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Abstract. Regression analysis of real-world data has not always been an easy task,
especially when input vectors are presented in a very low dimensional space. EEG-based
fatigue detection deals with low dimensional problems and plays a major role in reducing the
risk of fatal accidents. We propose a kernel projection pursuit regression algorithm which is
a two-step nonlinearity encoding algorithm tailored for such low dimensional problems such
as fatigue detection. In this way, data nonlinearity can be investigated from two di�erent
perspectives: by �rst transforming the data into a high dimensional intermediate space
and then, applying their spline estimations to the output variables allowing for hierarchical
unfolding of data. Experimental results of the SEED VIS database illustrate the average
RMSE values of 0.1080% and 0.1054%, respectively, for the temporal and posterior areas
of the brain. Our method is validated by conducting some experiments on Parkinson's
disease prediction, which further demonstrates the e�ciency of our method. This paper
proposes a novel regression algorithm to address the encoding problem of highly complex
low dimensional data, which is usually encountered in bio-neurological prediction tasks like
EEG-based driving fatigue detection.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Mental fatigue is a brain psycho-physiological state
that is clinically characterized by increased production
of cytokine or a decrease in the cortisol level. In
addition, it is manifested as some forms of diminished
mental alertness, listlessness, and even traces of lan-
guidness. Previous studies have shown that fatigue
may generally occur in two di�erent ways: active and
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passive. Active fatigue refers to a situation where the
brain is exposed to exhausting processing tasks (such
as driving in a messy-busy road). In this way, it is
triggered to release much dopamine in order to respond
to the need for making decisions faster. However, the
greater the dopamine secretion, the more metabolic
the wastes accumulated in the brain region. This
eventually causes the brain to ask the frontal cortex
for a temporarily shutdown. On the contrary, passive
fatigue is a feeling of under stimulation that arises from
conducting a monotonous task for a long time (such
as driving in a straight and monotonous road), which
is associated with the increased Cortisol level in the
brain, leading to some forms of slow nerve conduction
and reduced decision-making performance.
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Automatic detection of fatigue (vigilance) level
has recently turned into a hot research topic with a
wide variety of applications in the areas like medicine
[1{4], transportation [5{8], and education [9,10]. For
example, it can be used in monitoring brain functions
during an awake surgery, evaluating anesthetic e�ects
on the brain, detecting fatigue driving to establish
an early warning or providing the information on
shipping or insurance companies, or setting the ideal
class length for students with di�erent mental and
physical capabilities. Among the applications, driving
has received much more attention because it directly
inuences the lives of more people like drivers, passen-
gers, pedestrians, and motor/pedal cyclists. In fact,
fatigue is the starting point of a catastrophic chain that
may ultimately lead to a fatal crash. First, it heavily
lowers the driver's concentration, selective attention,
and decision speed and next, it disrupts his eye-hand
coordination and consequently, the control on steering
wheel and pedals, resulting in eventual crash. Recent
research shows that fatigue is responsible for 10% of
road accidents all over the world [11]. Therefore, there
is an urgent need for developing such a countermeasure
as early warning fatigue driving systems. According
to the types of symptoms, existing early warning
Automatic Fatigue Detection (AFD) methods can be
broadly categorized into �ve classes:

1. Questionnaire-based techniques that measure self-
reported psychological qualities from the responses
given to some situational questions [12{16]. The
questionnaires are usually �lled before and after a
tedious task where the performance di�erences can
reveal the extent of the fatigue state;

2. Video-based techniques that utilize such physical
symptoms as yawning, pattern motion of eyelid,
eye, and head as well as facial and eye expression
[17{20];

3. Cognitive tasks that use the reaction time or the
error rate of the responses to a set of visual stimuli
[21{23];

4. Neurophysiological techniques such as electro-
encephalography (EEG) and electrooculography
(EOG) [24,25];

5. Physiological techniques such as electrocardiogra-
phy (ECG) [26{30] or Grip Force (GF) [31].

In comparison, EEG enjoys such advantages as
noninvasive nature, low price, robustness to biased re-
sponses (unlike psychometric and cognitive methods),
and simplicity, making it much more convenient to use
than other rivals.

Most of the existing fatigue detection algorithms
are generally established upon a classi�cation strategy
where each class is a qualitative measure of fatigue

state (e.g., sleep, drowsy, alert, near alert, etc.) [18].
More recently, few studies have addressed the problem
of continuous fatigue detection (in the framework of a
regression problem). However, there are two key issues
with these methods including how to continuously
annotate the EEG data and how to optimally project
the samples into the continuous space of fatigue levels.
For years, some traditional strategies including (1)
manual annotation, (2) use of face expression, and (3)
simultaneous cognitive tasks were available for contin-
uous annotation of EEG data. However, these methods
are either time-consuming and imprecise (like manual
annotation and use of face expression) or require ad-
ditional interactions of drivers that may distract their
attention and cause safety issues (like cognitive tasks).
It has recently been shown that eye tracking can be e�-
ciently utilized for a fast continuous annotation of EEG
data while it does not require any active cooperation
and is quite synchronized with the variations of EEG
signals. Most of the existing fatigue detection methods
use Support Vector Regression (SVR) algorithm and
report some very promising results.

Despite the advances, EEG-based fatigue detec-
tion methods still are subject to some major drawbacks
including: (1) high computational cost due to the need
for transforming the data into the frequency domain,
(2) lack of any provision for dealing with the possible
outliers of EEG data, and (3) being restricted in
handling a large amount of data nonlinearity. In fact,
these methods require their link (smooth) functions
to be previously selected, restricting their ability to
handle highly complex data.

This study proposes a novel double non-linearized
pursuit regression algorithm that o�ers the ability to
encode the nonlinearity of data in a sequential manner
and is, therefore, appropriate for modeling such low
dimensional problems as continuous fatigue detection.
To this end, the data representing a linear combination
of its elements in the high dimensional Hilbert space
(termed feature map) are considered and then, are
transformed into a continuous space of its output
indices. In this way, nonlinearity can be encoded in
two di�erent manners: (a) mapping of the data into
the Hilbert space and (b) nonlinear transformation of
the feature maps into the output labels. In addition,
a constraint is introduced on the projection weights of
the pursuit regression algorithm so that it will be a
convex representation of the Hilbert space variables.
As feature extraction, we employ the Logarithmic
Energy (LE) of several wavelet-based band limited
epochs, which is performed in the time domain rather
than using the conventional time-consuming spectral
analysis of data.

The rest of this study is organized in the following.
Section 2 provides a brief review of the related works.
Section 3 presents the main idea of the Projection
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Pursuit Regression (PPR). Section 4 introduces PPR
for detecting fatigue states in the high-dimensional
Hilbert space. Section 5 describes the evaluation of
our method. Finally, Section 6 draws the conclusion.

2. Related works

This section provides a review of AFD algorithms using
EEG signal, which is presented from the viewpoint of
machine learning. However, there are also a variety of
papers that have addressed the issue in psychological
or medical terms which are beyond the scope of this
paper.

2.1. Spectral analysis
The last 10 years have seen an explosion of scienti�c
works for recognizing fatigue states from EEG data.
Most of these works are based on the spectral analysis
of band limited signals. For example, Shi et al. [32]
utilized Di�erential Entropy (DE) to characterize 9
EEG signals from the brain occipital lobe. The
vectors were then smoothed and represented by the
Principal Component Analysis (PCA) [33]. Finally,
the projection model was constructed by using the
SVR algorithm. The researchers in [34] utilized the
same feature extraction strategy as the one used in
[32], but for 6 EEG signals from the occipital region.
The Linear Coe�cient Correlation (LCC) algorithm
was then applied as a feature selection step before
constructing the SVR model. In [35], Kirk et al. used
a combination of PCA and Bicoherence Spectral Esti-
mator (BSE) for extracting the features of O1-O2 EEG
signals. In [36], weighted average of di�erential power
spectra was calculated as the feature vector of each
EEG epoch. Then, SVR was applied to map the vectors
into the space of vigilance indices. Armanfard et al. [37]
represented the input signals using the power and
magnitude of its spectral patterns and employed the
Minimum Redundancy-Maximum Relevance (MRMR)
[38] strategy for selecting the most discriminative
features. Finally, SVR was applied to map the data
into the space of fatigue indices. The study in [39]
utilized the spectral power and power ratios of band
limited signals as the features of EEG data. Finally,
Fisher scoring was used for predicting the vigilance
level. In [40], Guo et al. represented the features using
the weighted average of Power Spectral Density (PSD).
Then, a modi�ed Support Vector Machine (SVM) with
the Particle Swarm Optimization (PSO) algorithm was
used as the prediction model. Chen et al. [41] used
the normalized amplitude of the spectral patterns as
the features of EEG data. Then, the ratio of the
normalized amplitude in the alpha band over the sum of
the corresponding normalized amplitudes in the delta
and theta bands was calculated as a description of
fatigue level.

2.2. Connectivity analysis
Connections amongst areas of the nervous system are
of interest to researchers applying behavioral neuro-
science to problems like fatigue detection. For example,
Cynthia et al. [42] utilized the Phase Locking Value
(PLV) for studying the pattern of dependencies be-
tween multiple fatigue-induced EEG signals. Then,
the strength, local e�ciency, global e�ciency, and
clustering coe�cient were extracted as the statistical
features of the dependency pattern. Finally, K-nearest
neighbor, SVM, and Multi-Layer Perception (MLP)
were used for classifying the feature vectors into a
set of prede�ned discrete states of vigilance. Dim-
itrakopoulos et al. [23] used the Generalized Partial
Directed Coherence (GPDC) algorithm [43] to estimate
the functional connectivity between the channels of
EEG data. The connectivity values were directly used
as features of each epoch. Then, Sequential Forward
Floating Selection (SFFS) method [44] and SVM were
applied as the feature extraction and classi�cation
algorithms, respectively.

2.3. Time-domain techniques
In these methods, fatigue indices are directly estimated
based on the time domain information without the
need for any transformation into the frequency domain.
For example, Li et al. [45] utilized the Probabilistic
Principal Component Analysis (PPCA) [46] for
describing the band limited representation of the
signals. In [47], mean, standard deviation, and power
of EEG signals were introduced as the fatigue related
attributes. Ning and Bronzino [48] investigated the
Gaussianity of EEG signal distribution as a measure of
fatigue states. Ouyang and Lu [49] extracted the mean
and standard deviation of the Continuous Wavelet
Transform (CWT) coe�cients as the fatigue related
features of EEG data. Then, the dimensionality
of features was reduced by Random Forest (RF)
algorithm. Finally, SVM was used for classi�cation.
Authors in [50] characterized the EEG data using
the wavelet coe�cients and then, used the Sparse
Representation-based Classi�cation (SRC) algorithm
[51] for predicting the discrete states of vigilance.

However, these methods all su�er from the main
disadvantage because they utilize a set of �xed link
functions for encoding nonlinearity which restricts their
ability to handle highly complex data. Moreover,
their encoding procedure is restricted by their one-
shot mapping strategy. That is, only one non-linear
transformation is applied to each point of data. Unlike
these methods, this paper aims to propose a sequential
nonlinearity encoding technique that provides two ma-
jor advantages: (1) investigating the non-linearity of
data from two di�erent perspectives (kernel mapping
and spline projection) and (2) calculating the link
functions rather than prede�ning them.
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3. Projection Pursuit Regression (PPR)

PPR [52] is a nonparametric regression algorithm that
utilizes one-dimensional smoothers (Subsection 3.1) to
�t a regression model over a set of low dimensional
feature spaces rather than high dimensional input
variables. Let X 2 Rn�m denote a dictionary of
input vectors xi 2 Rm and y be the corresponding
dependent variables. The objective function of the
model is de�ned as follows:

J = min
gq;wq

NX
i=1

(
yi �

QX
q=1

gq(wTq xi)

)2

; (1)

where wq; q = 1; ::; Q, is a coe�cient vector (direc-
tional vector) that projects the input variables into
the qth intermediate feature map fq = Xwq, gq is
the corresponding smoothing function, and Q denotes
the number of intermediate projections. Given that
gq is a twice-di�erentiable function, the model is able
to characterize the nonlinearity of the intermediate
variables. The smoothness of g determines the �delity
of the model to the training data. The smoother the
function g is, the less accurate the model will be �tted,
which may lead to some forms of an undesired bias.
Conversely, with a too wiggly function, the model will
be over�tted and it tends to become a linear estimate
of the intermediate variables. This calls for a trade-
o� between the smoothness and �delity of the solution
which can be achieved using the Akaike information
criterion, the cross-validation score, or the generalized
cross-validation score. Note that, PPR does not imply
any orthogonality restrictions between the directional
vectors, which in turn allows for an interaction between
the intermediate projections that may occur when the
superposition principle does not hold for the responses
of the regression model. For a comprehensive opti-
mal solution, both the directional vectors (Eq. (2))
and smoothing functions (Eq. (4)) are estimated in
an iterative manner. For this purpose, the data is
�rst randomly projected into a set of one-dimensional
representations. The functions gqs are then calculated
through the spline estimation of these intermediate
projections to the output responses. Next, assuming a
�xed smoothing function, the Gauss-Newton algorithm
is utilized for estimating its corresponding directional
vector [52]:

gq(wTq xi)�gq(wTq;oldxi)+g0q(wTq;oldxi)(wq�wq;old)Txi

)min
wq

NX
i=1

g0q(wTq;oldxi)2
��
wTq;oldxi�

yi �PQ
q=1 g(wTq;oldxi)

g0(wTq;oldxi)

�
� wTq xi

#2

: (2)

PPR is closely related to di�erent statistical and
machine learning algorithms. With a single term, it
resembles a Generalized Linear Model (GLM) with
an inverse link function. Yet, with more terms at
hand, it would be more similar to Single-Hidden-
Layer (SHL) neural networks such as SHL Multi-
Layer Perceptron (MLP) or SHL Extreme Learning
Machine (ELM). Note that the use of multiple terms
allows for combining more intermediate representations
which further provides us with a more intricate model.
However, despite the similarities, there are also some
systematic di�erences in the optimization technique
and free parameters of these networks. While MLP
is usually trained using the Gradient Descent (GD)
strategy, PPR has the advantage to use the Least
Squares (LS) method that does not depend on any
prerequisites like determining a learning rate. Unlike
ELM that utilizes a non-tuned hidden layer, PPR
uses the LS algorithm to adjust the transformation
weights of the input variables to the intermediate
representations. Moreover, unlike neural networks, to
its advantage, PPR estimates its smoothing functions
along with the projection weights and this is very
relevant for dealing with a nonlinear data.

Notwithstanding, PPR is characterized by its own
drawbacks, as well. For example, regarding a very
complex dataset, a model can be �tted well only if the
dimensionality of data is large enough to characterize
the complexity of data distribution. On the other hand,
the higher the dimensionality of data, PPR would
require more intermediate terms to properly handle
the resulting intricate patterns which, in turn, causes
a serious computational problem.

3.1. Smoothing spline
Data smoothing is a way to capture the main structure
of data when the �ne-scaled structure is considered to
be rapid variation attributable to noise. The method
used, namely the smoothing spline method, balances
approximation errors with a derivative-based measure
of overall smoothness for a dataset.

Let g be a smooth function de�ned at [a; b] so
that its second derivative is available and the following
minimization problem holds:

Jsf =
NX
i=1

[yi � g(oi)]2 + �
Z b

a
[g00(o)]2do; (3)

where the �rst term measures the �delity of the �t
to the data, while the second term regularizes its
smoothness and curvature using the �xed parameter
�. Assuming that g is a natural cubic spline, it can be
written as follows:

g(o) =
NX
j=1

Bj(o)�j ; (4)
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where Bj(x) is the jth basis function of g with the
knots de�ned at x1; x2; :::; xN . Substituting Eq. (4)
into Eq. (3), we get:

Jsf = (y �B�)T (y �B�) + ��T
�; (5)

where Bi;j = Bj(oi) and 
i;j =
R

(Bi(o))00(Bj(o))00do.
This equation can be �nally solved through the LS
algorithm as follows:b� = (BTB + �
)�1BT y;

by = Bb� = B(BTB + �
)�1BT y: (6)

In this way, each of the Q smoothing functions of
Eq. (1) can be easily estimated.

4. Methodology

Nonlinear mapping of data is an appropriate tool
for handling the complexity of data distribution in a
low dimensional space, which is subtly used in PPR
for analyzing multiple regression models. However,
sometimes, data points have a rather complex structure
to be modeled by nonlinear mapping of their far low
dimensional representations in the intermediate space.
Here, one solution is to utilize more intermediate terms
to extend the dimensionality so that the nonlinear
model can be well �tted to such extended intermediate
representations. However, increasing the number of
intermediate terms would also dramatically increase
the computational cost and call for a heavy back�tting
process. Note that the response variable in Eq. (1)
is a non-weighted sum of the intermediate terms.
Therefore, the use of more than single terms may
introduce some bias in the training process. Such issues
hinder the practical application of PPR for modeling a
highly complex data, especially with low dimensional
variables. As an alternative, we can project the input
variables into a higher dimensional space rather than
increasing the number of intermediate terms. In doing
so, the complexity of data is simpli�ed before trans-
forming into the intermediate representation which
further simpli�es the structure of the �tted splines
at the next phase. However, such a scheme not
only increases the computational cost, yet requires a
complicated feature engineering for representing input
variables in a high dimensional space. To address
these issues, we propose projecting the model into the
Reproducing Kernel Hilbert Space (RKHS) so that
it can implicitly operate in a high dimensional space
without the need for calculating the new coordinates
of data points.

Moreover, we propose introducing a constraint on
the directional vectors wqjQq=1 that signi�cantly reduces
the possibility of an over�tting and helps mitigate the
singularity problem of the kernel matrices.

Let � be a function that nonlinearly maps an
m-dimensional input data into an in�nite-dimensional
RKHS F so that � : xi 2 Rm ! �(xi) 2 F and
the inner product < : > on F is delineated by a
kernel function k(a; b) =< �(a); �(b) >. Applying this
function to the training set, we obtain:

X = [x1; x2; :::; xN ]! �(X)

= [�(x1); �(x2); :::; �(xN )]:

According to Eq. (2), a novel objective function
is introduced for modeling the projection pursuit in
the high dimensional Hilbert space with an additional
constraint on the weight vectors wq.

J = min
gq;wq

NX
i=1

(
yi �

QX
q=1

gq(wTq �(xi))

)
s.t. : min jjwqjj2: (7)

Upon considering only one term and using the La-
grange multiplier theorem, the problem can be written
in an unconstraint form:

J = min
g;w

NX
i=1

fyi � g(wT�(xi))g+ �jwj2; (8)

where � is a small regularization coe�cient. Given
the smooth function g, similar to Eq. (2), the
Gauss�Newton algorithm can be used to minimize
the equation over w. Therefore, the function can be
rewritten as follows:

J =
NX
i=1

g0(wTold�(xi))2

"
wTold�(xi)

+
yi � g(wTold�(xi))
g0(wTold(�(xi)))

� wT�(xi)

#2

+ �jwj2: (9)

Let ti = wT�(xi) + yi�g(wT�(xi))
g0(wT (�(xi))) and ai =�

g0(wT�(xi))
�2. Rewriting Eq. (9) in a matrix form,

we get the following expression:

J =TTAT � TTA�(X)w � wT�(X)TAT

+ wT�(X)TA�(X)w + �wTw; (10)

where:

A =

26664
a1 0 : : : 0
0 a2 : : : 0
...

...
. . . 0

0 0 : : : aN

37775 and T =

26664
t1
t2
...
tN

37775 :
Taking partial derivatives with respect to w and setting
the result equal to zero, we obtain:
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dJ
dw

= ��(X)TAT + �(X)TA�(X)w + �w=0: (11)

After some algebraic manipulation and substitut-
ing the extended representation of T in the matrix
form, we get:

wn =(�(X)TA�(X) + �I)�1�(X)TA
�

�(X)w

+
y � g(�(X)w)
g0(�(X)w)

�
; (12)

where:

y =

26664
y1
y2
...
yN

37775 :
Also, I is the identity matrix. As the weight vector w
lies in the span of �(x1); �(x2); :::; �(xN ), there exists a
coe�cient vector in the Hilbert space that satis�es the
following:

w =
NX
i=1

�i�(xi) = �(X)�: (13)

Substituting Eq. (13) into Eq. (12) and simplifying the
equation, we obtain:

wn = (��TA��T + ���T )�1��TA 
��T�+

y � g(��T�)
g0(��T�)

!
: (14)

As K(X;X) = ��T is the kernel function, the equation
can be reformulated as follows:

wn=(KAKT + �K)�1 �KA
 
K�+

y�g(K�)
g0(K�)

!
:

(15)

For the smoothing functions, the input in the
Hilbert space will be wT�(Xi). Therefore, the update
equation for g in the new space can be formulated as
follows:
g(�(X)w) = N(�(X)w)�

= N(�(X)w)
�
N(�w)TN(�w)

+ 
N(�w)
��1N(�w)T y: (16)

It was previously assumed that w = ��. Therefore,
Eq. (16) can be reformulated as:

g =B(��T�)
�
B(��T�)TB(��T�)

+ 
B(��T�)
��1B(��T�)T y: (17)

Given that K(X;X) = ��T , this equation is �nally
represented as follows:

Algorithm 1. Sequential encoding of nonlinearity.

g = B(K�)
�
B(K�)TB(K�) + 
B(K�)

��1B(K�)T y:
(18)

As can be seen, both the update equations for g
and w only depend on the inner products of the trans-
formed data points into the high dimensional space.
In this way, we take advantages of a high dimensional
space in discerning any structural nonlinearity of data
points without the need for an actual transformation.
The update procedure of our method is shown in
Algorithm 1.

5. Narrow Band Spectral Analysis (NBSA) of
band-limited signals for drowsiness
detection

This section describes the role of the proposed method
in detecting drowsiness levels upon analyzing EEG
data. Let xp(t) be a set of continuous EEG signals
collected from P di�erent channels. Given that EEG
is susceptible to di�erent sources of artifacts, data
pre-processing is �rst required before extracting the
features. For this purpose, a second-order Butterworth
bandpass �lter with cut-o� frequencies of 1 and 75 Hz is
applied to the raw EEG signals to reduce the inuences
of the transient noise. To achieve a real-time estimation
scheme, any further preprocessing steps like Blind
Source Separation (BSS) of data or statistical analysis
for excluding its contaminated parts are ignored.
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To extract features, the �ltered signals are �rst
partitioned into multiple disjunct m-second epochs.
Each epoch is decomposed into multiple band-limited
signals (for this purpose, we use the wavelet de-
composition method proposed in [53]) and then, is
characterized by LE de�ned as follows:

LE(p; q) = log
� 1
K

KX
t=1

xqp(t)
2
�
; (19)

where xqp(t) is the limited-band signal within a
frequency band q and K is the corresponding epoch
length. This study uses the �ve conventional frequency
bands of EEG signals including �1 (0.2{0.8 Hz), �2
(0.8{1.6 Hz), �3 (1.6{2.8 Hz), �1 (2.8{6.2 Hz), and �1
(6.2{10 Hz).

In the following, we address the question of
whether the narrow band frequency analysis of a band-
limited signal is an appropriate tool for describing its
fatigue-related characteristics. Mental fatigue mani-
fests itself mostly as variations of the activity of some
frequency bands including �, �, and �. Therefore, it
is common to decompose EEG data �rst into multiple
band-limited signals and then, extract the features of
each band. The issue is that, most of the existing
methods in the literature usually consider the Narrow
Band Spectral Analysis (NBSA) as the most promising
approach to characterizing the EEG epochs. However,
this may not provide the most accurate and convenient
way. In many studies, PSD is derived to scrutinize
the narrow-band frequency characteristics where the
strength of signal variations is computed as a function
of di�erent frequencies. Due to the noisy nature
of the EEG data, authors usually tend to estimate
their PSDs using spatiotemporal algorithms such as
Short-Time Fourier Transform (STFT), AutoRegres-
sive (AR) model, and Welch's technique. However,
such schemes usually cause a heavy computational
burden. Moreover, NBSA would only be e�ective
when data includes some major cyclical components
repeated with high frequencies, just like what occurs in
experiencing epileptic seizures or triggering emotions.
On the contrary, mental fatigue includes a wider range
of neurological responses occurring over a broader
range of frequencies where a far NBSA may lead to
oversampling of the frequency elements. On the other
hand, regardless of the main frequency origin of fatigue
components, they can be detected easily using the
magnitude of their variations compared to the patterns
of the alertness regions. Figure 1 presents the features
extracted by our method (LE) for one of the EEG
channels compared to a set of the state-of-the-art
frequency domain algorithms including Lin' method
[36] using covariance-based Auto Regressive Power
Spectral Density (ARPSD) algorithm [53], Welch's
technique [54], and Dominant Frequency (DF) [55].

Motivated by the works in [56,57] in which the fatigue
states are mainly attributed to the slower waves, in
this paper utilizes �ve slow frequency bands, namely
�1(0:2 � 0:8 Hz), �2(0:8 � 1:6 Hz), �3(1:6 � 2:8 Hz),
� � �(2:8 � 6:2 Hz), and � � �(6:2 � 10 Hz) for
all the techniques except for DF algorithm whose
frequency bands are selected according to the emphatic
recommendation of the original paper. Note that both
LE and DE methods are employed to calculate the
local energy of EEG signals. However, DE requires the
appropriate size of PSD window and the overlapping
percentage to be previously determined, which should
be established according to the frequency range of
input signals. To avoid such complexities, these values
are directly taken from the original paper. For Welch's
method, we divide each epoch into 2-secant segments
with a 50% overlap. All the segments are extended
to 256 pints and then, fed into the Welch's function.
We use only the �rst 30 frequency bins (from 1 to 30
Hz) of each PSD as the features of the corresponding
epoch. The spectral patterns are then converted into
the logarithmic scale to make a more fairly distributed
pattern called Logarithmic Spectral Density (LSD).
Finally, the estimated densities of � � �, � � �, �1,
�2, and �3 bands are averaged to form the �nal feature
vector. For ARPSD, we use a 4th order AR model
and 30 frequency bins to represent a PSD vector.
Like Welch's method, PSDs are converted into the
logarithmic scale and averaged over di�erent bands to
form the �nal feature vector. For DF, we use fast
Fourier transform with Hann window and consider the
frequency with the largest average power as the DF
feature of each segment. As can be seen, our method
can uniquely characterize the frequency sub-bands of
EEG data to explore di�erent aspects of its neurolog-
ical features that contribute di�erently to recognizing
drowsiness states of di�erent subjects according to their
physical and behavioral characteristics. For example,
the feature extracted from the � � � band (marked
in blue) is more consistent with the ground truth
fatigue states shown in Figure 1(b). However, in the
case of ARPSD and Welch's methods, averaging of
di�erent frequency bands causes the features to be
biased toward the characteristics of the � band which
corresponds to the purple curve in our method. In the
case of DF, although di�erent frequency sub-bands are
individually characterized, a low signal-to-noise ratio
and heavy computational burden hinder its application
for detecting fatigue states in a real-world scenario.

6. Experimental results

This section is concerned with evaluating the perfor-
mance of the proposed method in SEED VIS EEG
database from two di�erent perspectives: (1) analyzing
the informativeness of the LE features for charac-
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Figure 1. (a) Original EEG signal, (b) PERCLOS indices, the features extracted by (c) LE, (d) Lin' method using
ARPSD (each color represents one bin of PSD vectors), (e) Lin' method using Welch's technique (each color represents one
bin of PSD vectors), and (f) DF. As can be seen the � � � band of LE provides the most similar curve to the PERCLOS.

terizing fatigue-related features in EEG data; and
(2) evaluating the regression performance of RKPPR
compared with a set of linear and nonlinear regres-
sors and investigating the overall performance of our
method (LE+RKPPR) with a set of the state-of-the-
art continuous fatigue estimation algorithms. More-
over, as a general-purpose framework, we evaluate
the performance of our method in Parkinson's Disease
(PD) prediction which, like fatigue detection, is a very
low dimensional regression problem.

6.1. SEED VIS database
SEED VIS is a fatigue-related EEG database collected
from 23 volunteers (12 women and 11 men with the
average age of 23.3 and standard deviation of 1.14
years) during a simulated driving task. The simulator
consists of a real vehicle without any motion platform,
a video wall consisting of 9 rectangular at monitors,
and a software interface establishing the relationship
between the wall and the vehicle. Unlike single seat
driving simulators, here, the monotonous environment
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of the vehicle helps induce much fatigue, leading to
a more realistic driving condition. Moreover, steering
wheel, electronic throttle, and brake pedal of the
simulator as well as providing su�cient control on the
speed, acceleration, and direction of the vehicle on the
wall help volunteers experience a feeling like driving
in a real environment. Volunteers are asked to avoid
any ca�eine, tobacco, or alcohol and get su�cient sleep
per day before the experiment. None of them su�er
from any vision problems and all are versed in how the
system works at the pre-test phase. According to the
circadian rhythm of the body, all the experiments were
performed in the early afternoon or late night to induce
maximum fatigue. Each experiment took about 2 hours
during which the brain activity was uninterruptedly
recorded by a NeuroScan system at a sampling rate of
1000 Hz. Due to previous �ndings on the key brain
areas engaged in fatigue, SEED VIS only recorded the
signals from the temporal and posteriors sites. Unlike
traditional dual-task strategies, SEED VIS uses an eye
tracking based technique for labeling the EEG data
being simultaneously recorded on the system. For this
purpose, volunteers were asked to wear SensoMotoric
Instrument (SMI) eye tracking glasses when driving
the vehicle. Each pupillary image taken by the glasses
is processed to calculate the PERcentage value of eye
CLOSure (PERCLOS) as follows:

PERCLOS =
tb + tc

tb + tf + ts+ tc
; (20)

where tb, tc, tf , and ts denote the durations of blinks,
eye closure, �xations, and, saccades, respectively, dur-
ing a recorded video. The PERCLOS values are �nally
smoothed by the moving average �lter and considered
as the fatigue indices. The indices range between 0
and 1, where 0 stands for the least drowsy level and 1
indicates the most drowsy state.

6.2. Analysis of informativeness measures
In this section, the similarity of LE features to the
PERCLOS indices is examined without using any types
of regression algorithms. For this purpose, a (0.2{
75 Hz) second-order Butterworth �lter is �rst applied
to EEG data to remove its environmental artifacts and
noises. The free-noise signals are then downsampled
to 40 Hz. This e�ciently reduces the computational
complexity of further processing. Next, the data are
decomposed into �ve frequency bands, each of which
is then partitioned into 8-secant non-overlapping win-
dows. For feature extraction, LEs are estimated for all
the limited band signals of each window. The feature
vectors are �nally smoothed by the moving average
�lter with the window length of 200 s (8�25, where 25
is the number of windows) to reduce the inuence of the
remaining noises. Finally, LE features extracted from
all the frequency bands are concatenated to form the

feature vector of each window. Note that as the average
feature vector of the previous window is available, only
a total of 2 arithmetic operations (one substraction and
one addition) will be needed to update the average
vector for the current window. Therefore, this method
can be easily applied to online scenarios. Figure 2
shows the results of the decomposition for a typical
segment of an EEG data.

As can be seen, � � � and � � � rhythms provide
more even distributions of energy in regions with
approximately the same PERCLOS indices. Therefore,
it is expected for them to be greatly similar to the
PERCLOS values. To measure the similarity, the
correlation coe�cient is used as a quantitative measure
of the linear relationship between the PERCLOS vector
p and feature vector f , which is de�ned as follows:

CC =
PN
i=1(pi � p)(fi � f)qPN

i=1(pi � p)2
PN
i=1(fi � f)2

; (21)

where p and f denote the average of the PERCLOS
p and the feature vector f , respectively, and N is the
number of elements for each of the vectors and is equal
to 885. Figure 3 shows the average CCs over di�erent
channels for each subject of the SEED VIS database.

Note that a negative CC means that, an increase
in vigilance level is directly associated with a decrease
in the activity of the corresponding frequency band.
It is clear that the features extracted from  and �
rhythms produce the highest CCs among the consid-
ered frequency bands which can be quite consistent
with our previous �nding on the distribution of energy.

From Figure 3, it can be found that fatigue
reveals di�erent frequency dependent behaviors across
individuals. Therefore, it is impossible to derive a
common brain pattern to characterize fatigue-related
frequency activities. As a case in point, consider
the 18th and 19th subjects. For the 18th user, the
change of LE features in all the frequency bands follows
the same trend as the PERCLOS indices. However,
regarding the 19th user, � � �, �3, �2, and �1 activities
are quite in reverse.

Additionally, it is interesting to study how the
neural patterns of these individuals change over dif-
ferent states of vigilance. For this purpose, we de�ne
three di�erent vigilance levels: awake (PERCLOS <
0:45), tired (0:45 < PERCLOS < 0:75), and drowsy
(PERCLOS > 0:75). For each level, the CCs are
averaged over the points falling into the corresponding
ranges. Then, the CC vector associated with the min-
imum value of the PERCLOS indices, which denotes
the most alert pattern, is subtracted from each of
the averaged CC vectors. The resulting di�erential
coe�cients are then mapped on a toy scalp map,
which is referred to as the di�erential neural pattern.
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Figure 2. Decomposition scheme for a typical segment of an EEG data.

Figure 3. Average CCs of LE features per frequency
band for di�erent subjects.

Figures 4 and 5 show the di�erential patterns for both
of the subjects. As can be seen, there are signi�cant
di�erences between the neural patterns of di�erent
subjects. Therefore, a subject-speci�c training process
would be necessary to estimate the vigilance patterns of
each subject. Recent research has shown that transfer
learning can be e�ciently used for aligning the fatigue
related features and generalizing the trained models.

However, to ensure greater e�ciency, we focus on the
subject-speci�c strategy and use it in the subsequent
experiments.

6.3. Regression performance
This section evaluates the performance of our RKPPR
algorithms compared to the PPR model as the baseline
method. The EEG data and the protocol used in this
experiment are the same as those in [25]. Accordingly,
the entire data from one experiment is partitioned into
5 equal parts (80% used for training and the remaining
20% for testing) and a 5-fold cross-validation strategy is
applied to measure the performance of the model. More
information on the splitting protocol can be found in
[25]. Due to the not-so-high dimension of the input
variables and the �ndings of the previous research [58],
only a single intermediate term is selected for both of
the PPR and RKPPR models. The Euclidean distance
is used as the kernel function of the PKPPR model [60].
The RMSE values per channels for both of the models
are presented in Table 1. The labels in the �rst row
indicate the name of the EEG channels.

As can be seen, on average, our method achieves
8.79% smaller RMSE than the baseline algorithm PPR.
This superiority can be attributed to the nonlinear
mapping to the Hilbert space and the use of the con-
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Figure 4. Di�erential neural patterns of drowsy (left column), tired (middle column), and awake (right column) states in
�ve frequency bands; �1 (�rst row), �2 (second row), �3 (third row), �� � (fourth row), ��� (last row) for the 18th subject.

Table 1. RMSE value of RKPPR and PPR on single channels for the SEED VIS database.
FT7 FT8 T7 T8 TP7 TP8 CP1 CP2 P1 PZ P2 PO3 POZ PO4 O1 OZ O2

PPR 0.1625 0.1506 0.1502 0.1450 0.1251 0.1316 0.1523 0.1456 0.1328 0.1274 0.1237 0.1141 0.1414 0.1225 0.1162 0.1408 0.1208

RKPPR 0.1386 0.1272 0.1320 0.1299 0.1192 0.1278 0.1363 0.1283 0.1237 0.1238 0.11 77 0.1098 0.1238 0.1083 0.1151 0.1250 0.1130
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Figure 5. Di�erential neural patterns of drowsy (left column), tired (middle column), and awake (right column) states in
�ve frequency bands; �1 (�rst row), �2 (second row), �3 (third row), �� � (fourth row), ��� (last row) for the 19th subject.

straint on the mapping weights, whose characteristics
were described in detail in Section 3. The minimum
value of RMSE is achieved in the channel PO3 in the
posterior area. For RKPPR, this value is 0.1083 which
is 5.08% lower than that achieved by PPR regressor.

The performance of these models is also evaluated
with regard to the increased number of channels. The
channels are added symmetrically, with the priority
of adding the temporal channels. Despite the higher
relevance of posteriors channels with vigilance, they
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Table 2. RMSE value of RKPPR and PPR for cumulative structures of channels on the SEED VIS database.

Cumulative structure PPR RKPPR

FT7 0.1625 0.1395
FT7,8 0.1400 0.1228
FT7,8 + T7 0.1291 0.1181
FT7,8 + T7,8 0.1230 0.1143
FT7,8 + T7,8 + TP7 0.1228 0.1099
FT7,8 + T7,8 + TP7,8 0.1203 0.1080
FT7,8 + T7,8 + TP7,8 + CP1 0.1201 0.1084
FT7,8 + T7,8 + TP7,8 + CP1,2 0.1188 0.1068
FT7,8 + T7,8 + TP7,8 + CP1,2 + P1 0.1126 0.1058
FT7,8 + T7,8 + TP7,8 + CP1,2 + P1,Z 0.1161 0.1052
FT7,8 + T7,8 + TP7,8 + CP1,2 + P1,Z,2 0.1173 0.1039
FT7,8 + T7,8 + TP7,8 + CP1,2 + P1,Z,2 + PO3 0.1177 0.1013
FT7,8 + T7,8 + TP7,8 + CP1,2 + P1,Z,2 + PO3,Z 0.1167 0.1033
FT7,8 + T7,8 + TP7,8 + CP1,2 + P1,Z,2 + PO3,Z,4 0.1212 0.1026
FT7,8 + T7,8 + TP7,8 + CP1,2 + P1,Z,2 + PO3,Z,4 + O1 0.1196 0.1010
FT7,8 + T7,8 + TP7,8 + CP1,2 + P1,Z,2 + PO3,Z,4 + O1,Z 0.1189 0.1007
FT7,8 + T7,8 + TP7,8 + CP1,2 + P1,Z,2 + PO3,Z,4 + O1,Z,2 0.1181 0.1013

unfortunately cause great discomfort than the channels
of the temporal area. Hence, the priority is given to the
temporal channels. Table 2 shows the RMSE values for
the cumulative structure of the channels.

For PPR, RMSE reaches a minimum value of
0.1126 and then, ascends when we keep adding the
number of channels, indicating the weakness of PPR
to integrate the information of di�erent brain areas.
In contrast, the minimum RMSE value for RKPPR,
0.1007 (10.72% smaller than that of PPR), is achieved
based on the information of the �rst 16 channels.
Therefore, one can infer that RKPPR outperforms
PPR in that the former incorporates the fatigue pat-
terns of di�erent brain areas.

We also compare the performance of our RKPPR
model with those of two well-known non-linear kernel-
based regression algorithms called Kernel Support Vec-
tor Regression (KSVR) and GLM which have already
been proven e�ective in real-world regression problems
like analyzing the EEG data. For KSVR, we use
the RBF kernel that has previously been successfully
applied to fatigue data [25]. For GLM, two gamma
and normal distributions are considered for the error in
response variables. Moreover, we use the link functions
of:

g1(a) = a; g2(a) = log(a); g3(a) = log(
a

1� a );

g4(a) = ��1(a); and g5(a)= log(�log(�(1�a)));

along with each error distribution. Table 3 shows
the RMSE values obtained by the proposed method

compared with those obtained by the SVR, KSVR, and
GLM algorithms.

It is clear that both KSVR and GLM algorithms
exhibit high sensitivity to their adjustable parameters.
Therefore, optimizing their performance would require
quality assessment tests and manual inspection of the
accuracy responses, which may hinder their application
to real-world online situations. Finally, the overall
performance of our method (LE+RKPPR) is compared
with that of the single existing continuous method
DE+SVR in the literature. The results are listed in
Table 4. Note that these results have been achieved
using the cumulative features of di�erent brain areas
rather than single channels used in Table 3. It is clear
that the proposed method, even with a multichannel
strategy that ful�ls the need for seeking the best chan-
nel, signi�cantly enhances the performance compared
to DE+SVR.

6.4. Prediction of PD progression
As a general purpose framework, the opportunity has
arisen to apply RKPPR to any pragmatic regression
problems. This section examines the performance of
this method for prediction of PD. PD is the second
most commonly diagnosed neurodegenerative disorder
following Alzheimer's, currently a�ecting about six mil-
lion people around the world. Due to the simultaneous
e�ects on multiple brain areas, it usually tends to
appear with a set of combined symptoms of motor and
non-motor dysfunctions. At a clinical dissection, PD is
usually characterized by two main neurochemical fact-
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Table 4. Overall performance of our method compared
with the DE+SVR algorithm

Posterior Temporal

LE+RKPPR 0.1054 0.1080
DE+SVR 0.1429 0.1603
Improvement 26.24% 32.62%

ors: (1) massive loss of dopaminergic neurons in the
substantia nigra which is manifested by some forms of
reduced muscular control like speech disturbance, slow
movement, postural instability, and resting tremor;
and (2) the presence of � synuclein aggregates within
the cerebral cortex and limb system (linked to any
impairments of memory, thinking, mood, and pain)
as well as inferior temporal gyrus (responsible for any
hallucinatory state). Although some genetic (e.g.,
gender, ethnicity, and heredity) and environmental
(exposure to well water and pesticides as well as any
imbalance of free radicals and antioxidants) agents
have already been considered as the risk factors, the
main cause of this disease has not been discovered
yet. This is the reason why it cannot be detected by
any single pathological biomarker. Currently, the most
common diagnostic approach to PD is a clinical rating
measure, called Uni�ed Parkinson's Disease Rating
Scale (UPDRS), which is a combined medical history
and physical examination made up of three di�erent
parts: (1) evaluating the symptoms associated with
the mentation, behavior, and mood of the patients,
(2) examining the quality of performing daily rou-
tine automatized tasks, and (3) evaluating the motor
de�cits of limbs. Since the motor characteristics are
of particular importance, the score of this section
is presented either separately (motor-UPDRS) or in
combination with the scores of the other parts (total-
UPDRS). Despite its high accuracy, this measure
requires to be administrated on a physical visit, which
is a signi�cant di�culty for many people with PD and
one of the main factors of patients' delay which is
signi�cantly associated with the reduction of the num-
ber of receiving successful pharmaceutical therapies for
alleviating the symptoms. Therefore, it is essential that
a simple-to-use and noninvasive tool be devised that
allows for early monitoring of patients beyond a clinical
setting. Vocal impairment is one of the very �rst
symptoms of PD that can be observed in about 90% of
patients. From a broad perspective, this impairment
can be channeled into four categories: (i) respiration:
shortness of breath and symptoms of stridor arising
from the diminished e�ciency of respiratory muscles
and an impaired chemoreceptor drive to breathing;
(ii) phonation: impairment in producing individual
phonetic segments deriving from any de�cits in the
vibration process of the vocal folds; (iii) articulation:
impaired muscular control on articulatory organs such

as tongue, lip, and jaw causing some degrees of reduced
speech intelligibility; and (iv) prosody: impairment of
tonic properties of speech like rhythm and intonation.
Despite being a more pragmatic test of speech impair-
ment, respiration, articulation, and prosody measures
su�er from a serious drawback, that is, they are heavily
a�ected by linguistic components (e.g., intonation,
tone, stress, and rhythm) and individual preferences.

This section addresses the telemonitoring problem
of PD progression using RKPPR algorithm. For
this purpose, each subject is requested to produce a
sustained vowel at a normal pitch. Each signal is then
represented by using multiple vocal attributes includ-
ing cyclic (Jitter, Shimmer, Recurrence Period Density
Entropy (RPDE), and Pitch Period Entropy (PPE))
and randomness related (Harmonics to Noise Ratio
(HNR), Noise to Harmonics Ratio (NHR), and De-
trended Fluctuation Analysis (DFA)) measures. Next,
RKPPR is used to establish a mapping relationship
between the vocal attributes and the UPDRS scores
clinically estimated by a trained neurologist. For
evaluation, we make use of Oxford Parkinson's Disease
Telemonitoring (OPDT) database in which 5875 trials
(sustained phonations of the vowel `ahhh') from 42
patients (28 men and 14 women with the age ranging
from 36 to 58 years) have been recorded by an Intel
At-Home Testing Device at a frequency rate of 24 kHz
and 16-bit resolution. None of the subjects were on any
treatment at a six-month interval of the experiment.
The UPDRS motor and total scores ranging from 0
to 108 and 0 to 176, respectively, where 0 indicates
the best possible health state of subjects. Sixteen
individual measurements of the above-mentioned at-
tributes have been previously included in the database
(Jitter(%), Jitter(Abs), Jitter: RAP, Jitter: PPQ5, Jit-
ter: DDP, Shimmer, Shimmer(dB), Shimmer: APQ3,
Shimmer: APQ5, Shimmer: APQ11, Shimmer: DDA,
NHR, HNR, RPDE, DFA, PPE). To make a fairly
even distribution, the attributes are converted into the
logarithmic scale, which, in turn, allows for responding
to the skewness of data towards large values.

The k-fold cross-validation strategy (k 2 f2; 3; 4;
5g) is utilized to evaluate the performance of the
proposed method against two state-of-the-art regres-
sion algorithms, KSVR and GLM. For this purpose,
subjects are divided into k nonoverlapping segments,
where the models are �tted on one part and evaluated
on the remaining ones. As shown in the previous
section, RBF is utilized as the kernel function of
KSVR. Moreover, gamma and normal distributions
along with the four link functions of g1, g2, g3, and
g4 are considered to be the modeling assumptions of
the GLM method. For all the algorithms, prediction
is performed for both the motor and total scores of
UPDRS. Tables 5 and 6 list the averaged RMSE value
of the di�erent algorithms on OPDT database. As can
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Table 5. RMSE values for motor-UPDRS prediction using di�erent regression algorithms.

GLM (normal) GLM (gamma) KSVR

g1 g2 g3 g4 g1 g2 g3 g4 � = 0:01 � = 0:1 � = 0:25 � = 0:5 � = 0:75 � = 1 � = 10 RKPPR

2-fold 8.1293 8.1272 7.7146 7.0737 6.9380 6.9313 7.7711 7.6766 7.6937 7.7176 7. 7101 7.7007 7.7090 7.7305 7.7305 6.7220

3-fold 8.1288 8.1274 7.8185 7.1919 7.0512 7.0323 7.8302 7.6878 7.7057 7.7309 7.7816 7.7082 7.7198 7.7426 7.7426 6.8307

4-fold 8.1292 8.1281 7.8705 7.3500 7.2345 7.2043 7.8525 7.6961 7.7132 7.7426 7.7404 7.7229 7.7315 7.7611 7.7611 6.9961

5-fold 8.1289 8.1279 7.9130 7.4483 7.3224 7.2957 7.8766 7.7078 7.7215 7.7427 7.8723 7.7402 7.7458 7.7650 7.7650 7.0644

Table 6. RMSE values for total-UPDRS prediction using di�erent regression algorithms.

GLM (normal) GLM (gamma) KSVR

g1 g2 g3 g4 g1 g2 g3 g4 � = 0:01 � = 0:1 � = 0:25 � = 0:5 � = 0:75 � = 1 � = 10 RKPPR

2-fold 10.7083 10.7065 10.1371 9.1506 8.9856 9.0327 10.3743 10.1771 10.2006 10.2245 10.2777 10.1995 10.2166 10.2376 10.2376 8.6652

3-fold 10.7081 10.7063 10.2658 9.3820 9.2174 9.2601 10.4391 10.1796 10.2047 10.2301 10.3081 10.1949 10.2149 10.2385 10.2385 8.8330

4-fold 10.7068 10.7055 10.3702 9.6046 9.4415 9.4571 10.4720 10.1986 10.2226 10.2463 10.3251 10.2249 10.2422 10.2639 10.2639 9.0803

5-fold 10.7078 10.7068 10.4244 9.7131 9.5812 9.5850 10.4764 10.2001 10.2223 10.2448 10.2937 10.2299 10.2432 10.2617 10.2617 9.1867

Table 7. RMSE values for motor-UPDRS prediction using the gender based regression strategy.

GLM (normal) GLM (gamma) KSVR

g1 g2 g3 g4 g1 g2 g3 g4 � = 0:01 � = 0:1 � = 0:25 � = 0:5 � = 0:75 � = 1 � = 10 RKPPR

Men 7.8912 7.8895 7.4346 6.8642 6.7203 6.7405 7.6037 7.4841 7.4955 7.5108 7.7310 7.4960 7.5128 7.5334 7.5334 6.5517

Women 8.6173 8.6125 8.0897 6.7631 6.3463 6.2518 7.5897 7.3007 7.3594 7.4491 7.5544 7.3642 7.4657 7.6143 7.6143 5.9892

Table 8. RMSE values for total-UPDRS prediction using the gender based regression strategy.

GLM (normal) GLM (gamma) KSVR

g1 g2 g3 g4 g1 g2 g3 g4 � = 0:01 � = 0:1 � = 0:25 � = 0:5 � = 0:75 � = 1 � = 10 RKPPR

Men 11.0112 11.0091 10.3031 9.3571 9.1981 9.2465 10.7526 10.4938 10.5147 10.5370 10.6275 10.5116 10.5356 10.5550 10.5550 8.9530

Women 9.8477 9.8460 9.4451 8.0048 7.5598 7.4818 8.6609 8.3788 8.4725 8.5826 8.8387 8.4273 8.5580 8.7023 8.7023 7.0268

be seen, our method achieves the best performance on
both the motor and total sections. Moreover, all the
algorithms have a better performance on motor score
prediction than the total one. This supports the notion
that as a motor sign, vocal attributes tend to be more
closely connected to other motor dysfunctions than the
non-motor symptoms.

We also evaluate how gender di�erences a�ect
the prediction accuracy of the algorithms. For this
purpose, two regression models are individually estab-
lished for men and women, which allow for encoding
the di�erences of their vocal folds into the regression
process. Tables 7 and 8 show the RMSE values for pre-
dicting motor- and total- UPDRS measures using gen-
der model-based algorithms and 2-fold cross-validation
strategy. As can be seen, almost all the algorithms
enjoy better performance than their corresponding
mixed gender-based models. Speci�cally, in the motor
section, gender-based RKPPR archives 2.5% and 10.9%
lower RMSE values for men and women, respectively,
than the corresponding mixed gender-based algorithm.
However, for the total section, this value for the gender-
based algorithm is 3.3% higher, but 18.9% lower than
that of the mixed gender-based strategy.

In a follow-up experiment, we provide a compar-
ison between our method and two well-known proba-
bilistic regression algorithms including Bayesian Linear
Regression (BLR) [62] and Gaussian Process (GP) [63].
Following the previous experiments, an evaluation is
performed using the K-fold cross-validation strategy
(K = 4 for OPDT and K = 5 for EEG VIS) while
extracting the features as in Section 5. Table 9 lists the
RMSE value for both of the databases. For the GP, �ve
di�erent covariance functions including exponential,
squared exponential, Matern (with parameter 3/2),
Matern (with parameter 5/2), and rational quadratic
kernels are used that allow for a comprehensive analysis
of this measurement. For EEG VIS, we proceed with
the experiments along with the single P1 which has a
moderate performance compared to the other channels
provided in this database. In the case of the BLR, a
normal-inverse-gamma conjugate model is used with
a prior distribution of �j�2 � Np(�; �2V ), where p
is the number of attributes. As can be seen, our
method dominates all the rival algorithms in both of
the databases. It is noteworthy that the performance
of these algorithms heavily depends on the correct
selection of the parameters as well as a proportionate
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Table 9. RMSE values for motor-UPDRS prediction, a comparison with stochastic algorithms.

Method OPDT database SEED VIS database
RKPPR 6.9290 0.1237

GP (Squaredexponential) 7.1190 0.1717
GP (Exponential) 7.1420 0.1301
GP (Matern3/2) 7.2803 0.1463
GP (Matern5/2) 7.1866 0.1557

GP (Rationalquadratic) 7.1059 0.1369
BLR 7.6842 0.1266

distribution function, which is well eliminated by our
proposed algorithm.

7. Conclusion

This paper proposed a novel regularized sequential pro-
jection pursuit algorithm to deal with low-dimensional
regression problems like EEG-based fatigue detection.
The key idea was to linearly embed a nonlinear
mapping of the input variables into an intermediate
space and then, to model the responses as a nonlinear
function of the intermediate embedding. In this way,
the nonlinearity can be encoded in two successive
phases, �rst by projecting the input variables into a
hidden space and then using their spline estimations
to the output variables (leading to sequential encod-
ing of the nonlinearity), which is quite proper for
modeling a highly complex low dimensional structure.
Moreover, this study proposed some constraints on
the projection weights to avoid any over�tting of the
intermediate space models. The performance of the
proposed method was evaluated in the case of the
publicly available SEED VIS database and an RMSE
improvement of 8.79% was achieved in comparison to
the conventional PPR algorithm. It is interesting that
the price of such development is only the calculation of
the similarity matrices that were considered by using
the Euclidean distance, ful�lling the requirement for
additional meta-parameters. The method performance
was also evaluated for a Parkinson's Disease (PD)
prediction task which further demonstrated the e�ec-
tiveness of sequential nonlinearity encoding in dealing
with very low dimensional regression problems.
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