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Abstract. This paper discusses unsteady/steady radiating magnetohydrodynamic
(MHD) nanouid ow over a slippery stretching sheet. Introducing similarity variables
reduced the Partial Di�erential Equations (PDEs) to a new set of PDEs in which the
solution was a function of two independent variables. For time integration, �rst-order
explicit Euler method was performed and spatial derivatives were approximated by the
�nite di�erences. The steady ow solution was computed by the built-in bvp4c solver in
MATLAB. The ow regime was controlled by a number of thermophysical parameters,
namely thermal Grashof number (Gr), Lewis number (Le), Eckert number (Ec), Brownian
motion (Nb), thermophoresis (Nt), heat source or sink (S), Prandtl number (Pr), magnetic
�eld (M), and Darcy number (Da). The �ndings were evaluated by graphs and tables
for velocity, temperature, and concentration pro�les as well as the skin friction coe�cient,
the local Nusselt number, and the local Sherwood number. The results converged in the
grid convergence test. In the unsteady ow, the temperature of the nanouid was higher
near the surface without the thermophoresis parameter (Nt) and signi�cantly decreased in
the presence of Nt. Moreover, concentration boundary layer thickness decreased with an
increase in the Darcy number (Da).
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Today, more than ever, cooling of devices is one of the
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most pressing needs in many industrial technologies
because of their ever-increasing heat generation rates at
both micro (e.g., computer chips) and macro (e.g., car
engines) levels. An abundance of cases exist in which
the operational cost of the end product and mechanical
work is highly dependent on the cooling rate of a pro-
cess. For instance, the process of metal extraction from
ores necessitates accurate calculation of heat transfer
rate [1]. Other examples of the application of heat
transfer rate can be found in electronic devices, vehicle
cooling, heat exchangers, and nuclear reactors [2].
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Thermal conductivity of uids can be increased
by adding nanoparticles 100 nm in size to the base
uid (which is usually water). A colloidal suspension
containing a mixture of nanoparticles and water is
generally identi�ed as a nanouid, a term coined by
Choi and Eastman [3]. Nanouids have gained a prime
importance in all walks of life, e.g., vehicle coolants,
brake uids, domestic refrigerators, etc. [4{8]. Some
of their usages are in electronics (heat transfer), agri-
culture (energy harvesting systems), medicine (anti-
infection therapy, hyperthermia), etc. [9{11]. A very
comprehensive review of nanouids has been provided
in [8]. Buongiorno [12] studied various slip mechanisms
between nanoparticles and the base uid. Seven
slip mechanisms, namely inertia, Brownian di�usion,
thermophoresis, di�usiophoresis, magnus e�ect, uid
drainage, and gravity, went under their investigation
and Brownian di�usion and thermophoresis were found
as the important slip mechanisms in the absence of
turbulent e�ects. They also observed enhancement in
heat transfer under convective conditions. In another
study, Das et al. [13] examined boundary layer ow
of nanouid over a stretching sheet in the presence
of thermal radiation with unsteady stream condition.
They made enquiries into the e�ects of Brownian
motion and thermophoresis. An interesting study of
time-dependent tangent hyperbolic nanouid ow over
a wedge has been presented in [14]. In this study,
the shooting technique was adopted for two types of
wedges, namely static and stretching and an enhanced
temperature pro�le was seen against di�erent physical
properties. A revised approach to the solar energy as-
pect of time-dependent magnetohydrodynamic (MHD)
cross nanouid is discussed in [15]. The problem was
treated numerically and the solution was achieved by
applying the shooting technique. It was indicated
that the magnetic parameter inuenced the wall shear
stress. For further information on this topic, the reader
is referred to [16{18].

Many researchers have recently paid attention
to the study ow and heat transfer in electrically
conducting continuous uid under the inuence of an
applied magnetic �eld considering the fact that it
provides a substantially wide range of applications to
aerodynamics and many engineering problems such as
MHD generators, MHD pumps, plasma, jet printer,
nuclear reactors, and liquid metals. Rossow [19] was
probably the �rst researcher who studied the hydro-
dynamic behavior of the boundary layer on a semi-
in�nite at plate in the presence of a uniform magnetic
�eld. Thermal radiation e�ect on MHD ow was
discussed in [20]. Also, slip MHD ow was discussed
in [21].

Makinde et al. [22] examined the variable viscosity
e�ect of nanouid on a radially stretching surface with
radiative heat. Nield and Kuznetsov [23] presented

convective boundary layer nanouid ow in a porous
medium. Hayat et al. [24] discussed the simultaneous
e�ect of internal heat generation in Je�ery uid on
a nonlinear stretching surface with variable thickness.
Analysis of unsteady ow is also important in aerody-
namics, nuclear plants, and space vehicles. Makinde et
al. [25] considered multiple factors to present a �nite
di�erence solution for unsteady ow over a slippery
stretching sheet in a porous medium. Malik et al. [26]
discussed boundary layer ow of Casson nanouid over
a vertically exponentially stretching cylinder. Jusoh et
al. [27] found a dual solution for MHD 3D nanouid
ow over a permeable stretching and shrinking sheet
surface with velocity slip and thermal radiation. Reddy
et al. [28] discussed variable uid properties of slip
ow of copper (Cu) based nanouid over a stretching
sheet with convective boundary conditions. Hakeem
et al. [29] discussed the partial slip e�ect of ow
over a porous sheet considering thermal radiation and
wall mass transfer. Cortell [30] discussed the heat
transfer ow in a porous medium with internal heat
generation and absorption. Cai et al. [31] considered
the unsteady convective ow over a vertically stretching
surface. For some more information on partial slip,
cf. [32{36].

Numerical methods have become widespread pro-
cedures to solve coupled di�erential equations. In-
stances of such methods are Finite Di�erence Method
(FDM), Finite Volume Method (FVM), Finite Ele-
ment Method (FEM), spectral methods, variational
iteration method, shooting methods, bvp4c, etc. The
variables in FDM, FVM, and FEM are de�ned on
nodes, cells, and elements, respectively. Owing to
its simplicity and easy implementation, the FDM is
preferred to FVM and FEM in solving Partial Di�er-
ential Equations (PDEs) for uid ow [37,38]. Sheik-
holeslami [39] presented the Control Volume Finite
Element Method (CVFEM) to solve nanouid ow
inside a porous medium considering Brownian motion.
Recently, Reza-E-Rabbi et al. [40] applied explicit
�nite di�erence scheme to an unsteady chemically
reacting uid ow over a stretching sheet with Brow-
nian and thermophoresis e�ects. Makinde et al. [25]
also employed the explicit FDM for an unsteady
ow. For the system of coupled Ordinary Di�eren-
tial Equations (ODEs), the superior choice among
numerical methods is the recently introduced highly
accurate collocation solver bvp4c written in MAT-
LAB [41].

The general structure of the paper is as follows.
Section 2 gives the de�nition of the physical problem in
mathematical terms. Section 3 provides discretization
of PDEs for both the spatial and temporal variables.
Section 4 presents a steady ow analysis. The �ndings
are discussed in Section 5. Conclusions are drawn in
Section 6 at the end.
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2. Mathematical formulation

We assume two-dimensional, unsteady, incompressible,
laminar, MHD boundary layer ow of an electrically
conducting nanouid over a slippery stretching sheet
submerged in a porous medium. The geometry of the
problem is shown in Figure 1, in which the x-axis is
taken along the sheet and y-axis is normal to it.

Under the above-mentioned assumptions, the gov-
erning equations consisting of continuity, momentum,
energy, and concentration are construed in the follow-
ing form using the Buongiorno model [12,25]:

@x(u) + @y(v) = 0; (1)

ut+uux+vuy=�uyy� �B
2
ou
�
� �u
K

+g�(T�T1); (2)

Tt + uTx + vTy =
1
�Cp

@y(kTy) +
�
Cp

(uy)2

+
�B2

ou2

�Cp
+

�u2

CpK
� 1
�Cp

qry +
Q(T � T1)

�Cp

+�
h
DB(CyTy) +

DT

T1
(Ty)2

i
; (3)

Ct + uCx + vCy = DB(Cyy) +
DT

T1
(Tyy); (4)

where (u, v) are the velocity components in the x and
y directions. � is the coe�cient of viscosity, � is the
density of the uid, � is electrical conductivity of the
uid, T is uid temperature, K is permeability of the
porous medium, � is the thermal expansion coe�cient,
k is thermal conductivity, Cp is the speci�c heat
capacity, qr is radiative heat ux, Q is the heat source
coe�cient, C is concentration, � = (�C)p=(�C)f with

Figure 1. Flow pattern of a slippery stretching sheet.

(�C)p and (�C)f respectively being heat capacities of
nanouid and base uid respectively, Cp is the speci�c
heat at constant pressure, DB and DT are Brownian
and thermophoretic di�usion coe�cients, T1 is the
ambient uid temperature, and C1 is the ambient uid
concentration.

2.1. Boundary conditions
The incremental boundary conditions are given as:
u(x; y; 0) = 0; v(x; y; 0) = 0; T (x; y; 0) = T1;

C(x; y; 0) = C1; (5)

u(x; 0; t) = Uw +
�
L
uy; v(x; 0; t) = 0;

T (x; 0; t) = Tw; C(x; 0; t) = Cw; (6)

u! 0; T ! T1; C ! C1 as y !1;
where Uw = ax is the stretching velocity, Tw = T1+bx
is the variable temperature of sheet with T1 being a
free stream constant, and Cw = C1+bx is the variable
concentration of nanouid on the sheet with C1 being
a constant.

2.2. Solution method
The following similarity parameters are introduced to
get the non-dimensionalized form of the momentum,
energy, and concentration equations as well as the
boundary conditions:

� =
r
a
�
y;  (�) =

p
a�xf(�); � = at;

u = ax
@f
@�
; v = �pa�f(�);

�(�) =
T � T1
Tw � T1 ; �(�) =

C � C1
Cw � C1 ;

where � is the similarity variable; � is the non-
dimensional time; and  (�), �(�), and �(�) are di-
mensionless stream, temperature, and concentration
functions, respectively. By employing the above simi-
larity variables, one can reduce Eqs. (2){(4) into the
following nonlinear di�erential equations

@2f
@�@�

� f @2f
@�2 � @3f

@�3 �
�@f
@�

�2
+
�
M +

1
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�@f
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1
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Le
@�
@�

+Le
�
�
@f
@�
�f @�

@�

�� @2�
@�2 � Nt

Nb
@2�
@�2 =0; (9)

where M , Pr, Nt, Nb, Da, Gr, Ec, S, and Le are the
magnetic parameter, Prandtl number, thermophore-
sis parameter, Brownian parameter, Darcy number,
thermal Grashof number, Eckert number, heat source,
and Lewis number, respectively. These parameters are
de�ned as [25]:

Pr =
�Cp
k
; M =

�B2

�a
; Nt =

�DT (Tw � T1)
�T1

;

Nb =
�DB(Cw � C1)

�
; Le =

�
DB

; Gr =
�gb
a2 ;

Da =
Ka
�
; Ec =

auw
bCp

; S =
Q

a�Cp
:

After transformation, the boundary conditions (5) and
(6) take the following forms:
@f
@�

(�; 0) = 0; f(�; 0) = 0; �(�; 0) = 0;

�(�; 0) = 0; (10)

@f
@�

(0; �) = 1 + �
@2f
@�2 (0; �); f(0; �) = 0;

�(0; �) = 1; �(0; �) = 1; (11)

@f
@�

(1; �) = 0; �(1; �) = 0; �(1; �) = 0: (12)

The skin friction coe�cient Cf is given by [25]:

Cf =
�w
�u2

w
; where uw = �@u

@y
: (13)

The local Nusselt number Nux is [25]:

Nux =
xqw

k(Tw � T1)
; where:

qw = �k�1 +
16��T 31

3k�k
�@f
@y
; (14)

and the local Sherwood number Shx is given by:

Shx =
xjw

k(Cw � C1)
;where jw = �D@C

@y
jy=0: (15)

After using the similarity transformations, Eqs. (13),
(14), and (15) become:p

RexCf =
@2f
@�2 (0; �);

Nuxp
Rex

= �(1 +Nr)
@�
@�

(0; �);

Shxp
Rex

= �@�
@�

(0; �):

Here, Rex = Ux=� is a local Reynolds number .

3. Unsteady ow analysis

3.1. Spatial and temporal discretization
We assume a domain [0 �1] � [0 �end] and N + 1
grid points in �-direction with equidistant grid spacing
�� = �1

N and take �end as the end time with time
step �� = �end

nend . The coordinates of the grid points
(i; n) are (�i; �n) where �i = i��; i = 0; 1; :::; N and
�n = n�t; n = 0; 1; 2; :::. The �nite di�erence stencil is
shown in Figure 2. For discretization in �-direction
we apply backward �nite di�erence approximation
to the �rst-order derivatives and central di�erence
approximations to the second-order derivative. For
time integration, we use explicit Euler method. For
convenience, in order to implement FDM in MATLAB,
we reduce the order of the momentum equation to
convert it into a second-order PDE. The order of
unsteady temperature and concentration equations is
not reduced since it is already determined in the
second order. All the �nite di�erence approximations
of all derivatives are given below. Now, we explain
the procedure for reducing the order of the unsteady
momentum equation. De�ning @f

@� = F , Eqs. (7), (8),
and (9), take the following form:

@F
@�
� f @F

@�
� @2F
@�2 + (F )2 + (M +

1
Da

)F

�Gr� = 0; (16)

Pr
@�
@�

+ Pr
�
�F � f @�

@�

�� (1 +Nr)
@2�
@�2

�EcPr
�@F
@�

�2 � EcPr
�
M +

1
Da

�
(F )2

Figure 2. Finite di�erence grid.
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�PrS��PrNb
@�
@�

@�
@�
�NtPr

�@�
@�

�2
=0; (17)

Le
@�
@�

+ Le
�
�F � f @�

@�

�� @2�
@�2 � Nt

Nb
@2�
@�2 = 0: (18)

The order of associated boundary conditions (10), (11),
and (12) is reduced as:

F (�; 0) = 0; f(�; 0) = 0; �(�; 0) = 0;

�(�; 0) = 0; (19)

F (0; �) = 1 + �
@F
@�

(0; �); f(0; �) = 0;

�(0; �) = 1; �(0; �) = 1; (20)

F (1; �) = 0; �(1; �) = 0; �(1; �) = 0: (21)

To solve the above system of equations along with
boundary conditions, we approximate the derivatives in
the PDEs by linear combinations of function values at
the grid points using the FDM. All the �nite di�erence
approximations for all orders are given by:�@F

@�

�
(i;n)

=
Fni+1 � Fni

��
;

�@2F
@�2

�
(i;n)

=
Fni+1 � 2Fni + Fni�1

(��)2 ;

�@F
@�

�
(i;n)

=
Fn+1
i � Fni

��
;

�@�
@�

�
(i;n)

=
�ni+1 � �ni

��
;

�@2�
@�2

�
(i;n)

=
�ni+1 � 2�ni + �ni�1

(��)2 ;

�@�
@�

�
(i;n)

=
�n+1
i � �ni

���@�
@�

�
(i;n)

=
�ni+1 � �ni

��
;

�@2�
@�2

�
(i;n)

=
�ni+1 � 2�ni + �ni�1

(��)2 ;

�@�
@�

�
(i;n)

=
�n+1
i � �ni

��
;

where the superscripts `n' and `n + 1' denote the
solution at the nth and (n + 1)th time levels. Also,
i, i � 1, and i + 1 represent current, previous, and

next locations of the solution. Inserting all these
approximations into Eqs. (16), (17), and (18), we get:

Fn+1
i � Fni

��
� Fni+1 � 2Fni + Fni�1

(��)2

�fni F
n
i+1 � Fni

��
+ (Fn)2

+
�
M +

1
Da

�Fni+1 � Fni
��

�Gr�ni = 0;

Pr
�n+1
i � �ni

��
+ Pr�ni F

n
i � Prfni

��ni+1 � �ni
��

�
notag

�(1 +Nr)
�ni+1 � 2�ni + �ni�1

(��)2

�EcPr
�Fni+1 � Fni

��

�2

�EcPr
�
M +

1
Da

!
(Fni )2 � PrS�ni

�PrNb
��ni+1 � �ni

��

���ni+1 � �ni
��

�
�NtPr

��ni+1 � �ni
��

�2
= 0;

Le
�n+1
i � �ni

��
+ Le

�
�ni F

n
i � fni �

n
i+1 � �ni

��

�
��ni+1 � 2�ni + �ni�1

(��)2

�Nt
Nb

�ni+1 � 2�ni + �ni�1

(��)2 = 0:

The initial and boundary conditions involved are:

F 0
i = 0; f0

i = 0; �0
i = 0; �0

i = 0;

Fn0 = 1 + �
Fn1 � Fn0

(��)
; fn0 = 0; �n0 = 1;

�n0 = 1; Fn�1 = 0; �n�1 = 0; �n�1 = 0:

The discretization of the skin friction coe�cient, the
local Nusselt number, and the local Sherwood number
for the unsteady ow is performed through:

Skin friction coe�cient

Cf =
�w
�u2

w
; where uw =

@u
@y
;
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p
RexCf =

@2f(0; �)
@�2 =

@F (0; �)
@�

;

p
RexCf =

Fn1 � Fn0
(��)

:

Local Nusselt number:

Nux =
xqw

k(Tw � T1)
; where :

qw = �k�1 +
16��T 31

3k�k
�@T
@y

;

Nuxp
Rex

= �(1 +Nr)
@�(0; �)
@�

;

Nuxp
Rex

= �(1 +Nr)
�n1 � �n0

��
:

Local Sherwood number:

Shx =
xjw

k(Cw � C1)
; where :

jw = �D@C
@y
jy=0;

Shxp
Rex

= �@�(0; �)
@�

Shxp
Rex

= ��n1 � �n0
��

:

3.1.1. Grid convergence analysis of unsteady ow
Because of the lack of data on unsteady ow for
comparison, we tried to evaluate the convergence of our
results by the grid convergence check of the underlying
FDM. In Figures 3{6, we display grid convergence for

Figure 3. Grid convergence for velocity.

Figure 4. Grid convergence for temperature gradient.

Figure 5. Grid convergence for concentration gradient.

velocity, temperature gradient, concentration gradient,
and the skin friction coe�cient. It is notable that
almost 150 nodal points are enough to get convergent
results.

4. Steady ow analysis

For the steady ow, the governing problem given in
Eqs. (16){(18) reduces into:

f
000

+ ff
00 � (f

0
)2 � �M +

1
Da

�
f
0
+ Gr� = 0; (22)

Pr[(�f
0 � f�0)� Ec(f

00
)2 � Ec

�
M +

1
Da

�
(f
0
)2

�S��Nb�0�0�Nt(�0)2]�(1+Nr)�
00

=0; (23)
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Figure 6. Grid convergence for the skin friction
coe�cient.

Le(�f
0 � f�0)� �00 � Nt

Nb
�
00

= 0; (24)

with:

f
0
(0)=1+�f

00
(0); f(0)=0; �(0)=1; �(0)=1;

(25)

f
0
(1) = 0; �(1) = 0; �(1) = 0: (26)

These equations have been solved by the built-in solver
bvp4c in MATLAB.

4.1. Numerical procedure
To implement bvp4c for computing solutions to Eqs.
(22){(26), we �rst de�ne y1 = f , y2 = f

0
, y3 = f

00
,

y4 = �, y5 = �0, y6 = �, and y7 = �0. Then the �rst-
order system is written as:

y
0
1 = y2; y

0
2 = y3;

y
0
3 = �y1y3 + y2

2 +
�
M +

1
Da

�
y2 �Gry4;

y
0
4 = y5;

y
0
5 =

Pr
1 +Nr

�
(y4y2 � y1y5)� Ecy2

3 � Ec
�
M +

1
Da

�
y2

2 � Sy4 �Nby5y7 �Nty2
5

�
;

y
0
6 = y7; y

0
7 = �

00
= Le(y6y2 � y1y7)� Nt

Nb
y
0
5: (27)

Similarly, the boundary conditions used for im-
plementation in MATLAB are:

y0(2) = 1 + �y0(3); y0(1) = 0;

y0(4) = 1; y0(6) = 1; yinf (2) = 0;

�inf (4) = 0; �inf (6) = 0: (28)

The physical parameters in this study are the skin
friction coe�cient, the local Nusselt number, and the
local Sherwood number, which can readily be obtained
from Eqs. (13), (14), and (15), respectively, i.e.:

The skin friction coe�cient:p
RexCf = �f 00(0);

The local Nusselt number:
Nuxp
Rex

= �(1 +Nr)�
0
(0);

The local Sherwood number:
Shxp
Rex

= ��0(0):

5. Results and discussion

The result in Table 1 show the excellent agreement
with the literature for the skin friction coe�cient in
steady ow. In Table 2, the results for the skin friction
coe�cient indicate that its value increases with increase
in the values of Pr and M . The local Nusselt number
surges with the values of Pr, Gr, and Da. The local
Sherwood number experiences an upward trend with
Gr, Rd, Da, Nb, Ec and Le.

Table 1. Comparing �f 00(0) with the results in the literature for steady ow analysis.

M Mabood and Das [42] Mabood and Shateyi [43] Present result (bvp4c)

0 1.1000008 1.0000084 1.0000
1 1.4142125 1.41421356 1.4142
5 2.4494897 2.44948974 2.4495
10 3.3166247 3.31662479 3.3166
50 7.1414284 7.14142843 7.1414
100 10.049875 10.0498756 10.0499
500 22.383029 22.3830293 22.3830
1000 31.638584 31.6385840 31.6386
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Table 2. Values of �f 00(0), ��0(0), and ��0(0) with di�erent values of Pr, M , Gr, �, Nr, Da, Ec, Nb, Nt, and Le.

bvp4c

Pr M Gr � Nr Da Ec Nb Nt Le �f 00(0) ��0(0) ��0(0)

0.72 0.5 0.5 0.1 0.2 0.2 0.2 0.1 0.2 1.5 1.8624 0.2488 0.6630

1 1.8658 0.2912 0.5959

2 1.8746 0.3909 0.4310

0.72 0 0.5 0.1 0.2 0.2 0.2 0.1 0.2 1.5 1.7921 0.2689 0.6642

0.5 1.8624 0.2488 0.6630

1 1.9289 0.2340 0.6621

0.72 0.5 0 0.1 0.2 0.2 0.2 0.1 0.2 1.5 2.0063 0.1526 0.5549

1 1.7252 0.2962 0.7296

2 1.4600 0.3511 0.8355

0.72 0.5 0.5 0 0.2 0.2 0.2 0.1 0.2 1.5 2.3691 0.2161 0.8459

0.3 1.3129 0.2645 0.4913

0.5 1.0167 0.2637 0.4115

0.72 0.5 0.5 0.1 0.4 0.2 0.2 0.1 0.2 1.5 1.8607 0.2263 0.6974

0.6 1.8594 0.2088 0.7236

0.8 1.8583 0.1946 0.7442

0.72 0.5 0.5 0.1 0.2 0.5 0.2 0.1 0.2 1.5 1.3564 0.4059 0.6770

1 1.1191 0.4889 0.6877

1.5 1.0264 0.5227 0.6924

0.72 0.5 0.5 0.1 0.2 0.2 0 0.1 0.2 1.5 1.8658 0.4114 0.3659

0.3 1.8607 0.1673 0.8117

0.5 1.8573 0.0039 1.1093

0.72 0.5 0.5 0.1 0.2 0.2 0.2 0.2 0.2 1.5 1.8621 0.2395 0.7858

0.5 1.8609 0.2131 0.8603

0.7 1.8602 0.1969 0.8749

0.72 0.5 0.5 0.1 0.2 0.2 0.2 0.1 0.1 1.5 1.8627 0.2532 0.7738

0.2 1.8624 0.2488 0.6630

0.4 1.8620 0.2405 0.4601

0.72 0.5 0.5 0.1 0.2 0.2 0.2 0.2 0.2 0.7 1.8626 0.2536 0.2017

1 1.8625 0.2510 0.3944

1.5 1.8624 0.2488 0.6630

In Figures 7 and 8 an upsurge tendency is
observed in the velocity pro�le with the un-steady
parameter � under the inuence of thermophoresis and
magnetic parameters.

Figures 9 and 10 also illustrate the e�ects of
thermophoresis and magnetic parameters with rising
value of the unsteady parameter � for the temperature
pro�le. In the absence of Nt, the temperature is

higher and thermal boundary layer thickness increases.
When Nt = 2, the temperature is reduced signi�cantly,
as indicated in Figure 9, due to the migration of
molecules. Figure 10 demonstrates an increase in the
temperature near the boundary for M = 0 and M = 1.
When the magnetic parameter is non-zero, velocity is
reduced and hence, the temperature rises in the uid
ow.
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Figure 7. Computational velocity pro�le against various
values of Nt.

Figure 8. Computational velocity pro�le against various
values of M .

Figure 11 illustrates the e�ect of Gr on concen-
tration pro�le with increase in Da. Gr has a huge
impact on the concentration pro�le as observed in the
comparison results for Gr = 0 and Gr = 2. We �nd that
the concentration in Figure 12 increases in the presence
and absence of M . When M = 3, the Lorenz force is
stronger, thus reducing the velocity and enlarging the
concentration.

Finally, in Figure 13, it is depicted that by
neglecting buoyancy and with stronger permeability,
Da, temperature is higher near the surface. However,
when the buoyancy e�ect is included in the system,
with Gr = 2, the temperature is lower since the
variation in permeability obstructs the heat ow.

Figure 9. Computational temperature against various
values of Nt.

Figure 10. Computational temperature against various
values of M .

6. Conclusions

This study presented a numerical solution for unsteady
and steady magnetohydrodynamic (MHD) nanouid
ow above a slippery stretching sheet immersed in a
porous medium. The key �ndings are:

� In the steady ow, the skin friction coe�cient rises
with Pr and M , while it declines with all other
parameters. The local Nusselt number experiences
an increasing trend with Pr, Gr, and Da. The local
Sherwood number rises with Gr, Rd, Da, Ec, Nb,
and Le;

� In the unsteady case, the convergence of the nu-
merical discourse was observed in the graphs and
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Figure 11. Computational concentration pro�le against
variations of di�erent parameters.

Figure 12. Computational concentration pro�le against
various values of di�erent parameters .

it was demonstrated that approximately 150 grid
points su�ced for the numerical solution;

� In the unsteady case, with an increase in nondi-
mensional time, the thermophoresis and magnetic
parameters had the same e�ect, i.e. the momentum
boundary layer thickness increase;

� For unsteady ow, the nanouid concentration pro-
�le is strongly dependent on the Grashof number
and it decreases with increasing Da;

� In the unsteady case, the required stability of
concentration pro�le is met possible by �ne tuning
of the values of the thermophoresis and Brownian
motion parameters;

� The e�ect of unsteadiness was also visible in tem-

Figure 13. Computational temperature against various
values of Gr.

perature pro�le. A signi�cant increase in thermal
boundary layer was found with Nt and M .

Nomenclature

(u; v) Velocity components
� Coe�cient of viscosity
� Density of uid
� Electrical conductivity of uid
T Fluid temperature
K Porous medium permeability
� Thermal expansion coe�cient
k Thermal conductivity
Cp Speci�c heat capacity
qr Radiative heat ux
Q Heat source coe�cient
C Concentration
� Time
(�C)p Heat capacities of nanouid
(�C)f Heat capacities of base uid
Cp Speci�c heat at constant pressure
DB Brownian coe�cient
DT Thermophoretic di�usion coe�cient
T1 Ambient uid temperature
C1 Ambient uid concentration
Pr Prandtl number
Gr Grashof number
Le Lewis number
Nt Thermophoresis number
Nb Brownian motion parameter
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� Slip parameter
S Heat source parameter
Nr Thermal radiation parameter
Ec Eckert number
Da Darcy number
M Magnetic parameter
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