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Abstract. As an e�ective method for evaluating e�ciency, cross-e�ciency evaluation has
been widely used to assess the performance of Decision-Making Units (DMUs). However,
non-uniqueness of the optimal weights problem reduces e�ciency of this method. To
address this problem, scholars have proposed using secondary goals and they have developed
numerous models with this consideration. In this paper, two new secondary goal models
are presented in order to further extend the above-mentioned existing models. The
proposed altruism cross-e�ciency model is speci�cally applicable when the evaluated DMU
cooperates with other DMUs, since it maximizes the peer-e�ciency scores of other DMUs.
On the other hand, the exclusiveness cross-e�ciency model is utilized when the evaluated
DMU is competing with other DMUs. This model minimizes the peer-e�ciency scores of
other DMUs. Compared with the existing approaches, our approach ensures that the peer-
e�ciencies generated by each DMU are maximized (or minimized) under the premise that
the minimum (or maximum) peer-e�ciency among the DMUs is maximized (or minimized).
More importantly, our proposed algorithm guarantees the uniqueness of the optimal weights
and the set of cross-e�ciency scores. Two numerical examples were used to verify the
e�ectiveness of the proposed model.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

As an e�ective method for e�ciency evaluations, Data
Envelopment Analysis (DEA) has been widely used
to assess the performance and relative e�ciency of
Decision-Making Units (DMUs). The method was �rst
introduced by Charnes et al. [1], who proposed the
original DEA model (CCR model). Since then, it
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has been further extended by numerous scholars and
researchers. Compared to other methods, DEA has
many obvious advantages. On the one hand, DEA can
be used to evaluate the e�ciency of DMUs that have
multiple inputs and multiple outputs [2]. On the other
hand, providing any subjective information for decision
makers before evaluation is unnecessary when DEA is
used [3]. Therefore, DEA results are highly objective
and unbiased. On the other hand, the traditional
DEA models also have a number of disadvantages. For
example, they are evaluated from the perspective of
self-evaluation. In addition, the evaluated DMUs select
their most preferable weights in order to maximize
their own e�ciency scores. Therefore, more than one
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DMU will be evaluated as DEA-e�cient and the DEA-
e�cient DMUs cannot be further discriminated by the
DEA CCR model [4].

To overcome the shortcomings mentioned above,
Sexton et al. [5] proposed the cross-e�ciency evalu-
ation method, which is discussed in Section 2. The
central idea of the method is to obtain the peer-
e�ciency scores of other DMUs by using the optimal
weights of the evaluated DMU. Then, the average
of n e�ciency scores (including n � 1 peer-e�ciency
scores and one self-e�ciency score) is used as the �nal
e�ciency evaluation index. This method brings at
least three bene�ts. Firstly, a unique ranking order of
all DMUs can be obtained through the above method
[5]. Secondly, this method can decrease the emergence
of unrealistic weights [6]. Finally, the cross-e�ciency
evaluation method can distinguish be- tween good
performers and bad performers [7]. Thus far, the
method has been widely applied in a variety of areas
and studies [5,8{13].

However, some defects still exist in the cross-
e�ciency evaluation method. For example, because
of the non-unique optimal weights calculated by the
CCR model, the peer-e�ciency scores of other DMUs
may also be non-unique. To address this problem, we
propose the use of DEA models with secondary goals.
Among all secondary-goal models, the benevolent and
aggressive models proposed by Sexton et al. [5] and
Doyle and Green [14] are the most classical. These
models will also be introduced in Section 2. To date, on
the basis of the traditional benevolent and aggressive
models, many scholars and researchers have presented
a signi�cant number of new benevolent and aggressive
models, which can be utilized in di�erent application
scenarios. For instance, Liang et al. [15] proposed
three models with di�erent secondary goals (including
minimum total deviation). Due to their unrealistic
target e�ciencies, the models presented by Liang et
al. [15] were further extended by Wang et al. [16], whose
models changed the target e�ciency of each DMU from
1 to its CCR e�ciency. In addition, Lim [17] proposed
two DEA models with new secondary goals in order
to maximize (or minimize) the peer-e�ciency score
of the DMU with the worst (or best) performance.
Subsequently, Wu et al. [18] pointed out that the target
e�ciency (CCR e�ciency) in the Wang et al. [19]
models was still unreachable for DMUs. Therefore,
they presented a new method to obtain the maximum
and minimum peer-e�ciency scores of every DMU.
They proposed other secondary goal models that could
be used to calculate the peer-e�ciency scores of DMUs,
taking into consideration the willingness of DMUs to
be close to their maximum and as far as possible from
their minimum peer-e�ciency scores.

In addition, Wang et al. [16] pointed out that an
evaluated DMU should ignore the in
uence of other

DMUs. The evaluated DMU should select its own
most favorable weights. Therefore, they proposed a
neutral DEA model, which could e�ectively avoid the
appearance of zero output weights. However, because
Wang and Chins model only considered the constraints
of output weights, a new neutral DEA model was
presented for cross-e�ciency evaluation, which could
avoid the simultaneous emergence of zero weights of
outputs and inputs. Moreover, by incorporating an
ideal DMU and an anti-ideal DMU into the neutral
DEA model, Wang et al. [16] provided a new per-
spective on the study of neutral DEA models. They
proposed a neutral DEA model in which the distance
between the evaluated DMU and the ideal DMU as well
as the distance between the evaluated DMU and the
anti-ideal DMU was taken into account. In addition,
other neutral DEA models have been proposed that
can be employed in reducing the di�erence in weighted
inputs and outputs. For instance, a weight-balanced
DEA model was proposed by Wu et al. [20] to reduce
the di�erence in weighted inputs and weighted outputs.
In their model, each weighted input (and weighted
output) was considered as an independent individual.
In order to reduce the number of zero weights, Sun et
al. [21] presented a weight-optimized DEA model that
could reduce di�erences between weighted inputs and
outputs.

Apart from the models mentioned above, there
are also other DEA models based on di�erent per-
spectives. For example, Wu et al. [22] maintained
that DMUs should be more concerned about their
ranking order than about their e�ciency scores in some
cases such as the selection of projects and preference
voting. Accordingly, they proposed a rank priority
model as a means of optimizing the ranking order
of DMUs. In addition, Wu et al. [18] mentioned a
traditionally unnoticed shortcoming of cross-e�ciency
evaluation, that is, the obtained cross-e�ciency scores
might not be Pareto optimal. Therefore, many DMUs
are unwilling to accept average cross-e�ciency score as
the �nal e�ciency evaluation measure. To address this
problem, they proposed a cross-e�ciency evaluation
method based on Pareto improvement. Song and
Liu [23] pointed out that the traditional average cross-
e�ciency evaluation method failed to re
ect the real
performance of all DMUs. They presented a variation
coe�cient method as a means for aggregating the cross-
e�ciency scores. In addition, Ruiz and Sirvent [24]
proposed a fuzzy approach as a technique to rank
DMUs with imprecise data. To measure the e�ciency
scores of DMUs, Chen [25] presented an approach
on the basis of lexicographical evaluation of DMUs.
Chens approach could e�ectively avoid overestimating
the e�ciency scores of DMUs. In order to consider
the attitude of decision makers on risk preference,
Liu et al. [26] proposed a prospect cross-e�ciency
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approach based on prospect theory. They concluded
that other models were special cases of the prospect
cross-e�ciency approach. Kao and Liu [27] integrated
cross-evaluation method into the two-stage DEA for
assessing the cross e�ciencies of two basic network
systems. They concluded that the proposed method
not only improved the discriminating ability of the
network system ranking, but also identi�ed the rela-
tionship between system and departmental e�ciency.

In many practical applications, competition exists
between DMUs. The traditional cross-e�ciency evalu-
ation method faces di�culty in dealing with this kind
of situation. To solve the competition issue, scholars
focused on the study of the game cross-e�ciency model.
In the study of Liang et al. [28], every DMU was
deemed to be a player in a non-cooperative game. Each
DMU was given a corresponding algorithm, which was
proven to be convergent to the game cross-e�ciency
score. On the basis of the DEA game cross-e�ciency
model, Wu et al. [22] proposed a new method of
ranking the candidates of a preferential election. In
addition, by extending the model of Liang et al. [28],
Wu et al. [29] presented a modi�ed DEA game cross-
e�ciency model. Wu used the model to evaluate the
performances of di�erent countries in the 2004 Olympic
Games. Roboredo et al. [13] used the DEA game cross-
e�ciency model to calculate the e�ciency scores of
Brazilian football teams. In Roboredos model, each
team was considered a DMU. Based on the algorithm
developed by Liang et al. [28], Sun et al. [30] proposed
a DEA non-cooperation game model to allocate the
emission permits. Wu et al. [18] introduced the concept
of satisfaction degree into cross-e�ciency evaluation
approach. Then, the proposed method was adopted to
evaluate the information technology in order to select
the best option for the considered enterprise. Liu et al.
[31] presented an equitable cross-e�ciency model by
integrating undesirable outputs. Then, the proposed
method was used to analyze the ecological e�ciency of
coal-�red power plants. Chen et al. [32] used a game
cross e�ciency model to assess and analyze the China's
provincial power e�ciency. By analyzing the e�ciency
result from temporal and spatial perspectives, they sug-
gested di�erential energy policies for China's provinces.

From the above literature review, one can con-
clude that the research into cross-e�ciency evaluation
has made great progress in recent years. However,
most of the existing secondary goal models mainly
focus on maximizing (or minimizing) the average peer-
e�ciency scores of all DMUs, thus failing to maximize
(or minimize) the peer-e�ciency level for each single
case. In addition, most of these models still cannot
guarantee the uniqueness of optimal weights. In
order to solve the mentioned problems and further
extend the existing secondary goal models, this paper
proposes two di�erent models, namely the altruism and
exclusiveness cross-e�ciency models, based on di�erent
application scenarios. When the evaluated DMU is
cooperative with other DMUs, the secondary altruism
goal of the evaluated DMUs is to maximize the peer-
e�ciency score of each of the other DMUs. When the
evaluated DMU is competing with the other DMUs,
the secondary exclusiveness goal is to minimize the
peer-e�ciency score of each of the other DMUs. To
linearly solve the proposed models, the corresponding
algorithms are also presented.

The rest of the present paper is organized as
follows. The CCR model, classical cross-e�ciency
evaluation method, and traditional benevolent and
aggressive models are brie
y introduced in Section 2.
An altruism cross-e�ciency and an exclusiveness cross-
e�ciency model with the corresponding algorithms are
presented in Section 3. Two illustrative examples
are given in Section 4. Finally, Section 5 gives the
concluding remarks.

2. CCR model and Data Envelopment
Analysis (DEA) cross-e�ciency evaluation

2.1. Notation summary
To facilitate model formulation, the notation used in
this study is summarized in Table 1.

2.2. CCR model and cross-e�ciency
evaluation

Assume that there are n DMUs to be evaluated. Each
DMU consumes m inputs to produce s outputs. For
DMUj (j = 1; 2; :::; n), the ith input is denoted by xij

Table 1. Notations.

Notations Explanation
xij ith input consumed by DMUj

yrj rth output produced by DMUj

!id Weight of the ith input of DMUd

�rd Weight of the rth output of DMUd

Edd DMUd's self-evaluated e�ciency
Ej DMUj 's cross-e�ciency score
Edj Peer-e�ciency score of DMUj evaluated by DMUd

ej Maximum peer-e�ciency score of DMUj evaluated by DMUd
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and the rth output is denoted by yrj . The self-e�ciency
score of the evaluated DMU, which is denoted by Edd,
can be obtained by the following linear programming
model (1). This model was originally proposed by
Charnes et al. [1] abbreviated to CCR model.

max Edd =
sX
r=1

urdyrd

s.t.:

sX
r=1

urdyrj �
mX
i=1

widxij � 0; 8j;
mX
i=1

widxid = 1;

urd; wid � 0; 8i; r: (1)

In Model (1), wid (i = 1; 2; :::;m) and urd (r =
1; 2; :::; s) are the weights of the ith input and the
rth output of DMUd, respectively. A set of optimal
weights (w�id; u�rd;8j) and the optimal self-e�ciency
score Edd can be obtained by solving Model (1). If
Edd = 1, then DMUd is called DEA-e�cient; otherwise,
it is DEA-ine�cient. Utilizing the optimal weights
of DMUd, the peer-e�ciency scores of DMUj (j =
1; 2; :::; n) evaluated by DMUd could be calculated by
the following formula:

Edj =
Ps
r=1 u

�
rdyrjPm

i=1 w�idxij
; 8j: (2)

For DMUj (j = 1; 2; :::; n), the average of all its
e�ciency scores, denoted by Ej , can be calculated by
Eq. (3) for the �nal e�ciency evaluation measure:

Ej =
1
n

nX
d=1

Edj ; 8j: (3)

The non-uniqueness of optimal weights in
Model (1) will most likely lead to di�erent cross-
e�ciency scores in Eq. (2). To address this prob-
lem, secondary goals are incorporated into the cross-
e�ciency evaluation method. Of all the secondary goal
models, the most commonly utilized are the traditional
benevolent and aggressive models proposed by Sexton
et al. [5] and Doyle and Green [14], which are shown
below as Model (4) and Model (5), respectively.

max
sX
r=1

urd(
nX

j=1;j 6=d
yrj)

s.t.

sX
r=1

urdyrj �
mX
i=1

widxij � 0; 8j;

Edd �
mX
i=1

widxid �
sX
r=1

urdyrd = 0;

mX
i=1

wid(
nX

j=1;j 6=d
xij) = 1;

urd; wid � 0 8i; r: (4)

min
sX
r=1

urd(
nX

j=1;j 6=d
yrj)

s.t.

sX
r=1

urdyrj �
mX
i=1

widxij � 0; 8j;

Edd �
mX
i=1

widxid �
sX
r=1

urdyrd = 0;

mX
i=1

wid(
nX

j=1;j 6=d
xij) = 1;

urd; wid � 0 8i; r: (5)

The core idea of the traditional benevolent (ag-
gressive) model is to identify a set of the optimal
weighs of DMUd. This model can thus maximize (or
minimize) the average peer-e�ciency scores of other
DMUs as much as possible, while retaining the optimal
self-e�ciency score for each DMU. Although these
two models can reduce the non-uniqueness of optimal
weights to a certain extent, each of them still has
some drawbacks. For example, only maximizing or
minimizing the average peer-e�ciency scores of other
DMUs is likely to lead to the emergence of extreme
results. Speci�cally, some cross-e�ciency scores may
be very large, while others are very small, as seen in
Models (4) and (5).

3. The altruism and exclusiveness
cross-e�ciency models

This section presents two improved cross-e�ciency
models, namely altruism and exclusiveness models.
The altruism model �rst identi�es the DMU (called
DMU1) with the minimal peer-e�ciency, and then
maximize the peer-e�ciency of DMU1. Afterwards,
it continues to identify the DMU (called DMU2) with
the minimal peer-e�ciency from the remaining DMUs
and maximizes the peer-e�ciency of DMU2. This
step is repeated until peer-e�ciencies of all DMUs are
obtained. However, the exclusiveness model obtains
the peer-e�ciencies of DMUs from an opposite angle.
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It �rst identi�es the DMU with the maximal peer-
e�ciency (called DMU1) and then, minimizes its peer-
e�ciency. Then, the exclusiveness model continues
to identify the DMU with the maximal peer-e�ciency
from the remaining DMUs (called DMU2) and mini-
mizes its peer-e�ciency. This step is repeated until
peer-e�ciencies of all DMUs are obtained.

3.1. The altruism cross-e�ciency model
If the evaluated DMU is cooperative with other DMUs,
not only should the evaluated weights of DMUs ensure
the optimal self-e�ciency score, but also the peer-
e�ciency scores of other DMUs will be maximized. We
present the altruism cross-e�ciency model (6) to deal
with this situation.

max
w;u

min
1�j�n;j 6=d Edj =

Ps
r=1 urdyrjPm
i=1 widxij

s.t.

sX
r=1

urdyrj �
mX
i=1

widxij � 0; 8j;

sX
r=1

urdyrd = Edd;

mX
i=1

widxid = 1;

urd; wid � 0 8i; r: (6)

The maximum peer-e�ciency score of DMUj (j =
1; 2; :::; n) as evaluated by DMUd can be obtained
through Model (6) while DMUd is retained as the
optimal self-e�ciency score (Edd). In fact, Model (6) is
a multi-objective linear programming model. The �rst
objective of Model (6) is to identify the DMU with the
highest minimal peer-e�ciency score among all DMUs.
The second objective is to maximize the minimal peer-
e�ciency score through the weights of DMUd.

The corresponding steps are designed to �nd the
�nal solution for Model (6):

Step 1: Let l = 1; then, convert Model (6) into
Model (7).

max
w;u

�

s.t.

sX
r=1

urdyrj �
mX
i=1

widxij � 0; 8j;

sX
r=1

urdyrd = Edd;

mX
i=1

widxid = 1;

sX
r=1

urdyrj � � �
mX
i=1

widxij � 0; 8j; j 6= d;

urd; wid � 0 8i; r: (7)

Assume that the optimal solution for Model (7)
is (��1 ; u�1rd; w�1id ;8r; i). Let E�1dj =

Ps
r=1 u

�1
rdyrjPm

i=1 w
�1
id xij

; 8j,
then J = jjj = 1; 2; ::; n; j 6= d can be divided into
two mutually incompatible subsets as follows.

J1 = jjE�1dj = ��1 ; 8j 2 J;
J2 = jjE�1dj > ��1 ; 8j 2 J:

Through Model (7), the peer-e�ciency score of DMUs
is determined as ��1 . Assume that the number of
DMUs in J1 is n1. If n1 = m + s � 2, then the
algorithm terminates and (��1 ; u�1rd; w�1rd;8r; i) is the
unique optimal solution for Model (7) (the reason is
explained by Theorem 2). If n1 = m+ s� 2, then go
to Step 2.
Step 2: l = 2 calculate Model (8) in the following.

max
w;u

�

s.t.

sX
r=1

urdyrj �
mX
i=1

widxij � 0; 8j;

sX
r=1

urdyrd = Edd;

mX
i=1

widxid = 1;

sX
r=1

urdyrj���1 �
mX
i=1

widxij=0; 8j2J1;

sX
r=1

urdyrj � � �
mX
i=1

widxij � 0; 8j 2 J2;

urd; wid � 0; 8i; r: (8)

Insuring that the self-e�ciency score of DMUd is
Edd and the peer-e�ciency score of the DMUs in J1
is ��1 , the optimal solution for Model (8), denoted
by (��2 ; u�2rd; w�2id ;8r; i), can be obtained. Let E�2dj =Ps

r=1 u
�2
rdyrjPm

i=1 w
�2
id xij

; j 2 J2 ; J2 is then divided into two
mutually incompatible subsets as follows:
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J3 = jjE�2dj = ��2 ; 8j 2 J2;

J4 = jjE�2dj > ��2 ; 8j 2 J2:

Using Model (8), the peer-e�ciency score of the
DMUs in J3 is determined as ��2 . Assume that the
number of DMUs in J3 is n2. If n1 +n2 = m+ s� 2,
then the algorithm terminates and (��2 ; u�2rd; w�2id ;8r; i)
is the unique optimal solution for Model (8) (the
reason is explained by Theorem 2). If n1 + n2 <
m+ s� 2, then go to Step 3.
Step 3: l = l + 1; solve Model (9) below:

max
w;u

�

s.t.

sX
r=1

urdyrj �
mX
i=1

widxij � 0; 8j;

sX
r=1

urdyrd = Edd;

mX
i=1

widxid = 1;

sX
r=1

urdyrj � ��1 �
mX
i=1

widxij = 0; 8j 2 J1;

sX
r=1

urdyrj���2 �
mX
i=1

widxij=0; 8j2J3;

:::

sX
r=1

urdyrj���l�1 �
mX
i=1

widxij=0; 8j2J2l�3;

sX
r=1

urdyrj�� �
mX
i=1

widxij�0; 8j2J2l�2;

urd; wid � 0; 8i; r: (9)

Similarly, ensure that the self-e�ciency score of
DMUd is Edd and the peer-e�ciency scores of the
DMUs in J1; J3; :::; J2L� 3 are ��1 ; :::; ��l�1, respec-
tively. We can assume that the optimal solution of
Model (9) is (��l ; u�lrd; w�lid;8r; i). Let:

E�ldj =
Ps
r=1 u

�l
rdyrjPm

i=1 w�lidxij
; j 2 J2l�2; J2l�2;

is then divided into two subsets as follows:

J2l�1 = jjE�ldj = ��l ; 8j 2 J2l�2;

J2l = jjE�ldj > ��l ; 8j 2 J2l�2:

Using Model (9), the peer-e�ciency score of the
DMUs in J2l�1 is determined as ��l . Assume that
the number of DMUs in J2l�1 is nl. If

Pl
t=1 =

m + s � 2, then the algorithm terminates, and
(��1 ; u�lrd; w�lid; 8r; i) is the unique optimal solution for
Model (9) (the reason is explained by Theorem 2). IfPl
t=1 < m+ s� 2, then go to Step 3 again.

Assume that the above steps are repeated k times
(k � n�1). The peer-e�ciency scores of DMUj ; 8j; j 6=
d, denoted by Edj�, can be obtained as follows:

E�dj = ��1 ; j 2 J1;

E�dj = ��2 ; j 2 J3;

:::

E�dj = ��k ; j 2 J2k�1:

Theorem 1. The optimal weights of Model (8) are also
the optimal weights of Model (7). Also, the optimal
value of Model (8) is larger than the optimal value of
Model (7).

Proof: The optimal solution for Model (7) is
(��1 ; u�1rd; w�1id ;8i; r) and we have:Ps

r=1 u
�1
rdyrjPm

i=1 w�1id xij
= ��1 (j 2 J1);

and:Ps
r=1 u

�1
rdyrjPm

i=1 w�1id xij
> ��1 (j 2 J2):

The optimal solution for Model (8) is (��2 ; u�2rd; w�2id ;8i; r) and we have:Ps
r=1 u

�2
rdyrjPm

i=1 w�2id xij
= ��1 (j 2 J1);

and:Ps
r=1 u

�2
rdyrjPm

i=1 w�2id xij
> ��2 (j 2 J2):

Obviously, ��2 � ��1 . Assuming that ��1 � ��1 , we have
J3 � J1, which con
icts with the fact that J3 � J2
and J2\J1 = �. Thus, we have ��2 > ��1 . Through the
optimal solution (��2 ; u�2rd; w�2id ; 8i; r) obtained by Model
(8), the optimal value of Model (7) is ��1 . Therefore, the
optimal solutions for Model (7) is the optimal solution
for Model (8), and the optimal solution for Model (8)
is the optimal solution for Model (7). Q.E.D.
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Through Theorem 1, we know that the optimal
weights of Model (9) with l = k are also the optimal
weights of Model (7), and ��k > ��k�1 > ::: > ��1 .

Theorem 2. If n1 = m + s � 2, then (��1 ; u�lrd; w�lid;8i; r; j) is the unique optimal solution of Model (7).

Proof: For Model (7), if n1 = m+s�2, we know thatPs
r=1 urdyrj���1 �Pm

i=1 widxij = 0; 8j 2 J1. Note that
Model (7) contains two equations,

Pm
i=1 widxid = 1

and
Ps
r=1 urdyrd = Edd. The number of variables

(urd; wid;8r; i) ism+s, and the vectors (xij ; yrj ; 8i; r; j)
are mutually linearly independent. Because the num-
ber of variables and equations are both m+s, the opti-
mal solution for Model (7) can be uniquely determined
and denoted by (��1 ; u�1rd; w�1id ; 8r; i; d) and the algorithm
terminates. If n1 < m+s�2, then go to Step 2. Q.E.D.

Through Theorem 2, we know that if
Pl
t=1 nt =

m+s�2, then (��1 ; u�1rd; w�1id ; 8r; i) is the unique optimal
solution for Model (9), and the algorithm terminates.

3.2. The exclusiveness cross-e�ciency model
If the evaluated DMU is competing with other DMUs,
the secondary goal of the evaluated DMUs should be
minimizing the peer-e�ciency scores of all other DMUs
as much as possible. Therefore, the exclusiveness cross-
e�ciency model is presented to cope with this situation.
This model is shown as follows:

min
w;u

max
1�j�n;j 6=d Edj =

Ps
r=1 urdyrjPm
i=1 widxij

s.t.

sX
r=1

urdyrj �
mX
i=1

widxij � 0; 8j;

sX
r=1

urdyrd = Edd;

mX
i=1

widxid = 1;

urd; wid � 0; 8i; r: (10)

The minimum peer-e�ciency score of DMUj (j =
1; 2; :::; n) as evaluated by DMUd can be obtained
through Model (10), while DMUd is retained as the
optimal self-e�ciency score. Model (10) is also a multi-
objective programming model. The �rst objective of
the models is to identify the DMU with the maximal
peer-e�ciency score among all the DMUs. The second
objective is to minimize the maximal peer-e�ciency
score through the weights of DMUd.

The corresponding steps are designed to �nd the
solution for Model (10).

Step 1: let l = 1,; translate Model (10) into
Model (11) as follows:

min
w;u

�

s.t.

sX
r=1

urdyrj �
mX
i=1

widxij � 0; 8j;
sX
r=1

urdyrd = Edd;

mX
i=1

widxid = 1;

sX
r=1

urdyrj�� �
mX
i=1

widxij�0; 8j; j 6=d;

urd; wid � 0; 8i; r: (11)

Suppose that the optimal solution for Model
(11) is (��1; u�1rd; w�1id ;8r; i). Let:

E�1dj =
Ps
r=1 u

�1
rdyrjPm

i=1 w�1id xij
; 8j; j 6= d:

J = jjj = 1; 2; ::; n; j 6= d is then divided into two
incompatible subsets:

J1 = jjE�1dj = ��1; 8j 2 J;
J2 = jjE�1dj > ��1; 8j 2 J:

Using Model (11), the peer-e�ciency score of DMUs
in J1 is determined as ��1. Assume that the number
of DMUs in J1 is n1. If n1 = m + s � 2, then the
algorithm terminates and (��1; u�1rd; w�1rd;8r; i) is the
unique optimal solution for Model (11) (the reason is
explained by Theorem 4). If n1 = m+ s� 2, then go
to Step 2.
Step 2: l = 2; solve Model (12) below:

min
w;u

�

s.t.

sX
r=1

urdyrj �
mX
i=1

widxij � 0; 8j;
sX
r=1

urdyrd = Edd;

mX
i=1

widxid = 1;
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sX
r=1

urdyrj���1 �
mX
i=1

widxij=0; 8j2J1;

sX
r=1

urdyrj � � �
mX
i=1

widxij � 0; 8j 2 J2;

urd; wid � 0; 8i; r: (12)

Ensure that the self-e�ciency score of DMUd is
Edd and the peer-e�ciency score of the DMUs in J1 is
��1. Suppose that the optimal solution for Model (12)
is (��2; u�2rd; w�2id ; 8r; i). Let E�2dj =

Ps
r=1 u

�2
rdyrjPm

i=1 w
�2
id xij

; j 2 J2;
J2 is then divided into two subsets as follows:
J3 = jjE�2dj = ��2; 8j 2 J2;

J4 = jjE�2dj > ��2; 8j 2 J2:

Using Model (12), the peer-e�ciency score of the
DMUs in J3 is determined as ��2. Assume that the
number of DMUs in J3 is n2. If n1 +n2 = m+ s� 2,
then the algorithm terminates and (��2; u�2rd; w�2id ;8r; i)
is the unique optimal solution for Model (12) (the
reason is explained by Theorem 4). If n1 + n2 <
m+ s� 2, then go to Step 3.
Step 3: l = l+1; solve the general Model (13) in the
following:
max
w;u

�

s.t.

sX
r=1

urdyrj �
mX
i=1

widxij � 0; 8j;
sX
r=1

urdyrd = Edd;

mX
i=1

widxid = 1;

sX
r=1

urdyrj���1 �
mX
i=1

widxij=0; 8j2J1;

sX
r=1

urdyrj���2 �
mX
i=1

widxij=0; 8j2J3;

:::

sX
r=1

urdyrj���l�1 �
mX
i=1

widxij =0; 8j2J2l�3;

sX
r=1

urdyrj�� �
mX
i=1

widxij�0; 8j2J2l�2;

urd; wid � 0; 8i; r: (13)

Ensure that the self-e�ciency score of DMUd
is Edd, and the peer-e�ciency scores of the
DMUs in J1; J3; :::; J2L�3 are ��1; :::; ��l�1, respec-
tively. Suppose the optimal solution for Model (13)
is (��l ; u�lrd; w�lid;8r; i). Let E�ldj =

Ps
r=1 u

�l
rdyrjPm

i=1 w
�l
idxij

; j 2 J2l�2;
J2l�2 is then divided into two subsets as follows:

J2l�1 = jjE�ldj = ��l ; 8j 2 J2l�2;

J2l = jjE�ldj > ��l ; 8j 2 J2l�2:

Using Model (13), the peer-e�ciency score of the
DMUs in J2l�1 is determined as ��l . Assume that the
number of DMUs in J2l�1 is nl. If

Pl
t=1 = m+ s� 2,

then the algorithm terminates, and (��1; u�lrd; w�lid;8r; i)
is the unique optimal solution for Model (9) (the reason
is explained by Theorem 4). If

Pl
t=1 < m+ s�2, then

go to Step 3.
Assume that the above steps are repeated w

times (w � n � 1). The peer-e�ciency scores of
DMUj ; 8j; j 6= d, denoted as Edj�, can be obtained
as follows:

E�dj = ��1; j 2 J1;

E�dj = ��2; j 2 J3;

:::

E�dj = ��k; j 2 J2k�1:

Theorem 3. The optimal weights of Model (12) are
also the optimal weights of Model (11) and the optimal
value of Model (12) is smaller than the optimal value
of Model (11).

Proof: The proof for this theorem is similar to that
for Theorem 1 hence, it is not provided again.

Through Theorem 3, we know that the optimal
weights of Model (13), while l = 2, are also the optimal
weights of Model (11), and ��w < ��2�1 < ::: < ��1.

Theorem 4. If n1 = m+s�2, then (��1; u�lrd; w�lid; 8i; r)
is the unique optimal solution for Model (11).

Proof: The proof for this theorem is similar to
Theorem 2; hence, it is not provided again.

Through Theorem 4, we know that if
Pl
t=1 nt =

m + s � 2, then (��1; u�1rd; w�1id ; 8r; i; j) is the unique
optimal solution for Model (9), and the algorithm
terminates.

3.3. Solution method
It can be easily observed that the altruism cross-
e�ciency and exclusiveness cross-e�ciency models
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have some properties in common, which allow them to
be solved using similar methods. Here, we give an al-
gorithm to solve the proposed altruism cross-e�ciency
model. Based on the algorithm, the exclusiveness cross-
e�ciency model can also be solved. The work
ow of
the algorithm in provided in Figure 1.

This method notes that � is a parameter, and
Models (7), (8), and (9) should be solved as parametric
linear programming ones.

The following steps explicitly describes how the
altruism cross-e�ciency model (i.e., Model (6)) can be
solved by solving Models (7), (8), and (9):

Step 1: Solve Model (7). In Model (7), the initial
value of � is set to minEdj ;8j. Then, every time �
increases by a small positive number, e.g., � = 0:0001,
the increased times are denoted by I. Thus, � =
minEdj ; 8j+I� and I = 0; 1; 2; :::. Assume that when
I = I�1 , Model (7) has no feasible solutions. The
optimal value of Model (7) can be obtained, which
is ��1 = minEdj ; 8j + (I�1 � 1)�. If n1 = m + S � 2,
then the algorithm terminates and (��1 ; u�lrd; w�lid; 8i; r)
is the unique optimal solution for Model (7). If n1 <
m+ S � 2, then go to Step 2.
Step 2: Solve Model (8). Since the optimal value of
Model (8) is larger than that of Model (7), the initial
value of � in Model (8) is set to minEdj ;8j + I�1 �.
Therefore, � = minEdj ;8j + I�, and I = I�1 ; I�1 +
1; I�1 +2; :::. Assume that when I = I�2 , Model (8) has
no feasible solutions. The optimal value of Model (8)
can be obtained, is ��2 = minEdj ;8j + (I�2 � 1)�. If
n1 + n1 = m+ S � 2, then the algorithm terminates,
and (��2 ; u�2rd; w�2id ;8i; r) is the unique optimal solution
for Model (8). If n1 + n1 < m+ S � 2, go to Step 3.
Step 3: Solve Model (9). Generally, in Model (9),
the initial value of � is set to minEdj ; 8j+I�l�1�. Thus

� = minEdj ; 8j+I� and I = I�l�1; I�l�1+1; I�l�1+2; ::: .
Assume that when I = I�l , Model (9) has no feasible
solutions. The optimal value of Model (9) can be
obtained, which is ��l = minEdj ; 8j + (I�l � 1)�. IfPl
t=1 nt < m + S � 2, repeat Step 3 again until we

have
Pl
t=1 nt = m+ S � 2.

4. Numerical example

In this section, two numerical examples are used to
verify e�ectiveness and feasibility of the proposed
models.

4.1. A simple example of �ve DMUs
Firstly, as shown in Table 2, there are �ve DMUs with
three inputs (X1, X2, X3) and two outputs (Y1, Y2)
to be evaluated.

Five DMUs are evaluated by the CCR model
(Model (1)), the traditional cross-e�ciency model
(Model (2)), the traditional benevolent model (Model
(4)), and the proposed altruism model. Table 3 shows
the average e�ciency scores and ranking orders for the
DMUs, as obtained through each di�erent model. The
cross-e�ciency scores for each DMU from Models (2),
(4), and (6) are given in Tables 4, 5, and 6, respectively.
As shown in the second column of Table 3, four DMUs

Table 2. A simple numerical example.

DMUs X1 X2 X3 Y1 Y2

DMU1 7 1 2 9 9
DMU2 5 2 1 7 7
DMU3 4 3 2 5 7
DMU4 5 6 1 6 2
DMU5 6 7 1 9 6

Figure 1. Work
ow of the algorithm.
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Table 3. E�ciency scores and rankings of di�erent models.

DMU
CCR
model

Rank
Classical
model

Rank
Benevolent

model
Rank

Altruism
model

Rank

1 1.000 1 0.856 1 0.927 3 0.930 3
2 1.000 1 0.846 2 0.987 1 0.986 1
3 1.000 1 0.588 4 0.893 4 0.877 4
4 0.800 5 0.416 5 0.742 5 0.750 5
5 1.000 1 0.652 3 0.965 2 0.964 2

Table 4. Arbitrary cross-e�ciency scores.

Rating DMUd
Rated DMUj

1 2 3 4 5

1 1.000 0.443 0.249 0.103 0.152
2 0.894 1.000 0.513 0.295 0.542
3 0.932 0.965 1.000 0.224 0.566
4 0.857 0.933 0.833 0.800 1.000
5 0.595 0.889 0.343 0.658 1.000

Table 5. Cross-e�ciency scores of Model (4).

Rating DMUd
Rated DMUj

1 2 3 4 5

1 1.000 1.000 0.804 0.684 0.862
2 0.941 1.000 0.865 0.798 1.000
3 0.918 1.000 1.000 0.686 0.964
4 0.857 0.933 0.833 0.800 1.000
5 0.918 1.000 0.964 0.743 1.000

Table 6. Cross-e�ciency scores of the proposed altruism
model.

Rating DMUd
Rated DMUj

1 2 3 4 5

1 1.000 1.000 0.803 0.682 0.861
2 0.939 1.000 0.873 0.793 0.999
3 0.918 1.000 1.000 0.682 0.961
4 0.857 0.933 0.833 0.800 1.000
5 0.936 0.998 0.874 0.792 1.000

are evaluated as being e�cient. This clearly indicates
that DMUs cannot be e�ectively distinguished by the
CCR model. In order to overcome this defect, the cross-
e�ciency evaluation is carried out for Models (2) and
(4) as well as the proposed altruism model. It is ob-
served that the diagonal elements of Tables 4, 5, and 6,
i.e. the self-e�ciency scores of the DMUs, are identical,
as obtained by the CCR model. In addition, the peer-
e�ciency scores from Model (2) are generally smaller
than those from Models (4) and (6). For instance,
the peer-e�ciency scores of DMU1, as evaluated by

DMU5 in Models (2), (4), and the proposed altruism
model, are 0.595, 0.918, and 0.936, respectively. No
large di�erences exist between the peer-e�ciency scores
of Models (4) and (6). This is because the main
function of both model (4) and the altruism model is to
maximize the peer-e�ciency scores of the other DMUs,
while simultaneously ensuring optimality of the self-
e�ciency score of the evaluated DMU. However, the
main di�erence between Model (4) and the altruism
model lies in the following two aspects. On the one
hand, Model (4) has the objective of maximizing the
average e�ciency of other n � 1 DMUs, while the
altruism model is supposed to maximize/minimize the
e�ciency of each of the other n � 1 DMUs. On the
other hand, the altruism model can obtain a unique
set of cross-e�ciency scores, while Model (4) fails to
do that.

4.2. Application to 
exible manufacturing
systems

The numerical example from Shang and Sueyoshi [8]
is then used to illustrate the proposed models. As
shown in Table 7, there are 12 Flexible Manufacturing
Systems (FMSs) to be evaluated. Each FMS contains
two inputs and four outputs:

Input 1: The annual operating and depreciation cost
($100,000);

Input 2: The 
oor space requirements of each speci�c
system (1000 ft2);

Output 1: Improvements in qualitative bene�ts (%);

Output 2: Work in-process reduced (10);

Output 3: Average reduction in the number of tardy
jobs (%);

Output 4: Average increase in yield (%).

The 12 DMUs are evaluated by the CCR model
(Model (1)), the traditional cross-e�ciency model
(Model (2)), the traditional benevolent model (Model
(4)), the traditional aggressive model (Model (5)), the
proposed altruism model and the proposed exclusive-
ness model. The corresponding results are reported in
Table 8. Using Model (1), the CCR e�ciency scores
of the DMUs and the corresponding ranking order are
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Table 7. Data on 12 
exible manufacturing systems.

DMUs Data
Input 1 Input 2 Output 1 Output 2 Output 3 Output 4

1 17.02 5 42 45.3 14.2 30.1
2 16.46 4.5 39 40.1 13 29.8
3 11.76 6 26 39.6 13.8 24.5
4 10.52 4 22 36 11.3 25
5 9.5 3.8 21 34.2 12 20.4
6 4.79 5.4 10 20.1 5 16.5
7 6.21 6.2 14 26.5 7 19.7
8 11.12 6 25 35.9 9 24.7
9 3.67 8 4 17.4 0.1 18.1
10 8.93 7 16 34.3 6.5 20.6
11 17.74 7.1 43 45.6 14 31.1
12 14.85 6.2 27 38.7 13.8 25.4

Table 8. E�ciency scores and rankings of di�erent models

DMU CCR
model

Rank Classical
model

Rank Benevolent
model

Rank Aggressive
model

Rank Altruism
model

Rank Exclusiveness
model

Rank

1 1.000 1 0.870 3 0.955 5 0.848 3 0.947 5 0.842 4
2 1.000 1 0.857 4 0.936 6 0.839 4 0.930 6 0.830 5
3 0.982 9 0.819 5 0.925 8 0.779 5 0.919 8 0.827 6
4 1.000 1 0.890 2 0.981 2 0.857 2 0.982 2 0.884 2
5 1.000 1 0.911 1 0.977 3 0.878 1 0.972 3 0.894 1
6 1.000 1 0.762 9 0.956 4 0.729 8 0.958 4 0.825 7
7 1.000 1 0.797 6 0.988 1 0.760 6 0.988 1 0.856 3
8 0.961 10 0.764 8 0.931 7 0.723 9 0.927 7 0.793 8
9 1.000 1 0.560 12 0.749 12 0.571 12 0.762 12 0.630 12
10 0.954 11 0.653 11 0.815 10 0.624 11 0.812 10 0.696 10
11 0.983 8 0.776 7 0.908 9 0.739 7 0.899 9 0.780 9
12 0.801 12 0.701 10 0.773 11 0.671 10 0.770 11 0.695 11

obtained and shown in the second and third columns
of Table 8. Note that there are seven e�cient DMUs,
which cannot be further distinguished by Model (1).

From Table 8, we �nd out that the average
cross-e�ciency scores calculated by Model (4) and the
altruism model are larger than those calculated by
Model (5) and the exclusiveness model. This is because
the intended objective of Model (4) and the altruism
model is to maximize peer-e�ciency scores of other
DMUs. Conversely, the key objective of both Model
(5) and the exclusiveness model is to minimize the peer-
e�ciency scores of other DMUs.

The 11th and 13th columns of Table 8 present the
ranking orders of DMUs as obtained by the altruism
model and the exclusiveness model, respectively. We
can see that these two ranking orders are totally
di�erent. For example, DMU7 is ranked in �rst
by the altruism model, whereas the same DMU is
ranked in third by the exclusiveness model. This
indicates that di�erent strategies will lead to di�erent
ranking results. Therefore, the decision makers should

choose the appropriate model, according to the actual
application.

Tables 9, 10, and 11 list the cross-e�ciency scores
obtained by Model (1), the altruism model, and the
exclusiveness model, respectively. The diagonal ele-
ments in the tables provide the self-e�ciency scores of
the DMUs as obtained from Model (1). By comparing
the cross-e�ciency scores, we reach several �ndings.
Firstly, the peer-e�ciency scores from the altruism
model (or the exclusiveness model) are larger (or
smaller) than those from Model (2). For example,
the peer-e�ciency scores of DMU1, as evaluated by
DMU5 in Model (2), the altruism model, and the
exclusiveness model, are 0.879, 0.958, and 0.747, re-
spectively. This indicates that the proposed altruism
model (or exclusiveness model) has a good ability to
maximize (or minimize) the peer-e�ciency scores of
other DMUs. Therefore, both the altruism and the
exclusiveness models can be considered as an extension
of the traditional cross- e�ciency evaluation methods.
Secondly, the standard deviations of the cross-e�ciency
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Table 9. The arbitrary cross-e�ciency scores.

Rating
DMUd

Rated DMUj

1 2 3 4 5 6 7 8 9 10 11 12

1 1.000 0.999 0.692 0.833 0.854 0.371 0.434 0.635 0.142 0.426 0.787 0.650
2 0.977 1.000 0.618 0.784 0.782 0.322 0.373 0.572 0.130 0.361 0.736 0.600
3 1.000 0.959 0.982 0.927 1.000 0.932 1.000 0.927 0.422 0.760 0.977 0.801
4 0.955 0.981 0.784 1.000 0.990 0.501 0.550 0.676 0.257 0.490 0.746 0.736
5 0.879 0.879 0.775 0.925 1.000 0.398 0.463 0.572 0.095 0.401 0.671 0.719
6 0.707 0.699 0.837 0.882 0.889 1.000 0.991 0.767 0.891 0.731 0.679 0.685
7 0.683 0.661 0.871 0.884 0.932 0.990 1.000 0.747 0.779 0.745 0.654 0.700
8 1.000 0.977 0.949 1.000 1.000 0.962 1.000 0.961 0.753 0.833 0.951 0.794
9 0.470 0.472 0.538 0.592 0.557 0.793 0.751 0.554 1.000 0.558 0.462 0.441
10 0.764 0.704 0.904 0.956 1.000 0.951 1.000 0.860 0.849 0.954 0.714 0.720
11 1.000 0.966 0.924 0.896 0.927 0.954 1.000 0.945 0.672 0.783 0.983 0.759
12 1.000 0.984 0.953 1.000 1.000 0.967 1.000 0.950 0.724 0.795 0.953 0.801

Standard
deviation

0.167 0.169 0.136 0.111 0.127 0.265 0.253 0.154 0.316 0.188 0.154 0.167

Table 10. Cross-e�ciency scores of the altruism model.

Rating
DMUd

Rated DMUj

1 2 3 4 5 6 7 8 9 10 11 12

1 1.000 0.984 0.938 1.000 0.986 0.971 1.000 0.960 0.779 0.816 0.951 0.791
2 1.000 1.000 0.889 1.000 0.963 0.850 0.881 0.911 0.640 0.734 0.923 0.771
3 1.000 0.959 0.982 0.926 1.000 0.930 0.999 0.926 0.416 0.759 0.977 0.801
4 0.977 0.966 0.926 1.000 0.978 0.977 1.000 0.948 0.810 0.816 0.925 0.780
5 0.958 0.930 0.938 1.000 1.000 0.964 1.000 0.943 0.781 0.851 0.904 0.781
6 0.915 0.920 0.887 1.000 0.945 1.000 1.000 0.919 0.910 0.802 0.865 0.756
7 0.971 0.957 0.927 1.000 0.981 0.976 1.000 0.947 0.811 0.822 0.921 0.781
8 1.000 0.977 0.949 1.000 1.000 0.962 1.000 0.961 0.753 0.833 0.951 0.794
9 0.780 0.808 0.810 1.000 0.888 1.000 0.973 0.850 1.000 0.780 0.725 0.700
10 0.764 0.704 0.904 0.956 1.000 0.951 1.000 0.860 0.849 0.953 0.714 0.720
11 1.000 0.966 0.924 0.896 0.927 0.954 1.000 0.945 0.672 0.783 0.983 0.759
12 1.000 0.984 0.953 1.000 1.000 0.967 1.000 0.950 0.723 0.795 0.953 0.801

Standard
deviation

0.086 0.087 0.044 0.036 0.036 0.039 0.034 0.037 0.146 0.055 0.090 0.032

scores of DMUs are reported in the last row. Note that
the 
uctuation of cross-e�ciency scores in the altruism
model is the smallest. This indicates that the altruism
model can be used to reduce the di�erences in the
cross-e�ciency scores of DMUs. Finally, in Table 8, we
observe that DMU9 is the worst among all the DMUs.
In fact, DMU9 is always ranked the last. Further to
the above �ndings, most of the peer-e�ciency scores
evaluated by DMU9 are small. This indicates that
when peer-e�ciency scores of a DMU (when evaluated
by other DMUs) are not large, small peer-e�ciency
scores will be given to the other DMUs.

5. Conclusions

Cross-e�ciency evaluation is an e�ective method for
assessing e�ciency. However, its major drawback is the
appearance of non-unique optimal weights. To over-
come this de�ciency, a secondary goal was incorporated
into cross-e�ciency evaluation. Thus far, scholars
have presented numerous secondary goal models with
multiple secondary goals. In this paper, two new
secondary goal models were presented to further extend
the existing secondary goal models. Speci�cally, in
case the evaluated Decision-Making Unit (DMU) was
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Table 11. Cross-e�ciency scores of the exclusiveness model.

Rating
DMUd

Rated DMUj

1 2 3 4 5 6 7 8 9 10 11 12

1 1.000 0.959 0.900 0.890 0.946 0.773 0.849 0.879 0.417 0.731 0.954 0.746
2 0.917 1.000 0.602 0.909 0.789 0.429 0.451 0.603 0.304 0.421 0.666 0.604
3 1.000 0.959 0.982 0.926 1.000 0.930 0.999 0.926 0.416 0.759 0.977 0.801
4 0.818 0.874 0.775 1.000 0.889 0.820 0.817 0.803 0.725 0.685 0.723 0.694
5 0.747 0.725 0.830 0.869 1.000 0.462 0.541 0.556 0.007 0.407 0.625 0.722
6 0.608 0.602 0.776 0.802 0.817 1.000 0.973 0.688 0.968 0.679 0.591 0.626
7 0.890 0.842 0.904 0.877 0.929 0.949 1.000 0.889 0.725 0.833 0.869 0.727
8 1.000 0.977 0.949 1.000 1.000 0.962 1.000 0.961 0.753 0.833 0.951 0.794
9 0.359 0.367 0.423 0.482 0.436 0.699 0.643 0.451 1.000 0.468 0.356 0.347
10 0.764 0.704 0.904 0.956 1.000 0.951 1.000 0.860 0.849 0.953 0.714 0.720
11 1.000 0.966 0.924 0.896 0.927 0.954 1.000 0.945 0.672 0.783 0.983 0.759
12 1.000 0.984 0.953 1.000 1.000 0.967 1.000 0.950 0.723 0.795 0.953 0.801

Standard
deviation

0.199 0.196 0.165 0.140 0.162 0.199 0.202 0.175 0.290 0.175 0.199 0.126

cooperative with other DMUs, the altruism cross-
e�ciency model was proposed as a means to iteratively
maximize the peer-e�ciency scores of each DMU.
On the other hand, when the evaluated DMU was
competing with other DMUs, the exclusiveness cross-
e�ciency model was presented as a means to minimize
the peer-e�ciency score of each of the other DMUs.
The decision-makers could choose their preferred mod-
els depending on di�erent application scenarios and
requirements. In this paper, two numerical examples
were used to illustrate the proposed models. Our
results showed that the proposed altruism model (ex-
clusiveness model) had a good ability to maximize
(minimize) the peer-e�ciency scores of other DMUs.

Our method brings at least three advantages to
current cross-e�ciency evaluation methods. Firstly,
the competition and cooperation game theories are
integrated into a Data Envelopment Analysis (DEA)
approach, in order to develop two cross-e�ciency
evaluation models. Compared to cross-e�ciency evalu-
ation methods, our proposed models aim to iteratively
maximize (or minimize) e�ciency ratings of each other
DMU, rather than a�ecting the average overall e�-
ciency of other DMUs. Secondly, although the models
presented in this paper were nonlinear, an algorithm
was proposed for solving them. We provided two
examples in order to verify e�ectiveness of the proposed
algorithm. Finally, in order to solve the non-uniqueness
of cross-e�ciency scores, we presented and proved the
hypothesis of the unique solution for cross e�ciency.
This proof provided even a greater reason for all DMUs
to accept the evaluation results.

This study can be extended in the future. For
example, in some real-world applications, the input and

output data are stochastic. In this case, our models are
not applicable. Some further extensions can consider
and address this problem based on stochastic or fuzzy
cross-e�ciency evaluation methodologies.
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