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Abstract. In order to monitor the mean and variability of a process, the Gini control
charts are proposed based on the skew normally distributed random sample. By comparing
the false alarm rates of current scheme with those of existing mean and dispersion control
charts, it was found that the design structure of Gini chart could be enhanced in comparison
to other classic schemes based on the assumption of skew normal distribution for the
data. Moreover, the superiority of the Gini chart was investigated by comparing the
discriminatory power curves of the skew normal distribution with some existing control
charts. Simulated studies and a real data example illustrate the usefulness of the proposed
approach.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Statistical quality control techniques such as control
charts, which are commonly used in the industrial sec-
tor, are used to determine the control limits and explore
the changes that are required to make for the purpose
of improving the process. The Conventional Shewhart
(CS) control chart is a key tool for process improvement
in order to detect the occurrence of assignable causes
such that quality practitioners can take necessary cor-
rective actions in the early stage of manufacturing when
a large quantity of non-conformities are produced [1].
Although the Shewhart-type control chart is based on
the assumption of data normality, it is widely believed
that many manufacturing processes do not ful�ll the
normality assumption and its property. The fat tails as
well as peaked and skewed features are often the most
important non-normality properties in the industrial
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data. For instance, the studies [2{5] suggested that the
cutting tool wear, chemical, and semiconductor pro-
cesses followed a skewed distribution. Therefore, the
application of the CS control chart without considering
the e�ect of skewness in data increases the false alarm
rate and may yield misleading results. The growth
in the false alarm rate in the presence of skewness
is rooted in the discrepancy between the variability
pattern of the asymmetric distribution and the nor-
mality assumption in the construction of control charts
[5]. Therefore, in [5], a Weighted Standard Deviation
(WSD) method was proposed and it functioned based
on the idea that a skewed distribution could be bisect
at its mean and two new symmetric distributions with
the same mean. However, di�erent standard deviations
were formed by each segment of the original skewed
distribution so that they could be applied for setting
up the limits of the control chart. Later, this research
study [6] proposed a Skewness Correction (SC) method
based on the idea of using Cornish-Fisher expansion
with emphasis on the degree of skewness of the process
distribution.

Gini's mean di�erence, initially introduced by
Gini in 1912, has received much attention in measuring
the variability of data in a large number of scienti�c
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applications and research area. It is broadly used and
considered as a suitable base for developing control
charts. For instance, see the recent works of [7{20]
among the others and the acknowledged references
therein. By using Gini's mean di�erence estimate as
a measure of dispersion, Saghir and Lin [14] derived
the Gini charts for the non-normal models such as
exponential, student-t, Logistic, and Laplace distribu-
tions. Moreover, the well-known Skew-Normal (SN)
distribution [21] was used for statistically developing
control charts. In [22], the �X control chart of SN
process was constructed by utilizing the approximate
distribution of the sample mean. Later, in [1], �X
and R control charts were developed for skew normally
distributed data by obtaining their exact distributions.
This paper [1] compared the performance of their
methodology by the shewhart control charts with the
structures in [5,6,22]. It was demonstrated that their
new control charts could o�er considerable improve-
ment over existing methods.

The main objective of this paper is to develop
SN control charts based on the Gini's mean di�erence
measure and to derive the e�ciency of using the
Gini estimate relative to the sample range R as a
measure of dispersion in design structure of control
charts. Therefore, the rest of this paper is organized
as follows. Section 2 summarizes some preliminaries on
Li's control charts methodology by SN distribution and
Gini control charts in general. In Section 3, the Gini
control charts for the SN distribution are developed to
monitor the process mean and variability. In order to
demonstrate the e�ectiveness of the proposed control
charts, some numerical examples, including both simu-
lated and real data, are presented in Sections 4 and 5.
Finally, Section 6 provides some concluding remarks.

2. Preliminaries

2.1. The SN distribution and its control charts
Suppose that the quality characteristic X follows the
SN distribution with the location, scale, and skewness
parameters �, �, and �, illustrated by X � SN(�; �; �),
respectively.

The probability density function (pdf) of X is:

fX(x; �; �; �) =
2
�
�
�
x� �
�

�
�
�
�
x� �
�

�
;

�; � 2 R; � 2 R+; (1)

where �(�) and �(�) are the pdf and the cumulative
density function (cdf) of the standard normal distribu-
tion, respectively [21]. It can be seen that � controls
the shape of the distribution and the SN distribution
coincides with the normal one with mean � and variance
�2, as � tends to zero. If � > 0, the SN distribution is

positively skewed; in the case of � < 0, it is negatively
skewed. It is also quite clear that the mean and
standard deviation of the SN distribution are �x =
� + �
2=
1 and �x = �=
1 where 
1 = (1� a2

1�2)�1=2,

2 = 
1a1�, a1 =

p
2=�, and � = �=

p
1 + �2. We will

denote the standard SN distribution, � = 0 and � = 1,
hereafter by SN(�).

Owning to the proven pro�ciency and properties
of the SN distribution against normal distribution
[23,24], two straightforward approaches of control lim-
its, proposed by Li et al. [1] and Tsai [22], are available.
Recently, by using the exact distributions of �X and R
as the sample mean and sample range, respectively, Li
et al. [1] obtained the SN �X and R control limits as:

SN �X chart :�
LCL �X = �x0 � �
2 � 
1�z�;n;�=2

�
�x0=
p
n;

UCL �X = �x0 +
�

1�z�;n;1��=2 � 
2

�
�x0=
p
n;

SN R chart :�
LCLR = 
1r�;n;�=2�x0 ;
UCLR = 
1r�;n;1��=2�x0 ; (2)

where �x0 and �x0 are the in-control process mean
and standard deviation, respectively, which should be
estimated if they are unknown. Assuming that a
dataset is drawn from SN(�), �z�;n;� in Eq. (2) denotes
the quantile of the sample mean distribution �Z, i.e.,
Pr( �Z < �z�;n;�) = �, and r�;n;� the quantile of
distribution of R.

To estimate �x0 and �x0 , let Xij be the jth
observation from the ith group, i = 1; : : : ;m, j =
1; : : : ; n, drawn from a SN distribution. Then, the
estimate of process mean can be computed as the grand
mean X =

Pm
i=1
Pn
j=1Xij=(nm). Moreover, �x0 can

be estimated by �R=(
1d2) where in the range of the
ith group Ri, i.e., the range of Xi1; � � � ; Xin, �R =Pm
i=1Ri=m and d2 is numerically computed through

the exact distribution of the sample range [1].
Therefore, the control limits Eq. (2) change into

the following:

SN �X chart :8><>: LCL �X = X � �
2 � 
1 �Z�;n;�=2
�
R=(
p
n
1d2);

CL �X = X;
UCL �X = X +

�

1 �Z�;n;1��=2 � 
2

�
R=(
p
n
1d2);

SN R chart :8<: LCLR = 
1r�;n;�=2R=(
1d2);
CLR = R;
UCLR = 
1r�;n;1��=2R=(
1d2):

(3)
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2.2. Gini control charts
In order to monitor variability of a process, Shewhart
gave two di�erent control charts, namely R and S
charts, back in the 1920s. The R chart loses its
usefulness with an increase in sample size n and the
S chart behaves badly in the presence of outliers in
data [25]. To address this de�ciency of S and R charts,
following the pioneering work of [22] based on S chart
and [1] based on R chart, we propose Gini chart based
on Gini estimate of dispersion measure to monitor
the changes in process variability when the data are
generated from the SN distribution. In this regard, let
X be the process quality characteristic and a random
sample of size n as X1; X2; � � � ; Xn is drawn from the
population. Then, the Gini's sample mean di�erence is:

G =
nX
i=1

nX
j=i+1

jXi �Xj j=(n(n� 1)=2): (4)

Theoretically, �nding the exact distribution of G is
di�cult and thus, a numerical technique such as Monte
Carlo simulation is usually used. According to the
study [7], another type of control limits is in the form of
probability control limits, representing the equivalent
substitute of three-sigma limits for symmetric processes
and providing an appropriate �t under non-normal
processes. Three-sigma control limits are suitable for a
normal or at least symmetric process, but it eventually
loses its e�ectiveness as the process deviates from sym-
metry, as stated by Abbasi and Miller [9]. In this paper,
the probability control limits method is considered as
an alternative way to point out the skewness-based
structure of dispersion control charts for the monitoring
process variability. Also, dispersion chart is seldom
used singly and it should be combined with the chart
for monitoring the location. The most commonly used
control chart for monitoring the location parameter is
�X chart. The next section is developed by the control

limits of �X and dispersion chart where Gini's mean
di�erence estimate is applied as dispersion measure
for the SN distribution is considered.

3. The proposed method based on Gini chart
for the SN process

3.1. �X control limits based on Gini's mean
di�erence

Assume that X is the quality characteristic of the
interest and let X1; X2; :::; Xn be a set of random
samples of size n that are identically distributed by
SN(�; �; �). Moreover, suppose the set Z1; Z2; :::; Zn is
also taken from SN(�) distribution. For the prede�ned
false alarm rate �, the control limits of �X chart, can
be obtained as follows:

Pr
� �X < LCL �X j�x = �x0 ; �

2
x = �2

x0

�
=
�
2
;

P r
� �X > UCL �X j�x = �x0 ; �

2
x = �2

x0

�
=
�
2
;

where �x0 and �2
x0

are the in-control process mean and
variance, respectively. Thereupon, considering the false
alarm rate in (2.2) equals 0.0027, and following the
Shewhart control chart limits, the control limits in (2.2)
can be rewritten as follows:

LCL �X = �x0 �AL1 �x0=
p
n;

UCL �X = �x0 +AU1 �x0=
p
n; (5)

where AL1 = 
2 � 
1�z�;n;0:00135, and AU1 =

1�z�;n;0:99865 � 
2 [22]. Note that, �z�;n;� can be
computed numerically through the distribution of �Z
in [1].

Assuming the parameters are unknown, �x0 is
usually estimated by the grand mean of the subgroup
means X. If � is unknown, it can be estimated
by [(b1=k̂3)2=3 + a2

1 � 1]�1=2 for k̂3 � 0, and by
[(�b1=k̂3)2=3 + a2

1 � 1]�1=2 for k̂3 < 0, where:

b1 = (�=4� 1)a1;

k̂3 =
1

nm� 3

mX
i=1

nX
j=1

 
Xij �X

S

!3

;

S =

vuut 1
nm� 1

mX
i=1

nX
j=1

�
Xij �X

�2
:

Li et al. [1] de�ned d2 = E (R=(�x0
1)) and then
derived the estimate of the process parameter �x0 as
�R=(
1d2). Similarly, we utilize sample Gini's mean
di�erence in (4) to estimate �x0 in this article as
d�2 = E (G=(�x0
1)). Then, the process parameter �x0

can be estimated by �G=(
1d�2), where, in which Gi is
the Gini estimator of sample i, i.e., Xi1; : : : ; Xin, in
Eq. (4), and d�2 can be computed by a Monte Carlo
simulation procedure since Gi does not have an exact
distribution when the quality variable is distributed by
SN model. Therefore, the control limits of �X chart are
obtained as in Eq. (6) if the parameters of the process
are unknown:

SN Gini �X chart :8><>: LCL �X = X �AL1 �G=(
p
n
1d�2) = X �AL2 �G;

CL = X;
UCL �X = X +AU1 �G=(

p
n
1d�2) = X +AU2 �G; (6)

where the charting constants are as AL2 =AL1 /(
p
n
1d�2)

and AU2 = AU1 =(
p
n
1d�2).

3.2. Probability control limits based on Gini's
mean di�erence

Let the sample Gini's mean di�erence of data drawn
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from SN(�; �; �) and SN(�) beG andGZ , respectively.
The probability control limits of the Gini chart under
the given � are obtained as:

Pr(G < LCLGj�x = �x0) =
�
2
;

P r(G > UCLGj�x = �x0) =
�
2
: (7)

Consequently, using the relationship G = 
1�x0GZ
based on de�nitions of G and GZ , we can obtain:

Pr
�
GZ <

LCLG

1�x0

�
=
�
2
;

P r
�
GZ <

UCLG

1�x0

�
= 1� �

2
: (8)

Therefore, setting g�;n;�=2 = LCLG=(
1�x0) and
g�;n;1��=2 = UCLG=(
1�x0), one can obtain the
probability control limits as follows:

LCLG = �x0
1g�;n;�=2;

UCLG = �x0
1g�;n;1��=2; (9)

where g�;n;� is the quantile of distribution of GZ .
Monte carlo numerical strategies should be used to
compute g�;n;� since the distribution of the statistic
Gi is not available as the quality variable followed by
the SN distribution. If � = 0:0027, then Eq. (9) can be
rewritten as:

LCLR = D�1�x0 ; UCLR = D�2�x0 ; (10)

where D�1 = 
1g�;n;0:00135 and D�2 = 
1g�;n;0:99865. In
real cases, for the unknown parameters of the process,
the probability control limits of the Gini chart can be
obtained by:

SN Gini chart :

8><>:LCLR = D�3 �G;
CLR = �G;
UCLR = D�4 �G;

(11)

where the charting constants are D�3 = D�1=(
1d�2)
and D�4 = D�2=(
1d�2). Tables 1 and 2 summarize
the numerical charting constants under knowing and
unknowing the process parameters in order to facilitate
the implementation. We consider di�erent values of �

Table 1. Charting constants for the known process parameters.

n = 2 n = 3 n = 4 n = 5

� AL1 AU1 D�1 D�2 AL1 AU1 D�1 D�2 AL1 AU1 D�1 D�2 AL1 AU1 D�1 D�2
0.0 2.12 2.12 0.00 4.53 1.73 1.73 0.05 3.28 1.50 1.50 0.11 2.82 1.34 1.34 0.20 2.55

0.5 2.11 2.14 0.00 4.24 1.72 1.74 0.05 3.09 1.49 1.51 0.12 2.66 1.34 1.34 0.19 2.39

1.0 2.04 2.22 0.00 3.72 1.68 1.80 0.04 2.72 1.46 1.55 0.10 2.34 1.31 1.37 0.16 2.13

1.5 1.94 2.32 0.00 3.50 1.61 1.87 0.03 2.50 1.41 1.60 0.09 2.19 1.27 1.42 0.14 1.95

2.0 1.85 2.41 0.00 3.27 1.54 1.93 0.03 2.42 0.36 1.65 0.08 2.05 1.23 1.46 0.13 1.85

2.5 1.76 2.48 0.00 3.13 1.48 1.97 0.03 2.31 1.31 1.68 0.08 1.97 1.19 1.49 0.12 1.78

3.0 1.69 2.52 0.00 3.14 1.44 2.00 0.03 2.25 1.27 1.71 0.07 1.92 1.16 1.51 0.12 1.73

3.5 1.63 2.55 0.00 3.07 1.40 2.03 0.03 2.24 1.25 1.72 0.07 1.90 1.14 1.53 0.12 1.72

4.0 1.58 2.57 0.00 3.06 1.36 2.04 0.03 2.24 1.22 1.74 0.07 1.87 1.12 1.54 0.12 1.69

Table 2. Charting constants for the unknown process parameters.

n = 2 n = 3 n = 4 n = 5

� AL2 AU2 D�3 D�4 AL2 AU2 D�3 D�4 AL2 AU2 D�3 D�4 AL2 AU2 D�3 D�4
0.0 1.87 1.87 0.00 4.01 1.57 1.57 0.04 3.60 1.20 1.20 0.19 3.10 0.83 0.83 0.19 2.80

0.5 1.86 1.91 0.00 4.05 2.03 2.06 0.06 3.42 1.50 1.55 0.11 2.85 0.84 0.88 0.23 2.63

1.0 1.81 1.99 0.00 4.07 2.01 2.19 0.02 2.89 1.15 1.25 0.11 2.60 1.12 1.19 0.15 2.35

1.5 1.74 2.08 0.00 4.14 1.53 1.78 0.05 2.69 1.20 1.30 0.10 2.36 0.86 0.93 0.18 2.17

2.0 1.62 2.14 0.00 4.19 1.83 2.25 0.02 2.59 0.95 1.22 0.09 2.27 0.72 0.93 0.16 2.05

2.5 1.55 2.21 0.00 4.26 2.20 2.85 0.04 2.44 1.60 2.32 0.07 2.19 1.25 1.59 0.12 1.89

3.0 1.50 2.27 0.00 4.31 2.27 3.12 0.07 2.42 1.40 2.18 0.07 2.13 1.14 1.45 0.12 1.85

3.5 1.46 2.32 0.00 4.34 2.28 3.25 0.04 2.20 1.55 2.43 0.06 2.11 1.33 1.77 0.11 1.81

4.0 1.42 2.35 0.00 4.36 1.19 2.27 0.05 2.30 1.05 1.50 0.06 2.17 1.30 1.90 0.10 1.80
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ranging from 0 to 4 to achieve di�erent levels of the
skewness coe�cient, namely 0.00, 0.02, 0.14, 0.30, 0.45,
0.58, 0.67, 0.73, and 0.78. Moreover, only four sample
sizes n = 2; 3; 4; 5 are considered since in most practical
cases, larger sample sizes are often not available owing
to sampling cost. We note that the values in Table 1
and 2 can be used to obtain the charting constants for
negative values of �. Speci�cally, for � < 0 in Table 1,
D�1 and D�2 are equal to those for � > 0 while (AL1 ; AU1 )
is equal to (AU1 ; AL1 ) for � > 0 (for example, if n = 4
and � = 0:5, then (AL2 ; AU2 ) = (1:49; 1:51) and; if n = 4
and � = �0:5, then (AL2 ; AU2 ) = (1:51; 1:49).

4. Simulation studies

In this section, three simulations as Scenarios I, II,
and III are conducted to check the well-behaving of
our proposed methodology implemented in statistical
software R code. The used nomenclatures for mean
and variability control charts are as follows:

Mean control charts
SNG �X SN Gini �X control chart proposed in

Section 3,

SNL �X SN �X control chart proposed by Li et
al. [1],

SNT �X SN �X control chart proposed by Tsai
[22],

CS �X Conventional Shewhart �X control
chart,

SC �X Skewness correction �X control chart
proposed by Chan and Cui [6],

WSD �X Weighted standard deviation �X control
chart proposed by Chang and Bai [5].

Variability control charts
SNG SN Gini control chart proposed in

Section 3,
SNR SN R control chart proposed by Li et

al. [1],
CSR Conventional Shewhart R control

chart,
SCR Skewness correction R control chart

proposed by Chan and Cui [6],
WSDR Weighted standard deviation R control

chart proposed by Chang and Bai [5].

The adopted scenarios are as follows:

Scenario I: Under the assumption of unknown pro-
cess parameters, it computes and compares the false
alarm rates of mean and variability control charts;

Scenario II: It evaluates the performance of the
proposed control charts when the samples are taken
from three commonly used skewed models: the Weibull,
generalized SN, and skew-t distributions;

Scenario III: It provides a comparison between the
mean and variability control charts using power curves.

Without loss of generality, we generate the process
measurements from SN(�) and use the nominal value
� = 0:0027 to design all control charts in the simulation
study.

4.1. Scenario I: SN distribution with
unknown parameters

Process parameters are usually unknown, and it a�ects
the e�ciency in the use of control charts to detect a spe-
cial cause, since the control limits are usually calculated
based on the estimates of these parameters. In the case
of unknown process parameters, we �rst generate data
base on the following strategy. Fix n and �. Under
the value of n, generate subgroups of size m = 50 from
SN(�) to calculate control limits. Then, evaluate the
process mean and variability outside these limits and
by replication of 5000 times, the false alarm rates, the
percentages of process mean and variability outside the
control limits are estimated. Table 3 shows the false
alarm rates of mean and variability control charts. In
Table 3, it is clear that all false alarm rates of �X control
chart, except CS �X , are close to the nominal value. One
would expect this fact since all of the control charts
used were designed by using the nominal value. For
the normal case (�= 0), the false alarm rates of all
�X control charts are similar. However, by increasing
�, it can be seen that SNG �X has the closest values
to the nominal value in almost all combinations of n
and �. This shows that SNG �X performs better than
CS �X ;WSD �X ; SC �X , SNT �X , and SNL �X . Comparing
the false alarm rates of SNG; CSR;WSDR, SCR and
SNR, results depicted in Table 3 show the false alarm
rates of WSDR; SCR; SNR, and SNG are also close to
nominal value, and again, with false alarm rates closest
to nominal value 0.0027, SNG outperforms the other
competitors.

4.2. Scenario II: Weibull, generalized SN, and
skew-t distributions

The second simulation is carried out to check perfor-
mance of the proposed control charts when the process
measurements are generated from the Weibull, skew-
t, and generalized SN [26] distributions. In order to
achieve four degrees of skewness, k3 = 0:0; 0:3; 0:6; 0:9,
the presumed parameter values of the Weibull dis-
tribution are 3.6018, 2.6375, 2.0475, and 1.6625 for
the shape parameter, respectively, and 1 for the scale
one. The shape parameter of skew-t distribution is
changed among the values of 0, 0.1145, 0.2368, and
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Table 3. False alarm rates of mean and variability control charts in Scenario I.

Mean Variability

n � SNG �X SNL �X SNT �X CS �X SC �X WSD �X SNG �X SNR CSR SCR WSDR

2 0 0.00450 0.00450 0.00512 0.00439 0.00450 0.00502 0.00340 0.00340 0.00433 0.00393 0.00350

1 0.00473 0.00473 0.00545 0.00492 0.00491 0.00533 0.00372 0.00372 0.00462 0.00443 0.00587

2 0.00462 0.00462 0.00601 0.00643 0.00533 0.00560 0.00460 0.00460 0.00590 0.00460 0.00466

4 0.00694 0.00694 0.00893 0.00983 0.00702 0.00684 0.00531 0.00531 0.00738 0.00686 0.00829

3 0 0.00383 0.00368 0.00402 0.00360 0.00384 0.00396 0.00315 0.00299 0.00388 0.00365 0.00380

1 0.00312 0.00366 0.00405 0.00398 0.00388 0.00427 0.00312 0.00357 0.00410 0.00401 0.00373

2 0.00370 0.00379 0.00391 0.00482 0.00402 0.00420 0.00383 0.00436 0.00525 0.00498 0.00511

4 0.00334 0.00383 0.00367 0.00670 0.00383 0.00353 0.00455 0.00539 0.00707 0.00680 0.00464

4 0 0.00320 0.00341 0.00365 0.00341 0.00350 0.00373 0.00279 0.00288 0.00343 0.00320 0.00305

1 0.00369 0.00360 0.00374 0.00378 0.00383 0.00401 0.00310 0.00352 0.00440 0.00391 0.00356

2 0.00339 0.00374 0.00368 0.00446 0.00380 0.00394 0.00354 0.00412 0.00601 0.00493 0.00393

4 0.00298 0.00342 0.00371 0.00519 0.00421 0.00298 0.00417 0.00480 0.00724 0.00576 0.00514

5 0 0.00320 0.00330 0.00342 0.00334 0.00338 0.00348 0.00266 0.00284 0.00327 0.00304 0.00292

1 0.00353 0.00338 0.00347 0.00350 0.00350 0.00372 0.00299 0.00321 0.00410 0.00342 0.00348

2 0.00319 0.00353 0.00359 0.00442 0.00380 0.00390 0.00317 0.00368 0.00477 0.00401 0.00367

4 0.00308 0.00369 0.00382 0.00521 0.00422 0.00392 0.00385 0.00510 0.00696 0.00567 0.00530

0.3792 relative to k3, while the location, scale, and
the degrees of freedom parameters are 0, 1, and 10,
respectively. For the generalized SN distribution, the
shape parameter is changed among the values of 0.0,
0.1564, 0.2893, and 0.4212 and the location, scale,
and the other shape parameters are 0, 1, and 2 to
achieve k3. In each replication of 5000 trials, samples
of size n are generated from all three distributions.
Then, the false alarm rates are estimated based on the
percentages of process mean and variability according
to Gini and R outside the SN Gini and Li's control
limits, respectively. Numerical results reported in
Table 4 show that the false alarm rates for both mean
and variability control charts are far from the nominal
value for the Weibull, generalized SN, or skew-t dis-
tributions. These results also show that the proposed
control charts will have in
ated false alarm rates if the
skew-normality assumption is violated. Therefore, we
would suggest that con�rmation of the skew-normality
assumption via statistical test is required to construct
SN control charts. By comparing the SN Gini control
charts with the SN Li's control charts, it can be seen
that the false alarm rates of SN Gini control charts

are closer to the nominal value of 0.0027 for most of
the combinations of parameters with di�erent sample
sizes, re
ecting the outperformance of SN Gini control
charts versus SN Li's control charts.

4.3. Scenario III: Power curves of SN
distribution

For the comparison purpose, we �rst exploited the
power curves as a performance measure in this section.
We compare our proposed SNG �X chart with those pre-
viously introduced by [1] and [22] (SNL �X and SNT �X
charts), respectively based on R and S. By considering
parameters of SN distribution (�; �; �) = (0; 1; 1),
location parameter is shifted to �+ ��. Figure 1 shows
the power curves of SNG �X , SNL �X and SNT �X charts
as a function of shifted location for some values of n and
for � = 0:0027. It can be seen that the SNG �X chart
can provide a more powerful platform than SNT �X
chart and a good alternate to SNL �X chart in terms
of discriminatory power for detecting shifts in location
parameter.

Similarly, by shifting the scale parameter of SN
distribution to ��, the power curves of SNG chart and
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Table 4. False alarm rates of mean and variability control charts in Scenario II.

Mean Variability
Weibull Generalized SN Skew-t Weibull Generalized SN Skew-t

n k3 SNG �X SNL �X SNG �X SNL �X SNG �X SNL �X SNG SNR SNG SNR SNG SNR
2 0.0 0.00386 0.00386 0.00494 0.00494 0.01063 0.01063 0.16181 0.16181 0.18340 0.18340 0.17554 0.17554

0.3 0.00328 0.00328 0.00593 0.00593 0.01458 0.01458 0.17488 0.17488 0.18967 0.18967 0.19648 0.19648
0.6 0.00441 0.00441 0.00702 0.00702 0.01379 0.01379 0.19922 0.19922 0.19283 0.19283 0.18980 0.18980
0.9 0.00643 0.00643 0.01031 0.01031 0.07899 0.07899 0.20334 0.20334 0.20307 0.20307 0.17563 0.17563

3 0.0 0.00285 0.00313 0.00413 0.00430 0.00675 0.00745 0.02421 0.03070 0.04119 0.04503 0.04713 0.07032
0.3 0.00272 0.00308 0.00490 0.00539 0.00688 0.00757 0.02296 0.03067 0.04059 0.04642 0.05392 0.09175
0.6 0.00270 0.00304 0.00607 0.00648 0.00836 0.00936 0.02993 0.03577 0.05077 0.05210 0.02596 0.04882
0.9 0.00392 0.00446 0.00777 0.00809 0.00710 0.00790 0.03917 0.04450 0.06117 0.06368 0.02990 0.04567

4 0.0 0.00278 0.00299 0.00382 0.00416 0.00485 0.00617 0.00490 0.00737 0.01508 0.01669 0.01201 0.01772
0.3 0.00270 0.00270 0.00425 0.00498 0.00440 0.00612 0.00348 0.00632 0.01682 0.01721 0.01370 0.01831
0.6 0.00272 0.00288 0.00488 0.00527 0.00522 0.00634 0.00566 0.00843 0.01820 0.01892 0.01496 0.01992
0.9 0.00315 0.00370 0.00572 0.00657 0.00543 0.00701 0.00685 0.01239 0.02185 0.02310 0.00967 0.01635

5 0.0 0.00269 0.00295 0.00299 0.00337 0.00319 0.00531 0.00129 0.00183 0.00309 0.00327 0.00807 0.01159
0.3 0.00266 0.00280 0.00312 0.00369 0.00371 0.00549 0.00159 0.00197 0.00346 0.00360 0.00765 0.01131
0.6 0.00265 0.00291 0.00354 0.00412 0.00295 0.00501 0.00260 0.00325 0.00423 0.00465 0.00342 0.00502
0.9 0.00307 0.00357 0.00369 0.00455 0.00451 0.00657 0.00309 0.00451 0.00402 0.00456 0.00483 0.00782

Figure 1. Power curves of SNG �X , SNL �X , and SNT �X charts in Scenario III.

SNR chart are drawn in Figure 2. Although the power
curves of both charts coincide for n = 2, it is clear
that for n > 2 the power curves of SNG chart are
above those of SNR chart for given shifts, which shows
a better performance for our proposed SNG chart.

5. A real data example

This section demonstrates the usefulness of this
methodology by performing a Principal Components
Analysis (PCA) using the data for m = 4 variables
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Figure 2. Power curves of SNR and SNG charts in Scenario III.

Table 5. Standard chemical process data.

(X1; X2; X3) (X1; X2; X3) (X1; X2; X3)

{0.224 {0.464 {0.662 {0.082 {0.203 0.682 {0.436 0.342 {0.174

0.455 0.715 1.229 0.437 0.237 {0.377 0.669 {0.002 0.230

{0.186 {0.480 {0.907 0.672 0.384 0.903 {0.121 {0.812 {1.279

{0.683 0.093 {0.436 0.063 0.193 {0.028 {1.029 0.503 0.728

{0.080 {0.238 {0.218 0.943 0.272 0.831 0.147 0.655 {0.543

0.217 {0.260 {0.005 {0.611 {0.048 {0.428 0.473 0.066 0.890

{1.130 {1.214 {0.064 1.379 2.443 2.350 0.671 0.534 1.120

1.467 0.945 0.402 1.077 0.949 {0.085 2.126 3.964 3.775

2.237 0.959 0.175 0.362 0.344 0.375 2.119 1.569 1.031

1.147 1.003 1.417 0.667 0.525 1.676 1.944 0.935 {0.130

x1; x2; x3, and x4 in [27] (Table 11.6, page 535), which
are process variables from a chemical process. For
simplicity of illustration, we focus solely on x1, x2,
x3 and the standard observations of this data are
given in Table 5. Looking at the histogram plot
in Figure 3, the skewness of the data is evident.
We also apply Shapiro-Wilk goodness-of-�t test to
assess the normality of the data. This test results
in a p-value of 0.04028, which strongly rejects the
normality assumption. Moreover, the goodness-of-�t

test for SN distribution, with the \GOFSN" packages
in statistical software R (crun.um.ac.ir), is conducted
and it con�rms a skew normally distribution of the
data with p-value > 0:1. By �tting the normal and
SN distributions to the data and �nding the maxi-
mum likelihood parameter estimates, the Kolmogorov-
Smirnov (KS) test [28] associated with the PP -plots of
the �tted models is done (Table 6). From the histogram
overlaid with the �tted curves of the normal and SN
distributions in Figure 3, we can detect that the SN
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Figure 3. Histogram and PP-plot of standard chemical process data.

Figure 4. Control chart of standard chemical process data.

Table 6. �tted parameter based on MLE method

Normal SN
Parameter Estimate SE Estimate SE

� 0.452 0.044 {0.609 0.029
� 0.961 0.243 1.431 0.197
� { { 2.991 0.793

`(�) -131.22 {117.79
AIC 266.44 241.59
BIC 271.43 249.09
KS test 0.722 0.142
P -value 0.0003 0.3521

distribution o�ers a better �t than the normal one to
this dataset. The associated p-values of the KS test
(0.0003 for the normal distribution and 0.3521 for the
SN distribution) and the PP -plots also con�rm the SN
performance.

We establish SNL �X , SNG �X , SNR, and SNG
control charts for the SN distribution. We found that
X = 0:456, �R = 0:90, �G = 1:21, and �̂ = 2:91.
Figure 4 (left) depicts graphical plots for SNL �X and
SNG �X control charts and it can be observed that all
points fall within the two considered control limits
based on SNG �X control chart. Figure 4 (center and
right) also depicts graphical plots of SNR and SNG for
both methods by Li et al. [1] and Gini method, with
the SN distribution. It can be observed that all points

fall within the two considered control limits, except the
two ones that exceed the upper limit of SNR. This fact
re
ects that the proposed Gini type SN control limits
may not signal a false alarm.

6. Conclusions

This paper proposed Gini control charts to monitor
the process mean and variability where the sample was
generated from the Skew-Normal (SN) distribution.
Some formulae and charting constants aiming to aid
and facilitate practical implementation were derived.
Numerical results based on the three simulation sce-
narios and also a real data example showed that
the proposed Gini charts could provide considerable
improvement over the available methods, especially
for highly skewed data. Moreover, it was found that
the proposed Gini chart for SN distributed data was
superior to control charts based on S and R charts
presented by [22] and [1], respectively, in a sense that
the discriminatory power of Gini chart was higher than
both of them.

Our current approach can be extended to de-
veloping the exponentially weighted moving average
and cumulative sum control charts for skew normally
distributed data. There is a number of avenues for
future research. An extension to control chart based
on SN distribution appears to be suitable for such
situations. Also, another extension is to consider
multivariate SN distributions introduced by [23].
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