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Abstract. Scheduling is the process of determining where and when to perform
manufacturing measures, which is required to conduct activities in a timely, e�cient,
and cost-e�ective manner. In this paper, an algorithm is proposed as a solution to the
ow shop scheduling problem which holds an important place in the scheduling literature.
The path relinking algorithm and data mining are used to solve the ow shop scheduling
problem studied here. While DM is used for globally searching the solution space, path
relinking is used for local search. Data mining is a method for extracting the embedded
information in a cluster that includes implicit information. Path relinking is an algorithm
that advances by making binary displacements in order to convert the initial solution to
the guiding solution and it is repeated by assigning the best obtained solution within this
process to the starting point. The e�ciency of the model for Taillard's ow shop scheduling
problems was tested. Consequently, it is possible to solve the large-size problem without
considerable mathematical background. The obtained results showed that the proposed
method comparatively performed as good as other metaheuristic methods.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Despite the rapid technological development, today, it
still takes quite a long time to obtain an optimum
solution to large-scale NP-hard problems. To give an
example of the optimization �eld, numerous modeling
approaches and solution methods have been developed
for NP-hard problems such as the travelling salesman
problem, various scheduling problems, and quadratic
assignment problem. Optimization algorithms can be
basically examined in three groups:
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1. Integer programming-based models and methods
aimed at presenting exact solutions such as branch-
and-bound and dynamic programming;

2. Intuitive models developed speci�cally for the prob-
lems, which do not ensure �nding an optimum
solution but can give solutions that are close to
optimality within a reasonable amount of time;

3. Arti�cial intelligence-based meta-heuristic models
such as simulated annealing, tabu search, arti�cial
neural networks, and genetic algorithms, which can
be used for general purposes and give solutions
that are either optimum or close to optimality in
a reasonable computation time.

In the �rst group, it can be ensured that the op-
timal solution is obtained by modeling. However,
in general, the solution time exponentially increases
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with problem size. The time required to obtain an
optimum solution increases as the problem size grows
which exceeds the acceptable limits, meaning that
even some moderate-sized practical problems may have
impractical solution time durations. The drawback of
the heuristic methods is that they are problem spe-
ci�c and ungeneralizable to problem types. Recently,
meta-heuristic methods have been widely used in the
�eld of optimization to overcome the above-mentioned
challenges. An important advantage of metaheuristics
is that they can be implemented without a signi�cant
mathematical background [1]. In this study, a new
solution method that is free from the above-mentioned
issues of metaheuristics and reaches a similar solution
quality at competitive times was developed. The
proposed method also used a simple model in terms
of mathematical infrastructure. Data Mining (DM)
analyzes and interprets data to achieve meaningful
information stored within large-scale data. In the
application of DM in the �eld of optimization, an
attempt is made to reach optimum or near-optimum
solutions through hidden and meaningful information
involved in the best group of solutions selected from
many randomly generated solutions in a short period of
time. Increasing the solution performance by applying
local search to the best solutions found by the DM
approach is also considered as a strategy [2]. One of the
issues in the �eld of production planning, the owshop
scheduling problem, which is known to be NP-hard in
terms of di�culty, is to be examined. In the case of
small problems, exact solution methods (mathematical
programming or enumerative methods such as branch
and bound) can �nd optimal solutions in a short time,
but it takes a long time to apply such methods to larger
problems that one often confronts in real, practical life.
Among the choices suitable for large-sized problems
are such approaches as Campbell, Dudek, and Smith
(CDS) algorithm, Johnson, Moore, Nawaz, Enscore,
Ham (NEH) algorithm as well as Shortest Processing
Time (SPT), Earliest Due Date (EDD), First In First
Out (FIFO), etc. as priority rules. Another choice
of approach that has been widely used for scheduling
problems in recent times is meta-heuristic methods
such as genetic algorithms, simulated annealing, ant
colony optimization, and arti�cial immune system
[3]. In this study, a large number of job sequences
will be randomly selected, a certain number of job
sequences with the best value in terms of the objective
function will be determined, and the DM method will
be used to determine the relationships between these
solutions. The path relinking algorithm will be applied
so that the algorithm developed with DM can become
a competitive option. The types of problems applied
to the �eld of optimization of the DM method and the
results obtained are summarized. In the literature, it
has been observed that the method is applied to small-

sized problems and the performance of the method in
large-sized problems is investigated. The performance
of the proposed model is tested on Taillard's ow
shop scheduling problems [4]. It is known that these
problems are included in the NP-hard group. The best
results obtained so far for these problems are compared
with the best results obtained by the model.

2. Flow shop scheduling problems

The ow shop scheduling problem with the total ow
time or the completion time objective is ow shop
scheduling in the NP-hard class. Therefore, instead
of trying to �nd the optimum result, we focus on
high-quality solutions within a reasonable time with
heuristic and meta-heuristic methods.

In the n job, m-machine Permutation Flow Shop
Scheduling Problem (PFSSP), the processing time of
the job i in the j machine p(i; j), work permutation
(�1; �2; : : : ; �n), and completion time are de�ned as
follows [5,6]:

C (�1; 1) = p (�1; 1) ;

C (�i; 1) = C (�i�1; 1) + p (�i; 1) i = 2; : : : ; n;

C (�1; j) = C (�1; j � 1) + p (�1; j) j = 2; : : : ;m;

C (�i; j) = max
�
C (�i�1; j) ; C (�i; j � 1)

�
+p (�i; j) i = 2; : : : ; n j = 2; : : : ;m:

The total production time of a product can be de�ned
as follows:

C max (�) = C (�n;m) :

Permutation ow-type scheduling problems have the
best permutation (��) among all permutations.

C max (��) � C max (�)�"�:

There are many heuristic methods for reducing the
completion time, the �rst of which is Palmer's heuristic
[7]. These methods are constructive methods. The
best model among these methods is NEH heuristic and
the average deviation of this method is over 5%. In
recent years, various meta-heuristic methods have been
developed for minimizing the completion time in the
ow shop scheduling problem. These are simulated
annealing, tabu search, genetic algorithms, and hybrid
metaheuristics [8]. Meta-heuristic methods generally
provide better solution quality than heuristic methods
and yield results in a much shorter span of time than
exact methods. Heuristic methods are divided into
three groups: constructive heuristics [9], improvement
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heuristics [10], and metaheuristics. Rajendran and
Ziegler proposed improving the constructive heuristic
algorithm by placing each task in turn [11]. Woo
and Yim compared their constructive heuristic algo-
rithm with Rajendran and Ziegler and NEH algo-
rithm and found that their algorithm obtained better
results than these two algorithms [12]. Aminnayeri
and Naderi proposed a new solution by generalizing
the Johnson rule to the owshop scheduling problem
[13]. Liu and Reeves proposed a model that com-
bines multiple constructive heuristics including local
search methods. These proposed constructive heuris-
tics indicated the ability to obtain better results [14].
Allahverdi and Aldowaisan showed that the perfor-
mance could be improved with minor modi�cations
(binary crossover) [15]. Framinan et al. presented an
overview of meta-heuristic methods for total owshop
scheduling problems. In addition, they suggested
a superior metaheuristic than other heuristics [16].
Jolai et al. showed that metaheuristics employed to
deal with the total ow shop scheduling problem was
better than constructive and improvement heuristics.
In general, metaheuristic showed better results than
simpler heuristics, but a longer calculation time was
required. They solved the benchmark problems using
the exible ow-type scheduling problem together with
the metaheuristic invasive weed optimization method
and the response surface method used in parameter
optimization [17]. Rajendran and Ziegler proposed
two ant colony optimization methods, M-MMAS and
Parallel Ant Colony Optimization (PACO), to reduce
total ow time and completion time compared with
Liu and Reeves algorithm to measure the performance
of their methods and they obtained better results
in Taillard's benchmark problems [18]. In another
study of Rajendran and Ziegler, two ant colony algo-
rithms were improved to obtain better quality solutions
[19]. Tasgetiren et al. proposed a particle swarm
optimization model and obtained much better results
than the algorithms developed by Liu and Reeves and
Rajendran and Ziegler with this method. The problem
of production and distribution was used together with
the mathematical model and improved imperialist com-
petitive algorithm method, and experimental design
was used for parameter optimization [20].

3. Data Mining (DM)

DM techniques are grouped into three basic groups in
terms of their functions: classi�cation, clustering, and
association rules and sequential patterns [21]. Classi�-
cation ensures that the data are properly separated and
partitioned according to the prede�ned output. The
outputs belong to the classi�cation and the dataset is
supervised because they are known in advance. Some
of these are decision trees, Arti�cial Neural Networks

(ANNs), genetic algorithms, K-nearest neighbor, mem-
ory based methods, and regression [22]. Clustering is
a technique that groups data according to similarities
in the data. The technique is often used as a �rst step
for other applications. Statistical methods such as K-
means algorithms or Kohonen network are mostly used.
In these methods, the processes are the same. First,
each record is compared with the existing clusters, and
each record is assigned to the closest cluster and it
changes the values that de�ne this cluster. Each time
records are reassigned and cluster centers are set [23].
One should consider the signi�cance of association rules
and sequential time patterns: Here, the concept that
separates the others is the application of time concept.
Investigation of the association between objects over a
given period is called a sequential pattern [24]. The
rules of association are applied in a wide range of
areas. The rules of association are the rules that
contain objects often appearing together in the same
process. The association rules are used in market
basket analysis. In this analysis, objects are the
products bought by the customer and a transaction
(recording) is a single purchase that contains many
objects. In the market basket analysis, the objects
often taken together are studied. Information on how
the rules correspond to each other is collected [25]. The
DM technique used in the proposed model can be con-
sidered in the classi�cation group. Here, for example,
take a problem in which 20 jobs are scheduled; there
will be 20 classes representing 20 di�erent positions.
While these positions are dependent variables in the
target position, the tasks to be assigned to positions
are independent variables. The optimization studies in
the literature that apply DM to the scheduling domain
are summarized in the following.

Koonce et al. studied the workshop scheduling
problem. In this study, the rules were determined by
considering the process and the load from the optimum
job sequences found in the genetic algorithm. In the
conclusion and suggestions section, it is mentioned
that DM method can be used as an aid to explain
complex systems [26]. Koonce and Tsai used a DM
algorithm to extract information from a large number
of job shop sequencing problems. In the study, job shop
scheduling problems proposed by Muth and Thompson
(1963) were used [27]. Kumar and Rao solved the
block owshop scheduling problem by using ant colony
algorithm and genetic algorithm operators (crossover
and mutation) to create new solutions for eight-job
four-machine owshop scheduling. They applied ant
colony algorithm and obtained an optimal schedule by
calculating the quantity of pheromones for each posi-
tion [28]. Olafsson and Li proposed a two-step method
for the single-machine scheduling problem and argued
that new learned rules could go beyond imitation [29].
In another study, Martens et al. underlined that the
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use of a large number of meta-numerical algorithms
derived from nature in conjunction with the popular
DM method in recent years would be useful for future
research and academical gaps [30]. By de�ning three
objectives for the exible job shop scheduling problem
and using particle swarm optimization and DM tech-
niques, it was argued that this hybrid technique would
be a successful approach [31]. Various rule sets were
de�ned using the tabu search method for the workshop
type scheduling problem which is determined as the
maximum delay target criterion [32]. Petri net was
used to propose the job shop scheduling problem model
using the following factors: machine time ratio, number
of the remaining operations, ratio of processing times of
`operation 1' and `operation 2', ratio of the remaining
processing times of the jobs, and the di�erence between
the waiting times of two operations [33]. In the study
of Zahmani et al., simulation and DM were employed
together to solve the workshop scheduling problem,
and as the objective criterion, the completion time
was taken as the basis [34]. Mirshekarian and �Sormaz
used pearson correlation coe�cient of the relationship
between job-shop scheduling problem features (Con-
�guration features including overall problem instance,
individual operations, jobs, machines, operation slots,
machine load, and temporal features which are shortest
processing time, longest processing time, much work
remaining, least work remaining, �rst-in-�rst-out, and
optimal makespan [35]. In the study of Makry-
manolakis et al., a metaheuristic algorithm was devel-
oped to solve the combinatorial optimization problems
and follow the DM procedure to select appropriate
parameters for di�erent size problems [36]. Senvar et
al. investigated large-sized parallel machine scheduling
problems and attempted to extract useful knowledge
about the domain of these problems. The objective
of the study is to provide statistical interpretations
using Arti�cial Neural Networks (ANNs) along with
regression analysis and classify the di�erences between
the instances into three clusters in terms of their
complexities [37]. Shahzad and Mebarki solved the
problem of small-sized workshop scheduling with the
Tabu search method and when any two jobs were given
by the decision tree method, the tree would predict
what job to send �rst [38]. Wu et al. studied the
dynamic customer clustering problem. Qualitative and
quantitative rules were employed to respond to instant
customer needs. At the same time, they analyzed the
distribution and scheduling of third-party logistics with
the DM technique [39].

4. Model for ow shop scheduling problems

The �rst step in the proposed model is design of
experiments for determining the best parameter set
of the algorithm. Five parameters were determined:

Table 1. Parameters and levels.

Parameters Level 1 Level 2 Level 3

k 500 2500 5000

m
20 jobs 500 2500 5000
50 jobs 2500 12500 25000
100 jobs 5000 25000 50000

l 3 5 8
n 50 100 150
t 10 25 50

initial population (k), random solutions of average
table (m), number of locations (l), path relinking
algorithm solutions (n), and number of iterations (t).
There are three levels for each factor. L27 pattern was
used so that the solution could be obtained in a shorter
span of time. Table 1 shows the determined factors and
levels associated with the design of experiment: initial
population (k), number of locations (l), path relinking
algorithm solution (n), and number of iterations (t).
These levels might be subject to variations in the case
of obtaining random solutions of average table (m),
because there is no division error in zero as the problem
grows.

Twenty-seven di�erent combinations were created
for �ve factors and three levels given in Table 1. Thus,
243 experiments were performed for all combinations
(full factorial experiments), while 27 experiments were
carried out with a partial experimental design. Thus,
a solution was obtained in a shorter span of time.
Signal-to-noise (S=N) ratio was calculated based on
experimental results. In order to obtain the lowest
values, the smallest-is-the-best characteristic was used.
The following formula was employed to de�ne this
characteristic for analysis:

� = �10 Log10

 
1
n

nX
i=1

1
Y 2
i

!
;

where \�" means the (S=N) ratio for \the smallest
is the best" characteristic; \yi" value is obtained in
the experiment; \n" denotes the number of repetitions.
Given that the objective function for the Tai problems
is to minimize the completion time, the experiment is
designed with the L27 pattern using \the-smallest-the-
best" characteristic. The results are shown in Table 2.
The same process is repeated for other problems with
di�erent sizes, parameters, levels, and (S=N) ratios
(Table 2), while the best levels of the parameters are
given in Figure 1.

It was observed that the most important factor
was the number of iterations. Figure 1 shows the best
levels for �ve factors.

The parameter level �ne tuning values calculated
according to signal-noise ratios are shown in Figure 1.
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Table 2. Taguchi design of experiment L27.

No. k m l n t S=N No. k m l n t S=N

1 500 500 3 50 10 {62.2588 15 2500 2500 8 50 50 {62.2588
2 500 500 3 50 25 {62.2588 16 2500 5000 3 100 10 {62.2588
3 500 500 3 50 50 {62.2348 17 2500 5000 3 100 25 {62.2575
4 500 2500 5 100 10 {62.2521 18 2500 5000 3 100 50 {62.2267
5 500 2500 5 100 25 {62.2588 19 5000 500 8 100 10 {62.2454
6 500 2500 5 100 50 {62.2335 20 5000 500 8 100 25 {62.2588
7 500 5000 8 150 10 {62.2575 21 5000 500 8 100 50 {62.2160
8 500 5000 8 150 25 {62.2588 22 5000 2500 3 150 10 {62.2588
9 500 5000 8 150 50 {62.1850 23 5000 2500 3 150 25 {62.2588
10 2500 500 5 150 10 {62.2588 24 5000 2500 3 150 50 {62.2093
11 2500 500 5 150 25 {62.2387 25 5000 5000 5 50 10 {62.2588
12 2500 500 5 150 50 {62.2214 26 5000 5000 5 50 25 {62.2548
13 2500 2500 8 50 10 {62.2588 27 5000 5000 5 50 50 {62.1918
14 2500 2500 8 50 25 {62.2588 min 5000 5000 5 150 50

Figure 1. Parameter levels according to S=N ratios.

The minimum values for the 3rd level for initial popu-
lation, 3rd level for random solutions of average table
(m), 2nd level for number of locations (l), 3rd level
for the path relinking algorithm solutions (n), and 3rd
level for the number of iterations (A3B3C2D3E3) were
obtained. The process followed for Tai01 was applied
to other problems, as well. Five trials were conducted
for each problem size and the best factor levels were
determined, as shown in Table 3.

In this model, the DM method is used to analyze
and interpret the data that are stored in order to reach
meaningful information stored in large-scale data. In
addition, to achieve the best solution, the algorithm

Table 3. The best parameter levels according to the size
of the problem.

Problem size k m l n t

20� 5 5000 5000 5 150 50

20� 10 2500 5000 3 150 50

20� 20 2500 2500 3 100 50

50� 5 500 12500 8 150 50

50� 10 5000 12500 5 150 50

100� 10 5000 25000 8 150 50
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Figure 2. Flowchart of the model proposal.

developed with DM is used to improve the quality
of the solution so that it can become a competitive
option.

The application of DM in the �eld of optimization
has been researched and it has been found that there
are three main works in this area. Although the studies
in the literature have outperformed the heuristic ones,
their performance remains lower than those of the
meta-heuristic ones. It has been stated that the issue
remains an open area to develop [40]. For this purpose,
a new model is proposed in order to �nd solutions
to large-scale problems and make the obtained results
worthy of rivalry with other metaheuristics. In the
Matlab 7.0.1 program for the model proposal, the
desired number of random solutions is created and the
average, standard deviations, and z values of these
random rows are calculated according to the positions.
The algorithm for the proposed model is shown in
Figure 2.

Proposed model algorithm: The proposed model
uses DM and path relinking algorithms as a hybrid for
optimization of ow-type scheduling problems. When

a global search is made in the solution space with DM,
an attempt at making a local search is done with path
relinking algorithm. The model's e�ectiveness has been
tested on Taillard's ow-type scheduling problems.
A large number of randomly generated solutions are
used. The average values of Cmax obtained when the
DM method is used to place each job at a certain
position are compared with those of Cmax for all the
solutions. This is how decisions are made in terms
of the suitability of a particular job for placement in
a particular position. The path relinking algorithm
makes local searches by going through appropriate
solutions derived from the DM.

According to owchart of the model, there are
four main steps. These are: 1. Design of experiment,
2. Path relinking algorithm, 3. Data mining, and 4.
Hybridize all methods.

1.1 Create initial population: The initial population is
large, randomized, size of which varies according
to the size of the ow shop scheduling problem.
K random solutions are created for Taillard prob-
lems;
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Figure 3. Implementation of the Path relinking Algorithm.

Figure 4. Job sequences obtained after the path relinking algorithm.

1.2 Measure the objective value: The completion times
of the job sequences in the population are calcu-
lated;

1.3 Select n solutions with minimum values: After
generating K random solutions and measuring the
objective values, n best solutions with minimum
Cmax are selected.

2.1 Apply the path relinking algorithm: To obtain so-
lutions of higher quality, path relinking is applied
to n best solutions. n=2 is the source solution
and n=2 is the target solution. In Figure 3,

an example of the implementation of the route
combining algorithm is given;

2.2 Get n=2 the best solutions: After applying path
relinking, n=2 best solutions are selected. The best
n=2 solution obtained during the phase is stored
to be combined with the DM. Figure 4 shows
the job sequence obtained after applying the path
relinking algorithm.

3.1 Create m random solutions: m random solutions
are created. The number of random solutions
varies depending on the size of the problem.
Considering all combinations for a job ranking
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problem with a size of 20 � 5, this number is
2:4� 1018;

3.2 Create a table of means: A table of the means
according to the positions is created after deter-
mining the completion time of each job sequence.
Averages of completion times are calculated for
each job according to their location in Table 4.

For example, if the 20th job belongs to the
�rst position, the average is calculated given. As
shown in Table 4, 2,000,000 random jobs are
created and the 20th job arrives at the �rst
position among n20k1 of random 2,000,000 jobs.
The completion times of these n20k1 random jobs
are calculated and the average of these times is
taken, which is shown in Table 5.

These operations were made for 2,000,000
random solutions to the tai01 problem and group
averages, standard deviations, and z values were
calculated.

Table 6 shows the formulas used for the
averages and the results, as given in Table 7;

3.3 Generate a standard deviation table: In order to
calculate the z table, standard deviations must
�rst be calculated. The group average table is
also used to calculate the standard deviation.
For example, for the �rst position (Position 1),
the completion times in the case of arriving at
Position 1 are subtracted from the average of the

completion times for Position 1 of the �rst task.
Then, the squares of the positions are subtracted,
and the square root is taken, as shown in Table 8.
Table 9 shows the formulas used for standard
deviation and the results obtained are given in
Table 10;

3.4 Create z table: To calculate the z values, the mean
and standard deviation must be calculated (z
values are calculated to determine the importance
of jobs and locations.)

z = (group average� average of all solutions) =

group standard deviation:

Taking + values of z means that when the job
is assigned to the speci�ed position, it gets a
larger value than the average of all solutions. As
this value increases, it gets further away from the
average. For example, if the 20th job is in the �rst
position, the z value is 0.622. The average of the
group is 1550.63 and the average of the randomly
generated job orders is 1515.65. In this case, job
20 should not be assigned to Position 1, as shown
in Figure 5. Table 11 shows the formulas used for
the z values and the results obtained are given in
Table 12;

3.5 Create a job sequence according to the location:
First, the importance order of the works is put

Table 4. Finding randomized group mean.

Cmax 1 2 3 4 � � � � � � 18 19 20
1 1550 20 3 5 4 � � � � � � 13 11 1
2 1611 1 5 12 20 � � � � � � 3 9 17
3 1590 20 3 4 12 � � � � � � 11 10 5
4 1589 4 9 12 11 � � � � � � 2 7 20
5 1600 20 2 1 14 � � � � � � 5 10 9
6 1708 2 3 15 10 � � � � � � 12 9 16

: : : : : : : : : :
1999.998 1594 3 9 12 5 � � � � � � 2 1 19
1999.999 1603 19 12 20 3 � � � � � � 7 3 11
2000.000 1569 20 19 1 3 � � � � � � 2 11 17

Table 5. Finding randomized group mean for two million replications.

k1 k2 � � � k20

n1 = (1611 + :::::) =n1k1 = (::::::::::) =n1k2 � � � = (1550 + :::) =n1k20
n2 = (1708 + ::::) =n2k1 = 1600=n2k2 � � � = (::::::::::) =n2k20
n3 = (1594 + ::::) =n3k1 = (1550 + 1708 + :::) =n3k2 � � � = (::::::::::) =n3k20
n4 = (1589 + ::::) =n4k1 = (::::::::::) =n4k2 � � � = (::::::::::) =n4k20

...
...

...
...

n19 = (1603 + :::) =n19k1 = (1569 + :::) =n19k2 � � � = (::::::::::) =n19k20
n20 = (1550 + 1600 + :::+ 1569) =n20k1 = (::::::::::) =n20k2 � � � = (::::::::::) =n20k20
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Table 6. Formulas of group average

k1 k2

n1 �Cn1k1=(Cn1k1)1+(Cn1k1)2+:::+(Cn1k1)n1k1]=n1k1 �Cn1k2=(Cn1k2)1+(Cn1k2)2+:::+(Cn1k2)n1k2]=n1k2

n2 �Cn2k1=(Cn2k1)1+(Cn2k1)2+:::+(Cn2k1)n2k1]=n2k1 �Cn2k2=(Cn2k2)1+(Cn2k2)2+:::+(Cn2k2)n2k2]=n2k2

n3 �Cn3k1=(Cn3k1)1+(Cn3k1)2+:::+(Cn3k1)n3k1]=n3k1 �Cn3k2=(Cn3k2)1+(Cn3k2)2+:::+(Cn3k2)n3k2]=n3k2

n4 �Cn4k1=(Cn4k1)1+(Cn4k1)2+:::+(Cn4k1)n4k1]=n4k1 �Cn4k2=(Cn4k2)1+(Cn4k2)2+:::+(Cn4k2)n4k2]=n4k2

� � � � � �
n19 �Cn19k1=(Cn19k1)1+(Cn19k1)2+:::+(Cn19k1)n19k1]=n19k1 �Cn19k2=(Cn19k2)1+(Cn19k2)2+:::+(Cn19k2)n19k2]=n19k2

n20 �Cn20k1=(Cn20k1)1+(Cn20k1)2+:::+(Cn20k1)n20k1]=n20k1 �Cn20k2=(Cn20k2)1+(Cn20k2)2+:::+(Cn20k2)n20k2]=n20k2

k3 � � � k20

n1 �Cn1k3=(Cn1k3)1+(Cn1k3)2+���+(Cn1k1)n1k1]=n1k1 � � � �Cn1k20=(Cn1k20)1+(Cn1k20)2+���+(Cn1k20)n1k3]=n1k20

n2 �Cn2k3=(Cn2k3)1+(Cn2k3)2+���+(Cn2k3)n2k3]=n2k3 � � � �Cn2k20=(Cn2k20)1+(Cn2k20)2+���+(Cn2k20)n2k20]=n2k20

n3 �Cn3k3=(Cn3k3)1+(Cn3k3)2+���+(Cn3k3)n2k3]=n3k3 � � � �Cn3k20=(Cn3k20)1+(Cn3k20)2+���+(Cn3k20)n3k20]=n3k20

n4 �Cn4k3=(Cn4k3)1+(Cn4k3)2+���+(Cn4k3)n4k3]=n4k3 � � � �Cn4k20=(Cn4k20)1+(Cn4k20)2+���+(Cn4k20)n4k20]=n4k20

� � � � � � � � �
n19 �Cn19k3=(Cn19k3)1+(Cn19k3)2+���+(Cn19k3)n19k3]=n19k3 � � � �Cn19k20=(Cn19k20)1+(Cn19k20)2+���+(Cn19k20)n19k20]=n19k20

n20 �Cn20k3=(Cn20k3)1+(Cn20k3)2+���+(Cn20k3)n20k3]=n20k3 � � � �Cn20k20=(Cn20k20)1+(Cn20k20)2+���+(Cn20k20)n20k20]=n20k20

Figure 5. Normal distribution of model.

forward. Jobs are sorted according to standard
deviation values. Thus, the variability of the com-
pletion times relative to the positions is measured.
For example, as seen in Table 12, job 20 appears
to have a larger standard deviation (0.4086 value)
than other jobs. This means that job 20 varies
greatly from location to location. The twentieth
job received a value of 0.622 in the �rst position,
and a value of �0:642 in the twentieth position.
In short, the twentieth job moves away from the
general average (1515.65) when it comes to its
�rst position and it gets smaller than the average
when it reaches the �nal positions; therefore, the
twentieth job should be placed in one of the end
positions.

As shown in Table 13, a large number of
best solutions have been found with the proposed
algorithm for the Tai01 problem, and the twentieth

Figure 6. Positioning critical jobs.

work has been found to be in continuous end
positions. In the same way, the ninth job is in
the �rst position among the best job positions
achieved and is the fourth in terms of criticality
in the z table.

Criteria for all jobs are determined according
to the standard deviation and upon completing
the ranking task, positioning is done according
to the locations. Jobs are assigned to locations
starting from the most critical job. For example,
�ve positions are selected, as shown in Table 14.
The most critical job will start (20th) and a
random assignment will be made to one of the �ve
positions with the lowest z value. For example,
the twentieth job is assigned to the nineteenth
position, and no further job will be assigned to
the nineteenth position. Once the �rst critical job
is completed, the second critical job will be rolled
out (job 18). Likewise, one of the �ve smallest z-
values will be randomly selected. For instance, the
eighth work is assigned to the sixteenth position.
This continues until the standard deviation is the
smallest. Figure 6 provides an example of the
positioning of critical job orders.

In summary, the job with the largest stan-
dard deviation and the ones with the smallest
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Table 7. Averages by location for the random solution.

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

n1 1511.38 1512.00 1513.33 1513.59 1514.50 1514.93 1515.22 1515.96 1516.02 1516.21

n2 1528.70 1525.37 1523.00 1521.20 1520.01 1518.84 1517.45 1516.13 1515.02 1514.08

n3 1507.67 1508.19 1509.23 1510.54 1511.45 1512.95 1514.08 1515.10 1515.71 1517.38

n4 1514.04 1513.07 1513.63 1514.15 1514.08 1513.95 1514.36 1514.09 1514.08 1513.99

n5 1516.91 1514.67 1514.50 1514.74 1515.40 1516.03 1516.84 1516.78 1517.47 1517.87

n6 1493.99 1498.28 1501.48 1504.73 1507.25 1509.81 1512.53 1515.39 1518.02 1520.32

n7 1514.20 1517.09 1520.27 1521.46 1522.62 1522.69 1522.64 1521.84 1521.22 1519.83

n8 1507.88 1509.82 1511.33 1512.43 1513.11 1514.21 1515.14 1515.58 1516.35 1517.38

n9 1501.68 1501.01 1500.71 1501.42 1502.11 1502.91 1504.67 1506.07 1508.29 1510.35

n10 1532.50 1529.00 1526.65 1525.44 1524.48 1523.58 1522.66 1522.49 1521.46 1520.54

n11 1517.77 1514.40 1511.25 1508.52 1506.14 1504.73 1504.07 1504.05 1504.42 1505.34

n12 1545.06 1540.28 1536.21 1532.32 1528.50 1524.38 1520.13 1516.35 1522.49 1508.61

n13 1493.04 1504.31 1509.83 1513.02 1516.33 1518.88 1521.14 1522.69 1524.04 1524.90

n14 1500.04 1506.15 1509.00 1511.78 1513.14 1514.73 1515.53 1516.93 1517.70 1518.24

n15 1487.77 1493.88 1497.65 1501.00 1503.80 1507.34 1510.18 1512.92 1515.45 1517.53

n16 1529.13 1525.00 1521.42 1518.15 1515.33 1512.87 1509.99 1508.32 1506.62 1505.51

n17 1508.40 1506.57 1506.32 1506.25 1506.54 1506.91 1508.17 1508.75 1509.91 1511.19

n18 1530.17 1527.76 1527.19 1527.00 1526.81 1526.34 1525.56 1525.48 1524.39 1523.16

n19 1522.01 1519.48 1516.97 1515.18 1514.28 1513.19 1512.41 1511.61 1511.35 1511.13

n20 1550.63 1546.50 1542.92 1540.21 1537.11 1533.72 1530.24 1526.40 1523.24 1519.18

k11 k12 k13 k14 k15 k16 k17 k18 k19 k20

n1 1516.39 1516.47 1516.85 1517.33 1516.61 1516.51 1516.80 1516.08 1516.25 1520.52

n2 1516.39 1516.47 1516.85 1517.33 1516.61 1516.51 1516.80 1516.08 1516.25 1520.52

n3 1513.57 1513.00 1512.00 1511.11 1510.65 1510.31 1509.77 1510.12 1509.85 1512.72

n4 1517.79 1519.00 1519.82 1520.05 1520.47 1520.65 1520.60 1519.58 1518.50 1514.27

n5 1514.08 1514.33 1514.39 1514.56 1514.92 1515.26 1516.41 1517.93 1521.64 1529.95

n6 1517.54 1517.59 1517.73 1517.17 1516.44 1515.34 1514.17 1512.63 1510.91 1512.24

n7 1522.00 1523.62 1525.11 1525.75 1526.35 1526.19 1525.32 1523.86 1519.95 1512.90

n8 1518.27 1517.12 1516.18 1513.70 1512.41 1510.05 1507.89 1505.37 1504.01 1504.16

n9 1518.11 1518.69 1519.00 1518.87 1518.74 1518.39 1518.17 1517.38 1516.24 1515.99

n10 1512.65 1515.26 1517.82 1520.69 1523.80 1527.38 1531.47 1535.25 1540.25 1549.29

n11 1519.30 1517.71 1516.17 1514.21 1511.83 1509.57 1505.79 1501.97 1495.12 1472.29

n12 1506.85 1508.99 1511.75 1514.46 1518.57 1522.72 1527.33 1532.62 1539.73 1549.41

n13 1505.10 1502.25 1499.61 1498.77 1498.59 1512.19 1502.27 1506.85 1513.44 1499.40

n14 1525.75 1525.53 1525.27 1524.16 1522.52 1520.31 1516.88 1512.19 1504.60 1487.18

n15 1518.74 1518.99 1519.27 1519.47 1519.67 1519.22 1518.69 1517.87 1517.44 1520.31

n16 1520.52 1522.60 1524.20 1526.50 1527.31 1528.60 1528.84 1528.66 1528.47 1530.14

n1 1504.82 1504.67 1505.34 1507.15 1509.56 1513.03 1517.88 1524.11 1531.67 1542.16

n17 1513.07 1514.73 1516.35 1518.68 1521.12 1523.37 1525.69 1528.87 1532.31 1539.79

n18 1521.73 1519.80 1517.11 1514.81 1511.42 1507.81 1502.67 1496.88 1488.64 1468.18

n19 1511.59 1511.34 1512.41 1512.83 1513.91 1515.19 1516.94 1519.29 1522.49 1529.35

n20 1515.01 1511.17 1506.59 1502.54 1498.08 1493.66 1489.31 1485.23 1481.61 1479.35

General mean 1515.65
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Table 8. Detailed example of standard deviation table.

k1 k2

n1 =
q

((1611� 1511:38) + (: : : :� 1511:38))2 =n1k1 =
q

((: : : :� 1512:00))2 =n1k2

n2 =
q

((1708� 1528:70) + (: : : :� 1528:70))2 =n2k1 =
q

((1600� 1525:37) + (: : : :� 1525:37))2 =n2k2

n3 =
q

((1594� 1507:67) + (: : : :� 1507:67))2 =n3k1 =
q

((1550� 1508:19) + (: : : :� 1508:19))2 =n2k2

n4 =
q

((1589� 1514:04) + (: : : :� 1514:04))2 =n4k1 =
q

((: : : :� 1513:07))2 =n4k2
...

...

n19 =
q

((1603� 1522:01) + (: : : :� 1522:01))2 =n19k1 =
q

((1569� 1519:48) + (: : : :� 1519:48))2=n19k2

n20 =
q

((1550� 1550:63) + (: : : :� 1500:63))2 =n20k1 =
q

((: : : :� 1546:50))2 =n20k2

� � � k20

n1 � � � =
q

((1550� 1520:52) + (: : : :� 1520:52))2=n1k20

n2 � � � =
q

(: : : :� 1512:72)2=n1k20

n3 � � � =
q

(: : : :� 1514:27)2=n3k20

n4 � � � =
q

(: : : :� 1529:95)2=n4k20
...

...
...

n19 � � � =
q

(: : : :� 1529:35)2=n19k20

n20 � � � =
q

(: : : :� 1479:35)2=n20k20

z values are placed. Once all jobs are placed
according to their criticality, the resulting job
order is stored and the �tness value is calculated;

3.6 Obtain n=2 best solutions: The best n=2 solution
obtained from work order according to the location
is stored for merging with the path relinking
algorithm. Path relinking is the generalized ver-
sion of local search. The solutions are called
source solution and initial solution. The starting
points of the initial and target solutions represent
the desired solutions. Figure 7 shows the path
relinking algorithm.

4. Include the best solution into the process: n=2
solution obtained at 3.5 and n=2 solution obtained
at 2.2. are combined and sent back to 1.4. The
algorithm iterates through the same steps. The
stopping criterion is the pre-determined number
of iterations. Figure 8 shows n solutions obtained
by merging the path relinking and DM algorithms.

Obtained Results: In order to observe the
performance of the proposed algorithm, Taillard's
owshop problems were selected and the problems
ranging from 20 to 100 jobs were solved, as shown
in Table 15.

Figure 7. Path relinking algorithm.

5. Conclusion and future studies

Scheduling problems are the optimization problems
that belong to the NP-hard class. Numerous di�erent
approaches have been developed to achieve the best
solutions. These methods include mathematical and
non-mathematical methods; the latter methods are
divided into two groups of heuristic and meta-heuristic
methods. Non-mathematical methods require long so-
lution times and are applicable to �nding an optimum
solution to small problems. Heuristic methods are
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Table 9. Formulas of standard deviation table.

k1 k2
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!
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vuut n1k2P
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��
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�n1k2
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� 1
n1k2
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(C1k2)i

�2

: 1
n1k2

!
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��
Cn2k1

�n2k1
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�2

: 1
n2k2

!

n3 �3k1 =

vuut n3k1P
l=1

��
Cn3k1

�n3k1
j=1
� 1
n3k1

n3k1P
i=1

(C3k1)i

�2

: 1
n3k1

!
�3k2=

vuut n3k2P
l=1

��
Cn3k3

�n3k3
j=1
� 1
n3k3

n3k3P
i=1

(C3k3)i

�2

: 1
n3k3

!
...

...
...

n19 �19K1 =

vuut n19k1P
l=1

��
Cn19k1

�n19k1
j=1

� 1
n19k1

n19k1P
i=1

(C19k1)i

�2

: 1
n19k1

!
�19k2=

vuut n19k2P
l=1

��
Cn19k2

�n19k2
j=1

� 1
n19k2

n19k1P
i=1

(C19k2)i

�2

: 1
n19k2

!

n20 �1K20 =

vuut n20k1P
l=1

��
Cn20k1

�n20k1
j=1

� 1
n20k1

n20k1P
i=1

(C20k1)i

�2

: 1
n20k1

!
�20k2=

vuut n20k2P
l=1

��
Cn20k2

�n20k2
j=1

� 1
n20k2

n20k2P
i=1

(C20k2)i

�2

: 1
n20k2

!
� � � k20

n1 � � � �1k20=

vuut n1k20P
l=1

��
Cn1k20

�n1k20
j=1 � 1

n1k20

n1k2P
i=1

(C1k20)i

�2

: 1
n1k20

!

n2 � � � �2k20=

vuut n2k20P
l=1

��
Cn2k20

�n2k20
j=1

� 1
n2k20

n2k20P
i=1

(C2k20)i

�2

: 1
n2k20

!

n3 � � � �3k20=

vuut n3k20P
l=1

��
Cn3k20

�n3k20
j=1

� 1
n3k3

n3k3P
i=1

(C3k20)i

�2

: 1
n3k20

!
...

...
...

n19 � � � �19k20=

vuut n19k20P
l=1

��
Cn19k20

�n19k20
j=1

� 1
n19k20

n20k1P
i=1

(C19k20)i

�2

: 1
n19k2

!
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� 1
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!

employed for solving speci�c problems. Metaheuristic
methods are able to approximate local optimum solu-
tions.

There are three basic studies in the literature that

have optimized scheduling problems using data mining.
Accordingly and in brief, the results of Koonce and
Tsai [27] and Koonce et al. [26] emphasized four factors
involved in �nding the best order in the workshop job

Figure 8. Combining the path relinking and DM algorithms.
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Table 10. Standard deviations by position for random solution.

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

n1 58.31 59.32 60.00 60.48 61.14 61.43 61.76 61.50 61.33 61.32

n2 60.70 60.50 60.05 59.66 59.52 58.99 58.75 58.93 59.17 59.40

n3 59.19 58.87 58.53 58.58 58.63 58.94 59.31 59.65 60.08 60.74

n4 57.69 59.24 60.47 61.35 61.89 62.11 62.50 62.14 61.81 61.21

n5 58.37 58.62 58.95 58.58 58.67 59.19 59.77 60.43 60.77 61.20

n6 56.57 56.92 57.51 58.17 58.57 58.95 59.68 60.24 60.96 61.30

n7 54.10 57.01 58.71 60.45 62.03 62.97 63.85 64.23 64.30 63.74

n8 58.56 59.20 59.56 60.15 60.02 60.56 60.80 60.89 61.08 61.28

n9 58.14 57.55 57.47 56.83 56.66 56.88 56.78 56.97 57.59 57.94

n10 57.64 58.34 58.11 57.59 57.17 56.95 57.00 57.14 57.51 57.67

n11 58.46 59.36 59.00 58.68 57.39 56.84 55.84 55.21 54.91 55.76

n12 57.71 58.95 59.68 60.00 60.30 59.52 58.99 58.40 59.03 56.73

n13 54.86 57.02 58.44 59.64 60.89 62.03 62.36 62.92 63.19 63.11

n14 56.84 58.41 59.87 60.67 61.56 62.36 62.63 62.83 63.01 62.33

n15 56.17 56.60 56.82 57.32 58.13 58.94 59.62 60.62 60.97 61.20

n16 60.25 60.89 61.11 60.66 60.08 59.14 58.13 57.06 56.50 55.78

n17 59.37 59.47 59.02 58.61 58.29 58.06 58.21 57.98 57.97 58.51

n18 54.14 55.57 56.84 57.76 58.39 58.85 59.34 59.90 59.82 60.21

n19 60.35 60.76 60.31 59.80 59.35 58.89 58.85 58.53 58.60 58.77

n20 56.20 57.64 57.99 58.71 58.38 58.36 57.94 57.71 56.77 56.08

k11 k12 k13 k14 k15 k16 k17 k18 k19 k20

n1 60.65 60.74 60.56 60.08 59.51 59.36 58.97 58.85 58.17 55.49

n2 59.72 60.04 60.52 60.93 60.99 61.17 60.89 60.35 58.81 55.74

n3 61.11 61.43 61.67 61.49 61.30 60.89 60.16 59.38 58.65 58.14

n4 60.75 60.16 59.53 59.14 58.36 58.48 58.34 58.69 58.35 54.84

n5 61.80 62.20 62.13 62.48 62.26 61.73 60.87 59.94 57.56 53.14

n6 61.46 61.77 61.83 61.49 60.99 60.52 59.58 58.44 56.66 51.00

n7 63.22 62.12 60.83 58.98 57.65 56.20 54.81 54.33 55.26 56.63

n8 60.86 60.81 60.74 60.72 60.23 59.93 59.32 59.00 58.23 56.17

n9 58.46 59.34 59.49 59.90 60.51 60.38 60.55 59.72 58.51 55.41

n10 58.17 58.63 59.13 59.79 60.61 60.89 61.17 61.01 60.12 54.26

n11 56.49 57.67 59.19 60.55 62.16 62.81 63.44 62.45 60.83 55.47

n12 55.53 54.64 54.55 54.89 56.27 57.59 59.82 61.52 61.67 57.98

n13 63.23 62.14 61.08 60.00 58.04 56.51 54.80 52.80 52.06 53.14

n14 61.96 61.34 60.51 59.34 58.42 57.58 56.82 56.34 56.25 55.52

n15 61.44 61.33 61.07 60.41 59.48 58.63 57.63 56.66 55.57 52.41

n16 55.80 55.99 56.85 57.94 59.41 60.93 62.06 62.72 61.91 58.46

n17 58.57 59.10 59.65 60.23 60.97 61.02 61.35 60.82 59.95 56.96

n18 60.24 60.02 59.67 59.32 58.92 58.03 57.31 56.45 55.98 51.54

n19 59.33 59.63 60.11 60.97 61.15 61.36 61.47 61.29 59.81 56.83

n20 55.32 54.45 53.41 52.63 52.24 52.05 52.27 53.58 55.45 56.54
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Table 11. z value formulas of model.
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scheduling problem and formed a number of rules by
classifying these factors. Santos (2006) presented some
alternatives to improve the performance of develop-
ment algorithms on a known problem such as vehicle
problem. Although the studies in the literature per-

form better than the heuristic ones, they, reportedly,
have lower performance than the meta-heuristic ones
and the above-mentioned authors were of the opinion
that the subject was an open �eld for development.

For this purpose, an algorithm including a DM



964 B. Ozcan et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 950{969

Table 12. Finding z value for statistical solutions.

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

n1 {0.073 {0.062 {0.039 {0.034 {0.019 {0.012 {0.007 0.005 0.006 0.009

n2 {0.073 {0.062 {0.039 {0.034 {0.019 {0.012 {0.007 0.005 0.006 0.009

n3 0.215 0.161 0.122 0.093 0.073 0.054 0.031 0.008 {0.011 {0.026

n3 {0.135 {0.127 {0.110 {0.087 {0.072 {0.046 {0.026 {0.009 0.001 0.028

n4 {0.028 {0.043 {0.033 {0.024 {0.025 {0.027 {0.021 {0.025 {0.025 {0.027

n5 0.022 {0.017 {0.020 {0.016 {0.004 0.007 0.020 0.019 0.030 0.036

n6 {0.383 {0.305 {0.246 {0.188 {0.143 {0.099 {0.052 {0.004 0.039 0.076

n7 {0.027 0.025 0.079 0.096 0.112 0.112 0.110 0.096 0.087 0.066

n8 {0.133 {0.099 {0.072 {0.053 {0.042 {0.024 {0.008 {0.001 0.011 0.028

n9 {0.240 {0.254 {0.260 {0.250 {0.239 {0.224 {0.193 {0.168 {0.128 {0.091

n10 0.292 0.229 0.189 0.170 0.155 0.139 0.123 0.120 0.101 0.085

n11 0.036 {0.021 {0.074 {0.121 {0.166 {0.192 {0.207 {0.210 {0.204 {0.185

n12 0.510 0.418 0.344 0.278 0.213 0.147 0.076 0.012 0.116 {0.124

n13 {0.412 {0.199 {0.100 {0.044 0.011 0.052 0.088 0.112 0.133 0.147

n14 {0.275 {0.163 {0.111 {0.064 {0.041 {0.015 {0.002 0.020 0.033 0.042

n15 {0.496 {0.385 {0.317 {0.255 {0.204 {0.141 {0.092 {0.045 {0.003 0.031

n16 0.224 0.154 0.095 0.041 {0.005 {0.047 {0.097 {0.128 {0.160 {0.182

n17 {0.122 {0.153 {0.158 {0.160 {0.156 {0.151 {0.129 {0.119 {0.099 {0.076

n18 0.268 0.218 0.203 0.197 0.191 0.182 0.167 0.164 0.146 0.125

n19 0.105 0.063 0.022 {0.008 {0.023 {0.042 {0.055 {0.069 {0.073 {0.077

n20 0.622 0.535 0.470 0.418 0.368 0.310 0.252 0.186 0.134 0.063

k11 k12 k13 k14 k15 k16 k17 k18 k19 k20

n1 0.012 0.013 0.020 0.028 0.016 0.015 0.020 0.007 0.010 0.088

n2 {0.035 {0.044 {0.060 {0.074 {0.082 {0.087 {0.097 {0.092 {0.099 {0.052

n3 0.035 0.055 0.068 0.072 0.079 0.082 0.082 0.066 0.049 {0.024

n4 {0.026 {0.022 {0.021 {0.018 {0.013 {0.007 0.013 0.039 0.103 0.261

n5 0.031 0.031 0.033 0.024 0.013 {0.005 {0.024 {0.050 {0.082 {0.064

n6 0.103 0.129 0.153 0.164 0.175 0.174 0.162 0.140 0.076 {0.054

n7 0.042 0.024 0.009 {0.033 {0.056 {0.100 {0.141 {0.189 {0.211 {0.203

n8 0.040 0.050 0.055 0.053 0.051 0.046 0.043 0.029 0.010 0.006

n9 {0.051 {0.007 0.037 0.084 0.135 0.194 0.261 0.328 0.421 0.607

n10 0.063 0.035 0.009 {0.024 {0.063 {0.100 {0.161 {0.224 {0.342 {0.799

n11 {0.156 {0.115 {0.066 {0.020 0.047 0.113 0.184 0.272 0.396 0.609

n12 {0.190 {0.245 {0.294 {0.308 {0.303 {0.060 {0.224 {0.143 {0.036 {0.280

n13 0.160 0.159 0.157 0.142 0.118 0.083 0.022 {0.065 {0.212 {0.536

n14 0.050 0.054 0.060 0.064 0.069 0.062 0.054 0.039 0.032 0.084

n15 0.079 0.113 0.140 0.180 0.196 0.221 0.229 0.230 0.231 0.276

n16 {0.194 {0.196 {0.181 {0.147 {0.103 {0.043 0.036 0.135 0.259 0.454

n17 {0.044 {0.016 0.012 0.050 0.090 0.126 0.164 0.217 0.278 0.424

n18 0.101 0.069 0.024 {0.014 {0.072 {0.135 {0.226 {0.332 {0.482 {0.921

n19 {0.068 {0.072 {0.054 {0.046 {0.028 {0.007 0.021 0.059 0.114 0.241

n20 {0.012 {0.082 {0.170 {0.249 {0.336 {0.422 {0.504 {0.568 {0.614 {0.642
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Table 13. Best solution alternatives.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Cmax

B
es

t
so

lu
ti

on
s

1 3 17 15 8 9 6 5 14 16 7 11 13 18 19 1 4 2 10 20 12 1278

2 9 17 15 8 3 6 14 16 5 7 11 13 19 1 18 4 2 10 20 12 1278

3 9 17 15 8 3 6 16 14 5 7 11 13 19 1 18 4 2 10 20 12 1278

4 9 17 15 8 3 14 6 16 5 7 11 13 19 1 18 4 2 10 20 12 1278

5 9 17 15 8 3 14 16 6 5 7 11 13 19 1 18 4 2 10 20 12 1278

6 9 17 15 8 3 6 14 16 5 7 11 13 1 19 18 4 2 10 20 12 1278

7 9 17 15 8 3 6 16 14 5 7 11 13 1 19 18 4 2 10 20 12 1278

8 9 17 15 8 3 14 6 16 5 7 11 13 1 19 18 4 2 10 20 12 1278

9 9 17 15 8 3 14 16 6 5 7 11 13 1 19 18 4 2 10 20 12 1278

10 3 17 15 8 9 6 14 16 5 7 11 13 19 1 18 4 2 10 20 12 1278

11 3 17 15 8 9 6 16 14 5 7 11 13 19 1 18 4 2 10 20 12 1278

12 3 17 15 8 9 14 6 16 5 7 11 13 19 1 18 4 2 10 20 12 1278

13 3 17 15 8 9 14 16 6 5 7 11 13 19 1 18 4 2 10 20 12 1278

14 3 17 15 8 9 6 14 16 5 7 11 13 1 19 18 4 2 10 20 12 1278

15 3 17 15 8 9 6 16 14 5 7 11 13 1 19 18 4 2 10 20 12 1278

16 3 17 15 8 9 14 6 16 5 7 11 13 1 19 18 4 2 10 20 12 1278

17 3 17 15 8 9 6 5 14 16 7 11 13 18 19 1 4 2 10 20 12 1278

18 3 17 15 8 9 14 16 6 5 7 11 13 1 19 18 4 2 10 20 12 1278

19 3 8 17 15 9 6 14 16 5 7 11 13 1 19 18 4 2 10 20 12 1278

20 9 15 17 8 3 14 6 16 5 7 11 13 19 1 18 4 2 10 20 12 1278

21 9 15 8 17 3 14 16 6 5 7 11 13 19 1 18 4 2 10 20 12 1278

22 9 8 17 15 3 6 14 16 5 7 11 13 1 19 18 4 2 10 20 12 1278

23 9 17 15 8 3 6 14 16 5 7 11 13 19 1 18 4 2 10 20 12 1278

24 9 15 17 8 3 14 6 16 5 7 11 13 19 1 18 4 2 10 20 12 1278

25 9 15 8 17 3 14 16 6 5 7 11 13 19 1 18 4 2 10 20 12 1278

26 9 8 17 15 3 6 14 16 5 7 11 13 1 19 18 4 2 10 20 12 1278

27 9 8 17 15 3 6 14 16 5 7 11 13 1 19 18 4 2 10 20 12 1278

28 3 17 15 8 9 6 16 14 5 11 13 7 19 1 18 4 2 10 20 12 1278

29 3 17 15 8 9 14 6 16 5 13 11 7 19 1 18 4 2 10 20 12 1278

30 3 17 15 8 9 14 6 16 11 13 5 7 1 19 18 4 2 10 20 12 1278

31 3 17 15 8 9 14 6 16 7 11 5 13 1 19 18 4 2 10 20 12 1278

method for solving the ow shop scheduling problems,
which plays an important role in scheduling problems
in the study, was proposed. To improve the quality
of the obtained solutions, local search was performed
using the path relinking algorithm. The e�ectiveness of
the model was tested on Taillard's owshop scheduling
problems.

The number of jobs and machines in working
problems is 20 and 5, respectively. In order to observe
the performance of the proposed algorithm, Taillard
ow shop scheduling problems were selected, the num-

ber of jobs varying between 20 and 100 problems
were solved. Optimum solutions have been found
in a large number of di�erent job orders. In this
study, the DM technique was used outside the usual
format in the literature and it was possible to solve
large-scale problems without important mathematical
infrastructure.

With the proposed method, 30 problems within 3
di�erent sizes (20�5, 50�10, and 100�10) are solved.
The optimum solution was found in 10 out of 30 prob-
lems, and it was performed with less than 1% deviation
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Table 14. Assignment by location.

Sequence 1 2 3 4 5 6 7 8 9 10

5 0.022 -0.017 -0.020 -0.016 -0.004 0.007 0.020 0.019 0.030 0.036

1 -0.073 -0.062 -0.039 -0.034 -0.019 -0.012 -0.007 0.005 0.006 0.009

8 -0.133 -0.099 -0.072 -0.053 -0.042 -0.024 -0.008 -0.001 0.011 0.028

4 -0.028 -0.043 -0.033 -0.024 -0.025 -0.027 -0.021 -0.025 -0.025 -0.027

3 -0.135 -0.127 -0.110 -0.087 -0.072 -0.046 -0.026 -0.009 0.001 0.028

19 0.105 0.063 0.022 -0.008 -0.023 -0.042 -0.055 -0.069 -0.073 -0.077

14 -0.275 -0.163 -0.111 -0.064 -0.041 -0.015 -0.002 0.020 0.033 0.042

2 0.215 0.161 0.122 0.093 0.073 0.054 0.031 0.008 -0.011 -0.026

7 -0.027 0.025 0.079 0.096 0.112 0.112 0.110 0.096 0.087 0.066

17 -0.122 -0.153 -0.158 -0.160 -0.156 -0.151 -0.129 -0.119 -0.099 -0.076

6 -0.383 -0.305 -0.246 -0.188 -0.143 -0.099 -0.052 -0.004 0.039 0.076

16 0.224 0.154 0.095 0.041 -0.005 -0.047 -0.097 -0.128 -0.160 -0.182

13 -0.412 -0.199 -0.100 -0.044 0.011 0.052 0.088 0.112 0.133 0.147

11 0.036 -0.021 -0.074 -0.121 -0.166 -0.192 -0.207 -0.210 -0.204 -0.185

15 -0.496 -0.385 -0.317 -0.255 -0.204 -0.141 -0.092 -0.045 -0.003 0.031

10 0.292 0.229 0.189 0.170 0.155 0.139 0.123 0.120 0.101 0.085

9 -0.240 -0.254 -0.260 -0.250 -0.239 -0.224 -0.193 -0.168 -0.128 -0.091

12 0.510 0.418 0.344 0.278 0.213 0.147 0.076 0.012 0.116 -0.124

18 0.268 0.218 0.203 0.197 0.191 0.182 0.167 0.164 0.146 0.125

20 0.622 0.535 0.470 0.418 0.368 0.310 0.252 0.186 0.134 0.063

Sequence 11 12 13 14 15 16 17 18 19 20 SS

5 0.031 0.031 0.033 0.024 0.013 {0.005 {0.024 {0.050 {0.082 {0.064 0.0342

1 0.012 0.013 0.020 0.028 0.016 0.015 0.020 0.007 0.010 0.088 0.0346

8 0.040 0.050 0.055 0.053 0.051 0.046 0.043 0.029 0.010 0.006 0.0544

4 {0.026 {0.022 {0.021 {0.018 {0.013 {0.007 0.013 0.039 0.103 0.261 0.0690

3 0.035 0.055 0.068 0.072 0.079 0.082 0.082 0.066 0.049 {0.024 0.0738

19 {0.068 {0.072 {0.054 {0.046 {0.028 {0.007 0.021 0.059 0.114 0.241 0.0821

14 0.050 0.054 0.060 0.064 0.069 0.062 0.054 0.039 0.032 0.084 0.0911

2 {0.035 {0.044 {0.060 {0.074 {0.082 {0.087 {0.097 {0.092 {0.099 {0.052 0.0925

7 0.042 0.024 0.009 {0.033 {0.056 {0.100 {0.141 {0.189 {0.211 {0.203 0.1106

17 {0.044 {0.016 0.012 0.050 0.090 0.126 0.164 0.217 0.278 0.424 0.1689

6 0.103 0.129 0.153 0.164 0.175 0.174 0.162 0.140 0.076 {0.054 0.1731

16 {0.194 {0.196 {0.181 {0.147 {0.103 {0.043 0.036 0.135 0.259 0.454 0.1785

13 0.160 0.159 0.157 0.142 0.118 0.083 0.022 {0.065 {0.212 {0.536 0.1967

11 {0.156 {0.115 {0.066 {0.020 0.047 0.113 0.184 0.272 0.396 0.609 0.2226

15 0.079 0.113 0.140 0.180 0.196 0.221 0.229 0.230 0.231 0.276 0.2324

10 0.063 0.035 0.009 {0.024 {0.063 {0.100 {0.161 {0.224 {0.342 {0.799 0.2454

9 {0.051 {0.007 0.037 0.084 0.135 0.194 0.261 0.328 0.421 0.607 0.2553

12 {0.190 {0.245 {0.294 {0.308 {0.303 {0.060 {0.224 {0.143 {0.036 {0.280 0.2570

18 0.101 0.069 0.024 {0.014 {0.072 {0.135 {0.226 {0.332 {0.482 {0.921 0.2940

20 {0.012 {0.082 {0.170 {0.249 {0.336 {0.422 {0.504 {0.568 {0.614 {0.642 0.4086
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Table 15. Obtained results.

PS BKS LB NEH DM+PR Deviation

1 20X5 1278 1278 1286 1278 0.00%
2 20X5 1359 1359 1365 1359 0.00%
3 20X5 1081 1081 1159 1088 0.65%
4 20X5 1293 1293 1325 1301 0.62%
5 20X5 1235 1235 1305 1235 0.00%
6 20X5 1195 1195 1228 1195 0.00%
7 20X5 1239 1239 1278 1239 0.00%
8 20X5 1206 1206 1223 1206 0.00%
9 20X5 1230 1230 1291 1233 0.24%
10 20X5 1108 1108 1151 1108 0.00%

PS BKS LB NEH DM+PR Deviation

1 50X10 2991 2991 3135 3000 0.30%
2 50X10 2867 2867 3032 2883 0.56%
3 50X10 2839 2839 2986 2857 0.63%
4 50X10 3063 3063 3198 3083 0.65%
5 50X10 2976 2976 3160 2998 0.74%
6 50X10 3006 3006 3178 3027 0.69%
7 50X10 3093 3093 3277 3107 0.45%
8 50X10 3037 3037 3123 3043 0.20%
9 50X10 2897 2897 3002 2903 0.21%
10 50X10 3065 3065 3257 3084 0.62%

PS BKS LB NEH DM+PR Deviation

1 100X10 5770 5770 5846 5787 0.29%
2 100X10 5349 5349 5453 5349 0.00%
3 100X10 5676 5676 5824 5676 0.00%
4 100X10 5781 5781 5929 5791 0.17%
5 100X10 5467 5467 5679 5468 0.02%
6 100X10 5303 5303 5375 5306 0.06%
7 100X10 5595 5595 5704 5598 0.05%
8 100X10 5617 5617 5760 5626 0.16%
9 100X10 5871 5871 6032 5878 0.12%
10 100X10 5845 5845 5918 5845 0.00%

from optimum value for all cases. In summary, the
results show that the proposed method can compete
with other metaheuristic methods.
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