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Abstract. In today's world, production and distribution of products in supply chain
systems should be done with careful consideration of the environmental and social issues as
global concerns about the emission of greenhouse gases within the manufacturing processes
and overlooking the major needs of the public are rising. In this regard, the present
paper proposes a new multi-objective model for the Closed-Loop Supply Chain (CLSC)
problems by incorporating lot sizing and considering lean, agility, and sustainability factors,
simultaneously. Furthermore, a robust possibilistic programming approach was applied for
handling the uncertainty of the model. To increase the responsiveness of the system, a
Fuzzy C-means Clustering Method (FCCM) was employed in order to select the potential
locations based on the proximity to local customers. A new hybrid metaheuristic algorithm
was developed in order to improve e�ciency of the model in dealing with large-size
problems and assess the impact of using a single-based initial solution as the income for
the second phase of the proposed hybrid algorithm. In addition, to ensure e�ectiveness of
the proposed algorithm, another well-known metaheuristic algorithm was developed. The
results achieved by experiments on di�erent test problems approved the superiority of the
hybrid metaheuristic algorithm in achieving proper solutions.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

In the current competitive atmosphere, many compa-
nies are dealing with di�erent economic, environmen-
tal, and social concerns. In addition, governments
are faced with a large number of restrictions and
obligations in limiting the activities of companies and
monitoring them. With this in mind, designing Closed-
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Loop Supply Chains (CLSC) can be among the useful
strategies for both the governments and companies
to achieve higher pro�ts alongside considering social
bene�ts. Setting a balance among the economic,
environmental, and social considerations in a system
is the main goal of sustainable manufacturing. In
considering the environmental factors as an important
aspect of a sustainable system, transportation networks
and production play a vital role. With regard to
the economic aspect of a system, besides designing an
agile manufacturing strategy, a supply chain should
consider expectations of customers and implement a
quick-response system to meet the demands as soon
as possible. The most optimal employment of re-
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sources and elimination of the useless activities are
the fundamentals of lean production. In this regard,
incorporating strategic and operational decisions can
improve the capabilities of Supply Chain Network
Design (SCND) in a competitive atmosphere for more
e�cient management of systems. In a CLSC, deter-
mining the best set of routes between the destinations
can reduce the traveling costs and times. Production-
inventory management is another important issue in
the CLSC, which helps reduce the production costs by
setting the number of production batches and number
of items to be preserved for the next periods.

Taking into consideration the growing public
concern about the current environmental and social
issues, many companies are faced with simultaneously
contradicting goals, which pose di�culties for Decision
Makers (DMs) in making optimal decisions. In this
regard, Dehghanian and Mansour [1] designed a net-
work supply chain system and considered the negative
environmental e�ects of the process. They employed
di�erent measures, including life-cycle assessment, to
evaluate the environmental and social e�ects of the
production process. In addition, Sahebjamnia et
al. [2] developed a sustainable closed-loop system for
tire industry and incorporated the environmental and
social aspects in di�erent stages of the supply chain
system, including transportation and facility opening.
To reinforce the concept of sustainability and improve
the performance of companies while obliging to the
environmental restrictions, the proposed model in the
present study aims to set a balance among the concepts
of agility, leanness, and sustainability. In this respect,
considering the major policies for leanness and agility
in the strategic and operational decisions of a supply
chain can have a signi�cant e�ect on the sustainability
of a system. Therefore, the current study aims to
assess the behavior of a model by considering the
aforementioned three concepts in a supply chain system
and incorporate leanness and agility strategies in order
to pave the way for having a sustainable system.

Furthermore, natural and man-made calamities
can cause considerable damage to a supply chain and
threat the continuity of a business. In this regard,
several strategies have been developed to reduce the
possible damages of disasters and prepare supply chain
systems against unwanted events. These strategies can
be categorized into two main groups of operational
decisions and strategic decisions. The operational
decisions occur instantly after a disruption begins. The
strategic decisions take place before the occurrence of
a disruption to fortify an SCND against disruption.
In this regard, business continuity planning is a useful
management tool to provide a framework and identify
the internal and external factors a�ecting a supply
chain under disruption (ISO 22301, 2012).

In this paper, we consider lean, agile, and sus-

tainable manufacturing strategies simultaneously for a
CLSC problem in which strategic and tactical decisions
are integrated. In addition, strategic and operational
decisions are made to face disruption risks. The main
contributions of this study are the following:

� Designing a new sustainable CLSC problem un-
der partial facility disruption considering location-
allocation, lot sizing, shortage, and routing deci-
sions, simultaneously;

� Applying an M/M/c queue system in order to
reduce the congestion in a system, shipment time,
and related costs by taking into consideration the
alternative routes;

� Applying strategic and operational decisions in or-
der to increase the resiliency of a system against
disruptions;

� Desigining a data-driven model through the Fuzzy
C-means Clustering Method (FCCM) to select and
rank the best possible locations as the nominated
locations for Production Centers (PDCs) and Re-
production Center (RCs);

� Employing a new hybrid metaheuristic algorithm to
e�ciently solve the problem;

� Considering the major concepts of agility, leanness,
and sustainability to design a new supply chain
model;

� Implementation of the presented model for a real
case.

The rest of the paper is organized as follows: The
relevant literature is reviewed in Section 2. Section 3
introduces the model, and the method to deal with
uncertainty of the model is explained in Section 4.
In Section 5, the major solution method is presented
the results of which are given in Section 6. Finally,
Section 7 concludes the paper.

2. Literature review

In this section, a review of CLSCs in the literature is
presented. Generally, research studies in this �eld have
focused on lot sizing, sustainability, disruption risks,
and queue systems, as introduced in the following.

2.1. Location, lot sizing, and routing in a
supply chain

Location, allocation, routing, and inventory decisions
are dealt with in various types of supply chain prob-
lems [3{5]. Lot sizing has been considered in some
studies of CLSC besides other strategic and tactical
decisions for system. Pan et al. [6] studied a lot sizing
problem in CLSC by disregarding the returned prod-
ucts and adopted a dynamic programming algorithm to
handle the problem. Soleimani and Kannan [7] stated
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that CLSC was an NP-hard problem. They designed
an integrated CLSC problem consisting of location,
inventory, and shipment decisions and used a hybrid
metaheuristic algorithm to solve the problem in hand.
Kannan et al. [8] formulated a model for the CLSC
problem by taking into account the production, ship-
ping, reproduction, and recycling decisions in the struc-
ture of their model and implemented it in the battery
industry as a real case. They used a genetic algorithm
to solve the problem. Torkaman et al. [9] compared the
performance of a Simulated Annealing (SA) algorithm
with a heuristic approach in solving a multi-product
production planning problem with sequence-dependent
set up times in a CLSC and showed the superiority of
SA for solving large-size instances. As0ad et al. [10]
developed a CLSC problem in which raw material
procurement, transportation, and lot sizing decisions
were integrated. They assumed two di�erent strategies
for the provision of raw material and applied an
iterative search algorithm in order to solve the problem.
Hasanov et al. [11] proposed a four-level CLSC problem
by determining the order quantities and inventory
level of the system and assumed that a part of the
demand was met from the remanufactured items. They
proved that higher remanufacturing rates would lead
to lower manufacturing costs. Hajiaghaei-Keshteli and
Fathollahi-Fard [12] developed a novel mixed-integer
CLSC model and included discount supposition in the
shipment expenditures. They used di�erent hybrid
metaheuristic algorithms and compared the results for
the aforementioned model. Taleizadeh et al. [13] devel-
oped a multi-objective CLSC model for the light-bulb
industry and used the global reporting initiative indi-
cators for the environmental and social factors. Taking
into account the pricing and discounting decisions in
the tactical decision making for a logistic system was
one of the major features of their study. They used the
Torabi-Hassini method to deal with the multi-objective
model. Safaeian et al. [14] proposed a multi-objective
model for a supply chain network problem to determine
the suppliers and allocate the orders. They used a
multi-objective metaheuristic method in order to solve
the problem. Fathollahi-Fard et al. [15] formulated
the logistic system for a home health care problem
considering the environmental aspects besides the costs
of the system. They used di�erent simulated annealing
algorithms to solve the problem. In addition, Feng
Zhang et al. [16] used Multi-Criteria Decision-Making
(MCDM) methods for the supplier selection problem in
a collaborative manufacturing enterprise. Liu et al. [17]
developed new hybrid MCDM methods to appraise the
environmental aspects of the manufacturing process
for ships. There are di�erent types of metaheuris-
tic algorithms to deal with supply chain problems.
Fathollahi-Fard et al. [18] showed the highly superior
performance of hybrid metaheuristics in dealing with

large-size supply chain problems. In addition, there
are other articles employing hybrid metaheuristics and
multi-objective metaheuristics to solve manufacturing
and supply chain problems [19,20]. Fathollahi-Fard
et al. [21] introduced a two-stage stochastic model for
the water supply and applied a Lagrangian relaxation-
based algorithm in order to solve the problem.

2.2. Leanness, agility, sustainability, and
disruption risk in a supply chain

Fahimnia et al. [22] assessed the e�ect of greenhouse gas
pricing on the forward and backward 
ows of a CLSC
and used a case study to show the applicability of their
model. Govindan et al. [23] included environmental
issues in all of the supply chain parts besides economic
factors and used a hybrid approach to dealing with
the multi-objective problem. Mokhtari and Hasani [24]
proposed a supply chain model with two objective
functions. Their model determined production and
inventory level, transportation mode, and back-order
level. They employed a fuzzy goal programming
method to reduce the related costs and environmental
e�ects of the system, concurrently. Chalmardi and
Camacho-Vallejo [25] developed an SCND problem
and considered the social and environmental aspects
alongside economic objectives in the problem. In
their proposed model, the government played the role
of the leader and the manager of the company was
the follower. They adopted an algorithm based on
Simulation Annealing (SA) to solve the problem in
hand.

Risk management is one of the main factors of an
agile production system that enhances responsiveness
by incorporating immunity of the system [26]. In this
area, multiple-sourcing is one of the prevalent strategies
for facing disasters. In multiple-sourcing, each retailor
can be assigned to more than one node [27]. Moham-
maddust et al. [28] designed a lean and responsive non-
linear model for a supply chain problem and considered
di�erent types of backup strategies to face the risk of
a system. They applied a regression approximation
method to linearize the model. Rohaninejad et al. [29]
studied a multi-echelon SCND with unreliable facilities
and assumed the facilities could be \hardened." They
used di�erent approximation algorithms to solve large-
size problems.

2.3. Queue system and uncertainty in supply
chain

Considering the overcrowding caused by the di�erences
between the processing rate of the servers and the
arrival rate of the incoming 
ow in facilities, queuing
approach can be a useful tool to reduce congestion
in a system as a lean strategy. Ghobadi et al. [30]
highlighted the importance of the queue system in
reducing the service time and enhancing customer sat-
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isfaction. Vahdani et al. [31] applied the queue system
for a bi-objective supply chain problem, incorporating
total costs and unforeseen transportation costs, and
used a Robust Optimization (RO) approach in order
to confront the uncertain parameters. Saeedi et al. [32]
developed an uncertain model for an CLSC problem
and tried to set a balance between queue costs and
other costs of the system to determine the capacity
of facilities. Vahdani and Mohammadi [33] formulated
an uncertain supply chain problem and used a queue
system to decrease the processing time.

Stochastic programming is a prevalent method to
deal with uncertain parameters when experts know the
distribution of random data. However, in the absence
of enough data to guess the probable distribution of
parameters, RO is a suitable approach enabling DMs
to obtain reliable solutions [34]. Sadghiani et al. [35]
proposed a retail SCND model with operational and
disruption risks and employed a possibilistic-robust
method to handle the vagueness of parameters. Kim
et al. [36] used a robust method to deal with uncertain
product recycling and customer demand for a CLSC
and showed the e�ciency of their method in dealing
with uncertainty. Hajipour et al. [37] proposed a CLSC
problem by incorporating radio frequency identi�cation
in order to reduce the lead time and meet social and
environmental objective functions, simultaneously. To
handle the uncertainty of the model, they applied
stochastic programming.

2.4. Contributions of the current study
Referring to the previous section and taking a look
at Table 1, it becomes clear that there are a large
number of studies that consider strategic (facility
establishment) and tactical (inventory, lot sizing, re-
production, and routing) decisions in the structure of
their proposed models. However, few researches have
considered all the aforementioned decisions simulta-
neously to enhance the integrity and applicability of
their models. Moreover, while taking into consideration
the pillars of lean and agile production can make con-
siderable positive e�ects on the environmental, social,
and economic aspects of the manufacturing systems,
few studies have proposed mathematical analyses to
set a balance among the aforementioned dimensions.
Applying queue systems and shortages are other direc-
tions that can have considerable e�ects on a system.
Finally, there are few studies paying attention to the
disruption e�ects on the environmental, social, and
economic aspects of a lean/agile supply chain system.
In general, it can be claimed that there are some gaps
in the context of CLSC, as described in the following,
which will be dealt with in one way or another by the
model proposed in the present research:

� The integration of location-allocation, lot sizing,
inventory, and routing decisions in a CLSC problem;

� Considering quick response (and other agility met-

Table 1. Summary of the related studies.
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[6] * *
[7] * *
[8] * *
[9] * *
[10] * *
[13] * * * * *
[15] * * *
[23] * * * * *
[24] * * * *
[25] * * * *
[26] * * * * *
[28] * * *
[37] * * * * * *

This study * * * * * * * * * * * * * *
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rics) to increase the responsiveness of a CLSC
problem;

� Considering lean and agile production strategies to
support the social and environmental objectives of
a CLSC problem;

� Considering the concurrent disruption of facilities
and routes in a CLSC problem;

� Considering backup storage, backup supplier, multi-
allocation, and alternative route decisions as the
operational and strategic decisions to increase re-
siliency of a system against partial disruption risks;

� Considering storage and service level constraints in
a CLSC problem under partial disruption risks;

� Proposing a data-driven modeling to increase the
agility level of a manufacturing system.

In the next section, we propose a new multi objective
model that covers all the aforementioned research gaps.
Table 1 gives a summary of the literature reviewed.

3. Problem description

3.1. Modeling framework
In most of the CLSC problems with location-allocation
decision, the potential locations are predetermined,
while in real situation, the candidate nodes should
be determined based on the discretion of the DMs.
Thus, we developed a data-driven modelling in which
the candidate nodes were identi�ed based on proximity
to local clients in order to increase the service level
and agility of the SC system. In the proposed CLSC
problem, the suppliers sent the required items through
PDCs to the retailers. The retailers were responsible
for collecting and sending the returned products to
RCs. The route for the vehicle began from a PDC
and after visiting the retailers, it returned to its
departing PDC. The scrapped items were sent back
to the retailers, after remanufacturing process in the
RCs. PDCs received their required materials from
suppliers based on their dollar value. The strategic
and operational decisions of the model to reduce
the damages of the disasters included: satisfying the
demand of retailors through more than one PDC/RC
(multi-allocation), assigning more than one supplier
to PDCs, assigning backup stores to PDCs/RCs, and
applying an M/M/c queue system in order to reduce
the waiting time of machines in routes due to disruption
e�ects, which could be considered as a quick-response
strategy derived from the agile manufacturing concept.
The main assumptions in the design of the novel CLCS
model are the following:

� The positions of the supplier and retailers are
known;

Figure 1. The structure of the proposed CLSC network.

� RCs can only be established at locations where
PDCs are open;

� Reproduced items have the same quality as the new
produced items;

� Opening a PDC or RC in a region results in potential
risks due to facility disruptions;

� Vehicles spend more time on some routes because of
tra�c caused by disruptions.

Figure 1 (based on Ramezani et al. [38]) demonstrates
the structure of the proposed model. The notation used
in the model is given in Appendix A.

3.2. M/M/c queuing system
In this section, a queue system is designed in order to
reduce the driver and depreciation cost of trucks due
to waiting time in the PDCs/RCs (i.e. loading and
unloading) and routes (i.e., route disruption). Here,
the incoming 
ow of vehicles is varied and a Poisson
distribution is used to calculate their waiting time in
RCs. The notation used in the model is introduced in
Appendix B.

The required time for vehicles to receive service
in an RC/PDC center is calculated by:

WT tr=i = (�r=i=�r=i)#r=i�r=i=(#r=i � 1)!�r=i#r=i

� �r=i)(2)

"
1 +

#r=i�1X
n=0

1=n!(�r=i=�r=i)n

+ 1=(#r=i!)(�r=i=�r=i)n(�r=i=(�r=i � �r=i))
#�1

;
(1)

where the arrival rate �r=i in the CLSC is calculated
by:

�r=i =
X
w

Num t
wr=i: (2)

Finally, the Total Waiting Cost (TWC) is calculated
by:



1690 S. Aghamohamadi-Bosjin et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 1685{1704

TWC =
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As per Eq. (3), the model decides to assign an
appropriate PDC/RC center to a retailer with the
lowest waiting time in the routes and PDCs/RCs. In
other word, assigning multiple PDCs/RCs to retailors
enables the model to assess the shipment time of
alternative routes.

3.3. Mathematical programming
The following section shows the proposed Multi-
Objective Mixed-Integer Non-Linear Problem
(MOMINLP). It should be noted that Eqs. (3), (5),
(8), (16)-(18), and (35)-(36) as well as constraints
(19)-(20), (30), and (33)-(34) are the foundations of
the model.
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Eq. (4) calculates the opening costs of PDCs and RCs;

the shortage cost; the renting cost of backup store; the
production and inventory costs of PDCs by considering
the network connection between PDCs; the �x ordering
cost of raw materials from suppliers; the shipment cost
of items to the retailers; the shipment cost of scraped
items from retailors to RCs; the reproduction cost of
the scraped items by regarding the network connection
among RCs, retailers, and suppliers; the shipment cost
between nodes; the �xed cost of vehicles usage; and the
cost of contracting with other backup suppliers.

a2 =
X
t

X
v

X
i

X
w

(McapvLAO t
iwv)Ccpuv: (5)

Eq. (5) minimizes the unused capacity of vehicles
during the transportation of items and its related
costs. The optimal utilization of truck carrying ca-
pacity reduces the number of round trips to meet the
demand of clients. This equation reduces the number
of non-added value activities, which can be taken into
consideration as a lean routing strategy.

min z1 = a1 + a2 + TWC: (6)

Finally, Eq. (6) calculates the �rst objective function in
which the items were described in the previous sections.

min z2 =
X
t

X
p

X
i

PemipiXpit

+
X
t

X
p

X
r

RPemipix1
pirt

+
X
t

X
a

X
b

X
v

DiscabRemiv(accv

+ sin(a; b) + g cos(a; b)accvrol)EwevRouttabv:
(7)

Eq. (7) depicts the second objective function, which
deals with the environmental e�ects of CO2 emissions,
including production, reproduction, and transporta-
tion e�ects. It should be noted that the third part
of Eq. (7) calculates the environmental e�ects of trans-
portation not only based on the traveled distance, but
also based on the cargo weight and rolling resistance of
the road.

min z3 =
X
i

PoimNPIi'1 +
X
r

RormNPIr'2: (8)

Eq. (8) shows the third objective function. This
objective function minimizes the negative social im-
pacts of establishing production/reproduction centers
and aims to reduce the risk of facility disruptions.
In the following, the constraints of the model are
demonstrated and described:X

s

Rxsi = Pohi 8 i; h; (9)
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i
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Icapi = Icapi(1�Xpdci) + (Icapi + ss)(Xpdci)

8 i; (35)

Icapr = Icapr(1�Xrcr) + (Icapr + ss)(Xrcr)

8 r: (36)

Eqs. (9) and (10) indicate that each open PDC and
RC must be assigned to one supplier. Constraint (11)
ensures that an RC can be established where a PDC
is open. Eqs. (12) and (13) guarantee that at most
one of the PDC and RC centers can be established in
a candidate place. Eqs. (14) and (15) imply that at
most one candidate place must be assigned to a PDC
and RC, respectively. Eq. (16) shows the production-
inventory balance constraint of the products. In this
equation, some orders that cannot be satis�ed on time
are allowed to be backlogged. Eqs. (17) and (18)
calculate the amounts of raw material and reproduction
items by considering the relations among each supplier,
PDC, and retailer as a network system. Eq. (18)
demonstrates that a PDC is able to receive its raw
material through the main supplier or the backup
supplier. Constraints (19) and (20) are associated
with the capacity of storage in PDCs and RCs. In
the both equations, the capacity of the centers may
change due to disruption. Eq. (21) indicates that
every route is assigned to a vehicle. Constraint (22)
shows the minimum amount of production for a PDC
to meet the demand of a retailer. Constraint (23)
removes the sub-tours and ensures that each route is
comprised of one PDC and some retailor. Eq. (24)
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is associated with 
ow protection and indicates that
when a vehicle visits a place, it should leave that
place within an equal time period. Constraint (25)
states that a maximum PDC can exist in a route.
Constraint (26) describes that a retailor should be
allotted to a PDC if there is a connection between them
by the vehicle. Eqs. (27) and (28) indicate that at
least one PDC and RC can be connected to a retailer.
These equations show the multi-allocation nature of the
problem, which improves the resiliency and leanness
of the system by increasing the routing options. In
other word, designing a routing problem with various
decisions can reduce the number of trips and provide a
wider area of routing. Eq. (29) ensures that there is no
route between PDCs. Eq. (30) indicates that the load
of a vehicle varies by visiting a retailor on its route.
Constraint (31) describes that the load of a vehicle
remains constant when the vehicle does not meet the
retailer u. Constraint (32) shows the minimum and
maximum limitations of loads for a vehicle to visit
the retailors. Constraint (33) determines how many
vehicles are needed to ship the returned items from
retailor (w) to RC (r). Constraint (34) is about
the service level of the system by determining the
percentage of orders that are not satis�ed. Eqs. (35)
and (36) calculate the capacity of PDCs and RCs by
taking into consideration the backup storage decisions.

4. The robust possibilistic approach

Considering the uncertain and instable nature of some
parameters, on the one hand, and the lack of historical
data, on the other hand, such parameters are set based
on experts' judgment as trapezoidal fuzzy numbers.
Here, a Possibilistic Chance-Constrained Programming
(PCCP) is developed to handle the uncertain con-
straints. The DM is able to determine the lowest degree
of con�dence for uncertain constraints as a safety
margin to satisfy each uncertain constraint. Next,
possibility (Pos) and necessity (Nec) are utilized as
fuzzy measures. In this regard, the possibility measure
speci�es the optimistic possibility related with an un-
certain event and the necessity measure demonstrates
the lowest possible value for an uncertain parameter
according to the attitude of the DM. It is a risk averse
strategy to use the necessity measure by considering the
DM opinion. This approach considers the minimum
con�dence level, which can be changed based on the
DM's preferences, and helps develop a model that is
e�cient against changes of uncertain parameters. Also,
resilient strategies are added to the model to increase
the reliability of the system.

5. Proposed solution approach

The solution approach to the problem includes two

main steps. At the �rst step, an FCCM is employed
in order to determine the potential centers to locate
PDCs/RCs based on proximity to the local customers.
In the second phase, the results of the previous step
are imported into the model proposed in Section 3.3.
The presented model is NP-hard since it is comprised
of location, lot sizing, and vehicle routing as NP-hard
problems [39,40]. In addition, considering di�erent
con
icting objective functions and proposing a robust
possibilistic approach to dealing with the uncertainty
of the model are the other reasons intensifying the
complexity of the model. Thus, a multi-objective
metaheuristic algorithm is used to solve the model.

5.1. Fuzzy C-means Clustering Method
(FCCM)

In this section, the locations of local customers are
categorized into clusters by utilizing the FCCM. In this
study, we desire to partition u customer locations into
i clusters. Also, let xu be the vector related to the
location of customer u.

5.2. Solution representation
An appropriate solution representation covers all of
the potential solutions so as to make the best choice
available. Considering the structure of the model, an
order-based solution representation could be a good
approach to assessing the candidate solutions. In
the proposed order-based encoding structure, each
chromosome is designed based on the order of the
components of the model. In this regard, a small-
size problem (i.e., jhj � jsj � jij � jrj � jwj � jpj �
jvj � jtj = 5 � 2 � 4 � 2 � 6 � 2 � 3 � 2) is
proposed to introduce the solution representation. As
depicted in Figure 2, in the structure of the proposed
solution, the �rst chromosome is a (j1j � jhj) matrix
determining the centers to establish PDCs by selecting
potential locations, randomly. In the �rst r cells of
this chromosome, RCs are allowed to be established.
The second and third chromosomes are (jsj � jij) and
(jsj � jrj) matrices related to the connections among
the suppliers, PDCs, and RCs, respectively. The fourth
and �fth chromosomes are (j1j � ji + w + v � 1j) and
(j1j � jr + v + w � 1j) matrices addressing the order
of retailers, PDCs, and RCs to be visited by vehicles.
In addition, a repair function is designed to alter the
generated responses by these chromosomes. The sixth
chromosome is a (jpj � jtj) matrix that calculates the
number of produced items during the planning horizon
by multiplying the random numbers by the determined
production range. The two last chromosomes (j1j� jij)
and (j1j � jrj) are related to the allocation of backup
storage centers to PDCs and RCs. Other constraints
such as production capacity, storage capacity, and
service level are regarded by adding penalty function
to the main objective functions.
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Figure 2. Solution representation.

5.3. Parallel version of the MOPSO
(PMOPSO)

Multi Objective Particle Swarm Optimization
(MOPSO) produces a Pareto-optimal solution set
to make a balance between di�erent objectives. A
Pareto-optimal solution cannot be conquered or
cannot be better without deteriorating at least
one other objective. In this study, a master-slave
approach is used to change the MOPSO algorithm
into a parallelized version. In this method, the
�tness evaluations for each particle are processed
independently and the algorithm is decomposed to run
the evaluations, simultaneously, as a parallel system.
vp(t) and xp(t) denote the velocity and the position
of each particle, respectively, based on Eqs. (37)
and (38):

vP (t) =wvP (t� 1) + c1r1(xPbest�xP (t))

+ c2r2(xgbest�xP (t)); (37)

xP (t) = xP (t� 1) + vP (t): (38)

5.4. Social Engineering Optimizer (SEO)
The Social Engineering Optimizer (SEO) is a new
single solution metaheuristic algorithm introduced by

Fathollahi-Fard et al. [41]. Zhang et al. [42] compared
the performance of SEO with other metaheuristics in
solving the SCND problems. Baliarsingh et al. [43]
developed a memetic algorithm-based method in which
a SEO algorithm was employed for local search to deal
with a medical data classi�cation problem. Fathollahi-
Fard et al. [44] proposed a truck scheduling problem
and solved the model by using di�erent versions of the
SEO through putting di�erent weights on the SEO
features. In the SEO algorithm, the solutions are
regarded as di�erent persons with various abilities.
The SEO algorithm starts by generating two initial
solutions and dividing the solutions to attacker and
defender. In this regard, the attacker assesses the
abilities of the defender to �nd its e�cient traits.
There are four approaches to spotting an attack, each
described as follows.

5.4.1. Obtaining
In this method, the attacker abuses the defender to
obtain the desired goal, where defnew and defold denote
the new and old positions of the defender, respectively,
att speci�es the current position of the attacker, and �
is the rate of spotting for an attacker.

defnew =defold(1�sin�r1)+
att+defold

2
sin�r2(20):

(39)

5.4.2. Phishing
In this approach, the position of the attacker is deter-
mined based on the following formula:

defnew = att(1� sin�r1) +
att + defold

2
sin�r2: (40)

5.4.3. Diversion theft
In this method, the attacker guides the defender in a
new position in deception.

5.4.4. Pretext
In this method, the attacker traps the defender
(see [44]).

5.5. Hybrid PMOPSO & SEO (HPSO-SEO)
As mentioned in Section 5.4, the SEO is a single
solution algorithm with some advantages including
short computational time, good intensi�cation phase,
and the ability to make a trade-o� between the
diversi�cation and intensi�cation phases. However,
population-based algorithms are also able to �nd good
solutions [41]. Thus, it makes sense to propose a
hybrid metaheuristic that bene�ts from the advantages
of a population-based algorithm (PMOPSO) and a
single solution algorithm (SEO), simultaneously. In
this regard, in the �rst step of the proposed hybrid
algorithm, the PMOPSO, which is able to cover more
possible and various solutions in the exploration phase,
is implemented to �nd a good initial solution. Next, the
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Figure 3. Summary of the HPSO-SEO algorithm.

results achieved by the previous method are imported
into the SEO algorithm, which helps improve the
results in the exploitation phase. Figure 3 summarizes
the HPSO-SEO.

5.6. NSGA-II
NSGA-II comprises of generating an initial population,
evaluation of members, and sorting the results. This
operator selects top-rank individuals with higher prob-
ability. NSGA-II uses crossover to generate solutions
similar to the initial chromosomes and mutation to
generate more diverse solutions.

6. Results and discussion

6.1. Model validation
In this section, the behavior and feasibility of the
model in reaching the optimum values for the objective
functions are assessed. In this regard, a small-scale
deterministic problem (i.e. jhj � jsj � jij � jrj � jwj �
jpj � jvj � jtj = 10 � 2 � 4 � 2 � 6 � 3 � 3 � 10) is
considered and solved by GAMS applying the Baron
solver because of the nonlinear nature of the presented
model. Since the proposed model is comprised of mul-
tiple objective functions, we divide the main problem
into separate sub-problems based on the method and
consider each objective function separately along with
the constraints. The parameters of the model are
determined based on the proposed case of study as
reported in Table 2. Table 3 demonstrates the optimal
decisions for each sub-problem, separately. For the �rst
sub-problem, the model tends to decrease the costs
of the system and decides to consider backup storage
decisions due to high costs of establishing other PDC
and RC centers as well as service level constraints. For

the second sub-problem, the model decides to include
a higher number of tours. As a result, each PDC will
cover fewer retailers and each RC has to remanufacture
fewer retailers. Therefore, the number of carried loads
and environmental e�ects will be decreased. For the
third sub-problem, establishing PDCs and RCs will
increase the disruption risk and hence, the model
decides to open one center. Notably, this model does
not regard the shipping costs.

6.2. Tuning of the parameters
The Taguchi method is an appropriate means for en-
hancing the performance of metaheuristic algorithms.
It should be noted that the basic initial parameters of
the SEO for the Taguchi method are determined based
on the values reported by Fathollahi-Fard et al. [41].

6.3. Test instances
Since there are not benchmark instances in the lit-
erature, di�erent small-size and large-sized determin-
istic test problems are generated and depicted in
Appendix C. The meta-heuristic algorithms were coded
in MATLAB software on a personal computer with
Core i5 processor and 8GB RAM.

6.4. Benchmarking study
Here, four factors are used to compare the proposed
algorithms, including CPU time, quality of results,
spacing metric, and diversity metric. The diversity
metric factor is the maximum Euclidean distance be-
tween non-dominated solutions and the results with
greater values are the better ones. Eqs. (41) and (42)
are used to analyze the distribution of non-dominated
answers:
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Table 2. Values of parameters.

Parameter Value Parameter Value
Demt

p � U(50; 100) Vcpt � U(5; 10)
Demt

pw
P
t

P
p

Demt
p=w �2i � U(0:7; 0:9)

FSpsi � U(15; 20) �3r � U(0:7; 0:9)
Incpi � U(5; 7) Sercapi � U(300; 600)
USsip � U(10; 15) Serni � U(10; 15)
Prcpi � U(60; 90) Pemipi � U(2; 5)
Rpcpr � U(40; 60) RPemipr � U(2; 5)
CPDCi � U(3000; 4000) Remiv � U(3:5; 4)
CRCr � U(2500; 3500) bocspt � U(20; 30)
discab � U(15; 20) Macov 1500 + 0:1�Mcapv
disab � U(50; 300) NPIi � U(10; 20)
Wocp � U(1; 3) '1 � U(1; 3)
'0p � U(1:1; 1:5) '2 � U(1; 3)
'1p � U(0:2; 0:45) Icapi � U(100; 450)
�1ip � U(0:7; 0:9) Mcapv

P
t

P
p

Demt
p=v

VUNp � U(2; 3) Fpdci � U(200; 400)
VUN1p � U(2; 3) Frcr � U(200; 400)
Spe � U(40; 70) ss � U(300; 500)
Icapr � U(100; 450) �rt � U(1; 2:5)
�r � U(5; 10) Ewev � U(6; 10)
BN 1000000 accv � U(1; 3)
�s � U(0:8; 0:95) rol � U(0; 1)
Ccpuv � U(4; 7)
'3 � U(1:1; 1:5) BSPCp � U(20; 35)

Table 3. Optimal decisions for problem instances.

Objective function Collection route Optimum number of
objective functions

Total costs
s1 ! i1

8167389s1 ! i2 ! w1 ! w2 ! w3 ! w4 ! r2 ! s1

s2 ! i4 ! w5 ! w6 ! r4 ! s2

Environmental e�ects
s1 ! i1 ! w1 ! w2 ! r1 ! s1

54731s1 ! i2 ! w3 ! w4 ! r2 ! s1

s2 ! i4 ! w5 ! w6 ! r4 ! s2

Disruption risks s1 ! i1 ! w1 ! w2 ! w3 ! w4 ! r1 ! s1 43

spacing =
r

1=N
XN

i=1

�
di� �d

�2; (41)

di =
TX
t=1

���f jt � f it ��� 8 i; j 2 (1; � � � ; N): (42)

Table 4 shows a summary of the results reached by
conducting small-size test problems with metaheuris-
tics and the BARON solver. The Average Percentage
of Relative Gap (APRG) was calculated by conducting

each test problem 10 times, independently. Here,
Eqs. (43) and (44) are employed to calculate the
gap for objective functions in order to minimize and
maximize them. Table 5 demonstrates the di�erences
between metaheuristic methods in dealing with large-
size test problems. Of note, due to the complexity of
the test problems, exact method was unable to solve
them.

Gap% = (OFVmeta �OFVExact)=OFVExact100; (43)



1696 S. Aghamohamadi-Bosjin et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 1685{1704

Table 4. APRG for small-size test problems with HPSO-SEO and NSGA-II.

Problem
number

HPSO-SEO NSGA-II

GAP% GAP%

Obj 1 Obj 2 Obj 3 Obj 1 Obj 2 Obj3

S1 0.01 0.02 0.01 0.03 0.07 0.07

S2 0.094 0.076 0.091 0.17 0.198 0.151

S3 0.25 0.33 0.22 0.42 0.53 0.67

S4 0.43 0.66 0.56 0.84 1.18 1.06

S5 1.05 1.16 0.81 1.66 1.73 1.53

S6 1.48 1.23 1.55 2.17 2.29 1.82

S7 1.73 1.66 1.76 2.52 2.72 2.28

S8 2.05 2.11 2.27 2.94 3.13 2.73

S9 2.56 2.21 2.39 3.34 3.32 3.17

S10 2.74 2.46 2.51 3.51 3.64 3.33

Table 5. APRG for large-size test problems with
HPSO-SEO and NSGA-II.

Problem
number

HPSO-SEO VS. NSGA-II

GAP%

Obj 1 Obj 2 Obj 3

L1 4.17 4.21 4.31

L2 5.24 5.54 5.17

L3 6.59 6.65 5.91

L4 7.95 7.57 6.89

L5 8.11 8.54 7.35

L6 9.43 9.37 8.36

L7 10.75 10.05 9.47

L8 11.64 11.64 10.74

L9 12.76 12.34 11.94

L10 13.47 13.23 12.38

Gap%=(OFVmeta�OFVpMOPSO)=OFVpMOPSO100:
(44)

The results prove the e�ciency of the HPSO-SEO
algorithm compared to NSGA-II in reaching near-
optimum solutions to large-size instances. To recount
in more detail, the means of gaps achieved by the
HPSO-SEO for the objective functions of small-size
instances are 1.2, 1.19, and 1.21 and the same values
with the NSGA-II method are 1.7, 1.8, and 1.6. In
addition, the means of gaps with the HPSO-SEO
for the objective functions of large-size instances are
1.7, 1.9, and 1.8, which approve the superiority of
the HPSO-SEO. Based on Figures 4 to 7, HPSO-
SEO is able to reach better solutions with higher

Figure 4. CPUC times of the HPSO-SEO, NSGA-II, and
exact method.

uniformity in the solution space. However, this
algorithm needs more time to search the solution
area and �nd near-optimum solutions to large-size
problems than does the NSGA-II algorithm. On the
other hand, the diversity of the NSGA-II results is
higher.

6.5. Case study
Here, the logistics of a major manufacturer of analog
and digital equipment and radio transmitters in Iran
are assessed as the case of our study. The active
assembly section of the company receives some parts
from other suppliers and use them in the �nal assembly
of more e�cient products. The items produced at this
unit include high-power 100 and 200 watt transmitters,
Remux DVBT2/DVBS2 receivers, and PVRs (Personal
Video Recorders). Logical decisions for the problem are
determined to reduce the total costs besides the envi-
ronmental and social issues related with the system.
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Figure 5. CPU times of HPSO-SEO and NSGA-II.

Figure 6. Results of spacing with HPSO-SEO and
NSGA-II.

Figure 7. Results of diversity with HPSO-SEO and
NSGA-II.

The mentioned company is faced with the challenge
of reducing the related costs of shipment, production,
and storage. Considering the public concerns about
the environmental and social issues besides legislation
around green production, the mentioned company has
some similarities to the proposed model in the current
study. To select the nominated PDC and RC centers,
a fuzzy clustering method is applied.

Here, shipment times and distances of nodes are
determined by means of Google maps. The demand

of commodities and establishment cost of centers are
reached using the information registered in the com-
pany. The damage rate caused by disruption in each
city is obtained from the existing statistical data. En-
vironmental parameters are determined by considering
the mentioned vehicles and fuzzy parameters are set
based on previous experience. Applying uniform dis-
tribution, other random numbers are calculated to set
the optimistic and pessimistic numbers for uncertain
parameters. The proposed HPSO-SEO algorithm is
used to solve the problem. It should be noted that
circular symbols are related to the position of local
retailers and the square symbols denote the cluster
centers.

6.5.1. Sensitivity analysis
Here, the robustness of the outcome reached by the pro-
posed method are analyzed for 7 small-size test prob-
lems. The values for the parameters are determined
using Table 2 based on the ranges for trapezoidal fuzzy
numbers. The results in Table 6 show that the RPP
approach reaches better results for various amounts
of uncertainty in di�erent ranges of test problems.
It is necessary to mention that, for further analysis,
the RPP method is used to deal with uncertainties
(�1 = �2 = 4000000 and � = 0:8).

Next, the proposed model is applied to the
case study and di�erent analyses are conducted as
follows. Figure 8 shows increasing the transportation
cost variations, denoted by  1, results in establishing
more PDCs and RCs to decrease the transportation
costs and enhance the OFV3. Based on Figure 9,
increasing inventory cost variations, denoted by  2,
leads to establishing fewer PDCs and RCs to reduce the
related production-inventory costs and decrease OFV3.
Figures 10 and 11 demonstrate the changes in OFV1
and OFV2 with changes in  1 and  2. The related
results reveal that increasing  1 will enhance OFV1 and
reduce OFV2, simultaneously. Also, increasing  2 will
lead to the reduction of OFV1 and increase in OFV2.

Figure 8. Variations of OFV3 vs. transportation cost.
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Table 6. Results of the provided solutions.

Test
problem

PCCP 0.7 PCCP 0.8 PCCP 0.9 RPP
OFV1 OFV2 OFV3 OFV1 OFV2 OFV3 OFV1 OFV2 OFV3 OFV1 OFV2 OFV3

S1 8554379 50442 27 8353675 50456 25 8253567 50326 22 8106345 49857 19
S2 8577623 53799 30 8397653 53793 30 8263456 53762 28 8123450 52462 23
S3 8689750 57769 54 8489654 57662 53 8389657 57654 50 8296792 56432 47
S4 15162432 63591 59 14163124 63587 58 13145678 63556 56 12234598 62341 53
S5 17341322 75643 73 16345675 75632 73 15324562 75543 71 14432567 74321 68
S6 19213865 86753 86 18213564 86674 85 17221356 86543 82 16754327 85392 77
S7 20963755 93467 91 19963453 93435 91 18954432 93221 86 17543667 92344 81

Figure 9. Variations of OFV3 vs. inventory cost.

Figure 10. Variations of OFV1 and OFV2 vs.
transportation cost.

Figure 12 demonstrates the performance of the queue
approach in calculating TWC for di�erent values of
'1p. To assess the results, two scenarios are designed.
In the �rst scenario, a queue structure is considered to
calculate TWC. In second scenario, TWC is calculated
by disregarding the queue structure. The results prove
the e�ciency of the queueing system in describing the
TWC. In addition, Figures 13 to 15 show the e�ect
of changing the related emission of greenhouse gases

Figure 11. Variations of OFV1 and OFV2 vs. inventory
cost.

Figure 12. TWC vs. the coe�cient of reproduced items.

on the results of each objective function, separately,
indicating a reverse correlation between the �rst and
second objective functions of the model.

Table 7 shows the results of the model by changing
the parameters related with disruption. According
to the results, reducing the mentioned parameters
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Table 7. Results of the model for di�erent values of disruption with �1 = �2 = 4000000 and � = 0:8.

Test problem=S10 The most likely value

'1 = '2 = '3 1.4 1.3 1.2 1.1

�2i = �3r 0.2 0.4 0.6 0.8

OFV1 31325987 28674389 24872234 22875340

OFV2 184563 187829 199482 204218

OFV3 198 180 171 152

Backup PDC centers 8 7 4 2

Backup RC centers 4 3 2 1

Figure 13. OFV1 vs. changing rate of the emitted gas.

Figure 14. OFV2 vs. changing rate of the emitted gas.

increases the OFV1, OFV3, and the number of backup
centers. However, OFV2 decreases as the values of
disruption parameters is reduced.

7. Conclusion

This paper proposes a novel data-driven agile sus-
tainable Closed-Loop Supply Chain (CLSC) model to

Figure 15. OFV3 vs. changing rate of the emitted gas.

�nd a compromise solution among the economic, envi-
ronmental, and social objective functions. The main
contributions of this study include: simultaneously
addressing routing, inventory, lot sizing, reproduction,
and location-allocation decisions besides the capacity
constraints; considering economic, green, leanness,
agility, and social factors, concurrently; regarding the
strategic and operational decisions in order to decrease
the impact of disruptions; proposing a robust possibilis-
tic programming approach to dealing with uncertainty;
using the FCCM to select the potential locations for
establishing production, distribution, and reproduction
centers based on proximity to the local retailers; and
applying the HPSO-SEO algorithm to solve large-size
instances with high performance. Noteworthy, devel-
oping a model based on lean manufacturing supports
the environmental aspects of production. In addition,
including agile manufacturing strategies is aligned with
the aim of increasing the resiliency of systems against
the risk of disruptions.

The performance of the proposed metaheuristic
algorithms was compared with an exact solver in case
of quality and processing time. The results proved
the superiority of the HPSO-SEO algorithm in case
of quality and spacing metrics, while the CPU time
with NSGA-II was shorter. The introduced case
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study showed the applicability of the model to real
situations. Furthermore, some sensitivity analyses were
implemented to analyze the behaviour of the model
under di�erent situations. The results revealed that
social risks had direct relationship with transportation
cost and inverse relationship with inventory cost. Also,
shipment cost led to increase in the total cost and
decrease in the environmental e�ects. The results of
increasing inventory cost were inverse. In addition, we
utilized a queueing system to decrease the elapsed time
of trucks in loading/unloading the cargo at the centers
and lapsed time due to road blocking. Disruption also
had a signi�cant e�ect on the economic aspect of the
problem and damages caused by disruption increased
the total costs of the system. It should be added
that variation of emitted gases could lead to a reverse
correlation between the �rst and second objective
functions. However, the slope of changes and variations
was sharper for the �rst objective function, meaning
that changing the amount of emitted greenhouse gases
could have greater impact on the �nancial aspects of
the system.

For the future studies, considering other aspects
of lean/agile production, designing a resilient supply
chain, considering the perishability of products, and de-
veloping other heuristic and exact solution approaches
to the CLCS problem can be interesting topics of
research.
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Appendix A

Indices
p; p0 Products p = f1:2: � � � :Pg
i; j PDCs i = f1:2: � � � :Ig, j = f1:2: � � � :Jg
r; q RCs r = f1:2: � � � :Rg, q = f1:2: � � � :Qg
t Time periods t = f1:2: � � � :Tg
h Potential locations h = f1:2: � � � :Hg
w; u Retailers w = f1:2: � � � :Wg,

u = f1:2: � � � :Ug
s Suppliers s = f1:2: � � � :Sg
a; b Nodes
v Vehicles v = f1:2: � � � :V g
Z Total retailers and potential centers
Parameters
Demt

p Demand for product (p) in period (t)

Demt
pw Retailors' demand for product (p)

FSpsi Constant order cost for raw material
(p) requested by PDC (i) to supplier
(s)

Incpi Holding cost of product (p) in PDC (i)
USsip Transportation cost for raw material

(p) requested by PDC (i) from supplier
(s)

Prcpi Production cost of product (p) in PDC
(i)

Rpcpr Reproduction cost of product (p) in
RC (r)

CPDCi Opening cost of PDC (i)
CRCr Opening cost of RC (r)
discab Shipment cost between the node (a)

and the node (b)
disab Distance of node (a) and node (b)
Wocp Relative importance of product (p)
'1p Amount of product (p) to be

reproduced
'0p Amount of raw material for product

(p)
�1ip Production capacity for product (p) in

PDC (i) due to disruption
�2i The coe�cient determining the PDC

(i) capacity due to disruption
�3r The coe�cient determining the RC (r)

capacity due to disruption
Sercapi Production capacity of PDC (i)
Pemipi Amount of emitted CO2 for production

of a single product (p) in PDC (i)
RPemipr Amount of emitted CO2 for

reproduction of a single product (p) in
RC (r)

Remiv Amount of emitted CO2 by vehicle (v)
per unit of distance traveled

bocspt Shortage cost of product (p) in period
(t)

Macov Fixed cost of vehicle (v) usage
NPIi Number of injured people due to

disruption in PDC (i)
'1 Number of injured people in PDC (i)

due to disruption
'2 Number of injured people in RC (r)

due to disruption
Icapi Maximum capacity for the storage of

PDC (i) to hold inventories
Mcapv Maximum capacity for vehicle (v) to

ship products
VUNp The amount of space required per unit

of product (p)
VUN1p The amount of space required per unit

of reproduction (p)
Icapi Total capacity of PDC (i) to keep

products
Icapr Total capacity of RC (r) to keep

products
BN Big number
�s Service level
Fpdci Backup facility cost to fortify and

expand the storage capacity of PDC
(i)
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Frcr Backup facility cost to fortify and
expand the storage capacity of RC (r)

ss Amount of space added to the
warehouse of PDCs and RCs as a
resilient strategy

accv Acceleration of vehicle v
rol Factor determining rolling resistance
Ewev Weight of unused parts for vehicle v
BSPCp Backup supplier assignment cost for

product (P )
Ccpuv Cost of shipping each item by vehicle v

Decision variables
Xpit Number of products (p) produced at

PDC (i) in period (t)
Invpit Number of products (p) held at PDC

(i) in period (t)
bpit Shortage of product (p) at PDC (i) in

period (t)
EXSpt 1 if a backup supplier is assigned to

product (p) in period (t); 0 otherwise

Routtabv 1 if nodes (a) and (b) are connected by
vehicle (v) in period (t); 0 otherwise

POhi 1 if PDC (i) is founded in location (h);
0 otherwise

ROhr 1 if RC (r) is founded in location (h);
0 otherwise

RXsi 1 if PDC (i) is related to supplier (i);
0 otherwise

RZsr 1 if RC (r) is related to supplier (i); 0
otherwise

AXiw 1 if retailor (w) is related to PDC (i);
0 otherwise

BXwr 1 if returned items of retailor (w) are
shipped to RC (r); 0 otherwise

X0
psit Number of the needed raw materials

received from supplier (s) for product
(p) at PDC (i) in period (t)

x̂0
ps0it Number of raw materials received from

backup supplier (s0) for product (p) at
PDC (i) in period (t)

Xpirt1 Total number of returns for product
(p) produced at PDC (i) connected
with RC (r) in period (t)

Xpdci 1 if a backup storage is assigned to
PDC (i); 0 otherwise

Xrcr 1 if a backup storage is assigned to RC
(r); 0 otherwise

LAOt
iwv Amount of cargo shipped from PDC

(i) to retailor (w) by vehicle (v)

Appendix B

Parameters
�r=i Number of operators at RC (r)/PDC

(i)
�r=it Operation rate of RC (r)/PDC (i)
'3 The added time of shipment due to

route blocking caused by disruptions
Spe Mean speed of vehicles
Vcpt Mean cost of vehicles per unit time of

delay in queue

Decision variables
�r=i Vehicle incoming rate to

production/reproduction centers

WT tr=i Amount of time elapsed as delay time
in RC (r) or PDC (i)

Numt
wr=i Total allocated vehicles connecting

retailors to production/reproduction
centers

Appendix C

Features of small size and large size test problems (t =
10) is shown in Table C.I.

Table C.I. Features of small-size and large-size test problems (t = 10).

Small-size (S1-S10) Large-size (L1-L10)

jhj 5 7 10 12 14 16 18 20 22 24 30 40 45 50 55 60 65 70 80 90

jsj 2 2 2 2 2 3 3 3 3 4 4 4 4 4 6 6 6 6 6 8

jij 4 4 4 6 7 8 9 10 15 18 25 30 35 40 45 50 55 60 65 70

jrj 2 2 2 3 4 4 5 5 6 7 15 20 25 30 35 40 45 50 50 55

jwj 6 6 6 6 8 8 8 12 12 16 35 45 45 55 55 65 65 75 85 100

jpj 2 2 3 3 4 4 6 6 8 10 12 12 13 15 20 20 25 25 30 30

jvj 3 5 3 7 7 8 8 9 13 13 15 20 30 35 45 55 65 70 75 80



1704 S. Aghamohamadi-Bosjin et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 1685{1704

Biographies

Soroush Aghamohammadi-Bosjin accomplished
his MSc in Industrial Engineering at the Collage of
Engineering, University of Tehran. He has published
some articles in the area of scheduling, lot sizing, and
closed-loop supply chain. His interests include supply
chain management and optimization algorithms.

Masoud Rabbani is a Full Professor in the Indus-
trial Engineering Department, University of Tehran,
Tehran, Iran. His research interests are production

planning, supply chain management, operations man-
agement, and Operations Research (OR).

Neda Manavizadeh accomplished her MSc in In-
dustrial Engineering at the Collage of Engineering,
University of Tehran in 2005. She also obtained her
PhD in Industrial Engineering From the same college.
Currently, she is an Assistant Professor in the Indus-
trial Engineering Department of Khatam University,
Tehran, Iran. Her research interests are production
planning, MMAL, supply chain management, opera-
tions management, and Operations Research (OR).




