l ; �s(r)k ;

�s(r)l ; !s(r)i

�
2 Ru: (27)

In this model, E� is the set of DSP corner points,
Ru the set of extreme directions, and Z 0L the lower
bound.

4.1.4. Check stop condition
In each iteration, the upper bound ZU is computed as
the sum of the objective functions of the MP and the
DSP. Also, stop condition is de�ned as follows:

jZU � ZLj � �: (28)

If the upper and lower bounds are lower than or
equal to �, the algorithm stops and optimal solution is
obtained. Otherwise, the new optimality cutting and
feasibility cut should be added to the problem.

4.2. Algorithm enhancement
Although a study has used the regular Benders algo-
rithm to solve the problem of the low-carbon supply
chain network design [41], the accelerated Benders
algorithm has not yet been proposed for the design of
green closed-loop networks. Our study presents a novel

accelerated Benders algorithm based on the Pareto-
optimal cut. This sub-section proposes the details of
the accelerator modeling method.

If the DSP has multiple optimal solutions, the
number of optimality-cuts is innumerable, because
the problem solving space is continuous and linear.
Therefore, in order to choose the strongest optimal cut,
the following model is to be solved after solving the
DSP.

�
Fpoi ; Fwoj ; Fdol

	
inner points of the convex series

are the solutions to the DSP problem (core points).

maxZpareto = �
SX
s=1

�s:caps �
IX
i=1

SX
s=1

upi:Fpi:�si

�
JX
j=1

SX
s=1

uwj :Fwj :"sj +
KX
k=1

SX
s=1

dsk:�
s
k

�
KX
k=1

SX
s=1

dsk:�
s
k �

LX
l=1

SX
s=1

udl:Fdl:�sl

+
KX
k=1

SX
s=1

�:dsk:�
s
k �

IX
i=1

SX
s=1

uri:Fpi:!si

+
IX
i=1

cpi:Fpoi +
JX
j=1

cwj :Fwoj +
LX
l=1

cdl:Fdol ;
(29)

s.t.:

�
SX
s=1

�s:caps �
IX
i=1

SX
s=1

upi:Fpi:�si

�
JX
j=1

SX
s=1

uwj :Fwj :"sj +
KX
k=1

SX
s=1

dsk:�
s
k

�
KX
k=1

SX
s=1

dsk:�
s
k �

LX
l=1

SX
s=1

udl:Fdl:�sl

+
KX
k=1

SX
s=1

�:dsk:�
s
k �

IX
i=1

SX
s=1

uri:Fpi:!si

= DSP �
IX
i=1

cpi:Fpi �
JX
j=1

cwj :Fwj

�
LX
l=1

cdl:Fdl Zpareto 2 DSP; (30)

�
Fpoi ; Fw

o
j ; Fd

o
l
	 2 core points: (31)

In addition to these constraints, DSP constraints
also exist this model. The solution to this model
ensures that the strongest optimality cut is selected.
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5. Experimental examples and sensitive
analysis

In this section, the mathematical model and the ac-
celerated Benders algorithm are subject to numerical
testing and sensitivity analysis. Di�erent data sources
were considered to extract the parameter values [42{
45]. For example, two sources were used to determine
the amount of CO2 released [44,45]. To do various
experiments in this section, the model includes three
plants, three warehouses, eight customers, and three
DCs. Three possible scenarios (optimistic, realistic,
and pessimistic) for each non-deterministic parameter
are also considered. Table 6 demonstrates informa-
tion about the uncertain parameters of the problem.
The amount of emission capacity in pessimistic terms
is equal to 4000000 kg, in optimistic terms equal
to 1000000 kg, and in realistic conditions equal to
2000000 kg. These values vary with the weather
and environmental conditions. Considering di�erent
circumstances, three di�erent values for each customer
demand are also determined.

The upper bound of emission capacity and cus-
tomer demand are independent. Given the occurrence
probability of independent events, the total number
of probable scenarios is obtained by multiplying the
number of caps scenarios by the number of dsk scenarios.
The occurrence probability of each scenario in Table 6
is also obtained by multiplying the probability of each
parameter. Table 7 provides a guide to the acronyms
used for names of scenarios in Table 6.

General and accelerated Benders algorithms are
used to solve the mathematical model. Figure 3 shows
the number of iterations for general Benders algorithm
and Figure 4 gives the number of iterations for the
accelerated Benders algorithm to equalize the upper
and lower bounds. Figure 5 also shows the convergence
trends of the lower and upper bounds of the proposed
accelerated Benders decomposition algorithm. These
�gures represent the optimal performance of the algo-
rithm.

Table 7. Names of scenarios.

Scenario name Description

ocpd Optimistic caps, pessimistic dsk
rcpd Realistic caps, pessimistic dsk
pcpd Pessimistic caps, pessimistic dsk
ocrd Optimistic caps, realistic dsk
rcrd Realistic caps, realistic dsk
pcrd Pessimistic caps, realistic dsk
ocod Optimistic caps, optimistic dsk
rcod Realistic caps, optimistic dsk
pcod Pessimistic caps, optimistic dsk

Figure 3. Iterations of the regular Benders algorithm.

To investigate the e�ect of change in the non-
deterministic parameters on the value of the objective
function, various analyses of the model were performed.
Table 8 illustrates the e�ect of the value of caps chang-
ing on the value of the objective function. Figure 6
shows the sensitivity of the objective function value to
di�erent greenhouse gas emission factors. According to
this �gure, by reducing the upper bound of emission
capacity, the total cost increases. In the model,
the lowest upper bound of greenhouse gas emission
capacity is 177000 kg.

The other uncertain parameter examined is dsk.
Table 9 states the e�ect of the value of dsk changing on
the value of objective function. Figure 7 demonstrates

Table 6. Values of non-deterministic parameters in di�erent scenarios, occurrence probability of each parameter, and
scenario probabilities.

caps dsk
Number of
scenarios

Name of
scenario

Probability of
occurrence

Value of
parameter (kg)

Probability of
occurrence

Value of parameter (ton) Probability of
scenario

C1 C2 C3 C4 C5 C6 C7 C8

S1 ocpd 0.2 4000000 0.25 30 29 18 29 18 28 18 17 0.05
S2 rcpd 0.6 2000000 0.25 30 29 18 29 18 28 18 17 0.15
S3 pcpd 0.2 1000000 0.25 30 29 18 29 18 28 18 17 0.05
S4 ocrd 0.2 4000000 0.5 20 28 15 23 16 20 17 16 0.1
S5 rcrd 0.6 2000000 0.5 20 28 15 23 16 20 17 16 0.3
S6 pcrd 0.2 1000000 0.5 20 28 15 23 16 20 17 16 0.1
S7 ocod 0.2 4000000 0.25 11 27 12 17 14 12 15 14 0.05
S8 rcod 0.6 2000000 0.25 11 27 12 17 14 12 15 14 0.15
S9 pcod 0.2 1000000 0.25 11 27 12 17 14 12 15 14 0.05
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Table 8. The e�ect of the value of caps on the objective function.
No.

1 2 3 4 5 6 7
(Optimistic,

realistic,
pessimistic)

(Ton)

(300, 270, 240) (280, 250, 220) (260, 230, 200) (240, 210, 190) (220, 200, 185) (200, 190, 180) (190, 185, 178)

Objective
value

25710.758448 25770.979144 25921.996456 26082.203164 26300.065259 26627.697268 26775.126793

Table 9. The e�ect of the value of dsk on the objective function.
No.

1 2 3 4 5 6 7 8
Unit demand
increased for
all costumers

0 1 2 3 4 5 6 7

Objective
value

17250.32 18602.34 19958.36 21334.88 22739.4 24151.17 25575.19 27026.71

Figure 4. Iterations of the proposed accelerated Benders
algorithm.

Figure 5. Convergence progression of the proposed
accelerated Benders algorithm.

the e�ect of this parameter on the values of the
objective function. According to this �gure, total cost
increases with increase in demand for all customers.

Figure 6. Increase in the value of the objective function
by decreasing caps.

Figure 7. Increase in the value of the objective function
by increasing dsk.

The probability of scenarios is another factor af-
fecting the total cost of the model. Among all possible
scenarios, \ocod" is the most optimistic scenario that
might happen. According to Figure 8, with increase
in the probability of this scenario, the total cost is
reduced. The best solution that could be given to
this mathematical model is when the probability of this
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Figure 8. The e�ect of the probability of the \ocod"
scenario on the objective function.

Figure 9. The e�ect of the probability of the \pcpd"
scenario on the objective function.

scenario equals 1 and the model is to be solved in the
deterministic mode.

Another scenario being examined is the \pcpd"
scenario. This scenario is likely to be the most
pessimistic scenario. Figure 9 illustrates that with the
increasing probability of the \pcpd" scenario, the total
cost increases. The worst solution that could be given
to this mathematical model is when the probability of
this scenario equals 1 and the model is solved in de�nite
mode.

6. Conclusion and future research

This paper presents a two-stage stochastic program-
ming model for designing a green closed-loop supply
chain network. In this model, various factors of uncer-
tainty were controlled and customer demand and the
upper bound of greenhouse gas emissions were assumed
uncertain. The performance of the proposed algorithm
was compared with the regular Benders algorithm. The
number of iterations for accelerated Benders algorithm
was lower than the regular Benders algorithm. In the
end, to analyze the sensitivity of the objective function,
various factors inuencing the total cost were exam-
ined. Based on these factors, increasing probability of
the most optimistic scenario and reducing probability
of the most pessimistic scenario would improve the

overall performance of the supply chain and maximize
productivity. Also, increasing the amount of emission
capacity and reducing customer demand would reduce
the overall cost of the design.

The proposed model has great potential for de-
velopment. Given that in the mathematical model, the
time value of money is not considered, we can use the
time value coe�cients for more realistic calculations of
the costs. The model can be developed in the form
of multi-stage stochastic programming approach. To
solve the proposed model, more advanced algorithms
can be used. Furthermore, to solve this model in large
scale, it is possible to increase the convergence speed
of the upper and lower bounds by sub-problem divi-
sion into smaller sub-problems and producing several
optimal cuttings in each iteration.
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