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Abstract. This paper presents a new redundancy allocation problem for a system with
the k-out-of-n con�guration at the subsystems level with two active and cold standby
redundancy strategies. The failure rate of components in each subsystem depends on
the number of working components. The components are non-reparable, and the failure
rate of the component can be decreased through some preventive maintenance actions.
The model has two objective functions: maximizing the system reliability and minimizing
the system costs. The system aims to �nd the type and number of components in
each subsystem, redundancy strategy of subsystems, as well as the decreased values
of components failure rates in subsystems. Since the redundancy allocation problem
belongs to NP-hard problems, two metaheuristic algorithms including Non-dominated
Sorting Genetic Algorithm II (NSGA-II) and Non-dominated Ranked Genetic Algorithm
(NRGA) were used to solve the presented model. To tune algorithms parameters, we used
response surface methodology. Besides, these algorithms were compared using �ve di�erent
performance metrics. Finally, the hypothesis test was used to analyze the results of the
algorithms.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Currently, many studies have been conducted in the
�eld of reliability to achieve more reliable systems. The
Redundancy Allocation Problem (RAP) is the most
important in this area. RAP aims to maximize the
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system reliability by increasing redundant components
of subsystems under some constraints. This problem
was �rst presented by Fy�e et al. [1] and was solved
by dynamic programming. Chern [2] proved that RAP
belongs to the NP-hard problem when the number of
subsystems increases. Therefore, many heuristic and
meta-heuristic methods have been used to solve this
problem.

There are much real-world manufacturing and op-
erational systems that increase their reliability through
the concepts of RAP, which can be counted, including
aircraft engines, the number of pumps at a water
pumping station, and so on. Considering the nature of
these manufacturing and operating systems, many hy-
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potheses and limitations have been added to the RAP
to draw the problem closer to real-world conditions.

Therefore, researchers categorized this problem
from di�erent aspects, including categorization based
on the functional status of the components (binary or
multi-state), the type of component failure rate (con-
stant or time-dependent), components con�guration in
the system (active or standby).

Considering the importance of the system reliabil-
ity and system cost, in many studies, both objectives
are considered as objective functions, and this problem
is transformed into a two-objective problem (and even
more than two).

In this paper, we investigate a Multi-Objective
RAP (MORAP) whose failure rates depend on the
number of working elements. The subsystems are k-
out-of-n, and the failure rate of components can be
reduced with spending money. The objective functions
of the model are maximizing system reliability and
minimizing system weight. The type of each subsystem
component and subsystem redundancy strategies are
the system variables. Since the model is NP-hard,
we used Non-dominated Sorting Genetic Algorithm
II (NSGA-II) and Non-dominated Ranked Genetic
Algorithm (NRGA) for solving this model.

This paper is organized as follows: In Section 2,
we present a literature review to con�rm that there
exist no studies that exactly meet these research con-
ditions. In Section 3, we discussed the mathematical
model and system assumptions. In Section 4, the
NSGA-II and NRGA algorithms are presented. In
Section 5, a numerical example is presented to compare
the algorithms results. Section 6 is the managerial
insights, and the �nal section deals with the conclusion
and further studies.

2. Literature review

In real-world problems, many parameters a�ect the
system reliability. One of the most important factors
is the failure rate of the components. This parameter
in RAP studies has two categories: Constant Failure
Rate (CFR) and time-dependent failure rate.

Regarding CFR models, Misra and Sharma [3]
presented a RAP model with the choice of allocating
identical components to each subsystem and active
redundancy strategy, then solved the presented model
with zero-one programming. Ida [4] used a genetic
algorithm to solve RAP with multi-failure components.
Coit and Smith [5] presented a RAP model with the
choice of allocating non-identical elements to each sub-
system and solved the presented model using dynamic
programming, integer programming, mixed non-linear
integer programming, and compared the results with
those of genetic algorithm. Coit and Liu [6] were
the �rst who worked on a system with k-out-of-n

sub-systems. They prede�ned active or cold standby
redundancy strategies for each subsystem and solved
the problem using integer programming. Hsieh and
You [7] presented a new two-stage method based on
the immune algorithm to solve the RAP under non-
linear weight, volume, and cost constraints. Hsieh and
Yeh [8] used penalty-guided bees search to solve RAP.

All presented studies have been conducted on
single-objective models. Busacca et al. [9] presented
a two-objective model. The model objectives were
maximizing the system reliability and net pro�t and
used a multi-objective genetic algorithm to solve the
problem. Coit and Jin [10] worked on a MORAP
with maximizing system reliability and minimizing
the variance of results. Baharanwala et al. [11] used
NSGA to solve the MORAP. The objectives of the
model are maximizing system reliability, minimizing
the system cost, weight, and variance of reliability.
In the presented model, each subsystem has a lower
and upper limit for components allocation. Salazar et
al. [12] solved three di�erent RAP models using NSGA-
II. The objective functions of the models are maxi-
mizing system reliability and minimizing the system
cost. Kulturel-Konak [13] worked on a MORAP model
using the Tabu search algorithm. Taboada et al. [14]
presented two methods for decreasing the size of Pareto
solutions and used the presented method for solving
MORAP. Taboada and Coit [15] presented an MOEA
evolutionary algorithm to solve the MORAP with a
new crossover operator that increased the variations of
the solutions. Liang and Lo [16] presented a variable
neighborhood search for solving MORAP and solved
three di�erent models and compared the results with
NSGA-II results. Soylu and Ulusoy [17] worked on
MORAP and contributed Pareto solutions to small-
and large-scale problems. Then they classi�ed the
solutions using the UTADIS method.

Concerning time-dependent failure rate models,
Coit [18] presented a new RAP with a switching
system. Also, he used the K-Erlang distribution
function for components and solved the problem using
dynamic programming. Later on, Coit [19] considered
two di�erent active and cold standby redundancy
strategies for each subsystem. Tavakkoli-Moghaddam
et al. [20], Safari and Tavakkoli-Moghaddam [21] solved
that problem using a genetic algorithm in 2008 and a
memetic algorithm in 2010. Amari [22] presented an
enumeration method for evaluating the reliability of k-
out-of-n systems with a cold standby redundancy strat-
egy. Dhingra [23] used mixed goal programming and
goal attainment to produce Pareto optimal solutions
in a fourth-level system to maximizing reliability and
minimizing system costs and weight. Ghafarian Salehi
Nezhad et al. [24] presented a four-phase algorithm
to improve reliability in series-parallel systems with
redundancy allocation. They combined an Ant Colony
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Optimization (ACO) algorithm as a meta-heuristic
phase, and three other heuristics to develop a solving
methodology for RAP. Azaron et al. [25] used the short-
est path method in stochastic graphs to evaluate the
reliability of a cold standby system with non-identical
elements. Azaron et al. [26] salved a multi-state cold
standby RAP and non-repairable components with the
GADSCRRSU method. Ebrahim Nezhad et al. [27]
presented a new method for MORAP with the choice of
allocating identical elements and prede�ned active and
cold standby redundancy strategies with maximizing
reliability and net pro�t objective functions. Cham-
bari et al. [28] used multi-objective particle swarm
optimization and NSGA-II for a MORAP with the
choice of selecting the redundancy strategy of each
subsystem. Azimi et al. [29] Solved a RAP with k-
out-of-n con�guration and non-exponential repairable
components. They used optimization via simulation
technique to solve the presented RAP. Pourkarim
Guilani et al. [30] worked on a bi-objective reliability
model with three-state components. They used multi-
objective Strength Pareto Evolutionary Algorithm II
(SPEA-II) and NSGA-II to solve the presented model.

In all mentioned research studies, the failure rate
of working elements is �xed. For example, for a system
with one working component, the failure rate of this
component is equal to the failure rates of components
in a system with 10 working components. Shari� et
al. [31] presented a formula for evaluating the reliability
of a k-out-of-n system when the components failure
rates depend on the number of working elements. In
the presented k-out-of-n system, when a component
failed, the failure rates of the remaining components
increases.

Table 1 contains several recent studies on the
reliability �eld, along with a summary of the model
behaviors.

3. Mathematical model

In this paper, the system has s k-out-of-n sub-systems,
and its objectives are maximizing system reliability and
minimizing system weight under two linear constraints.

3.1. Model assumptions
The main assumptions of the current paper are as
follows:

� The system has s subsystems
� Each subsystem is k-out-of-n
� Subsystem components are identical
� Components are binary states
� The probability of working switching system for cold

standby subsystems is equal to p
� The failure rate of working components depends on

the number of working components

� The components are non-repairable, and
� The system parameters are constant

The notations which are used in this paper are as
follows:
s Number of subsystems
i Subsystem index
ki Minimum necessary components in ith

subsystem
ni Number of components in ith

subsystem
n The set of ni (n1; :::; ns)
nmax;i The upper limit of ni (ni � nmax;i; i =

1; :::; s)
mi Number of available component types

in ith subsystem (i = 1; :::; s)
zi Component type index in ith

subsystem zi 2 (1; :::;mi)
z Set of zi 2 (1; :::;mi)
t Mission time
�iziki The failure rate of type zi component

in ith subsystem when the subsystem
working with k components

�0iziki The reduced failure rate of type zi
component in ith subsystem when the
subsystem working with k components

wizi Weight of component, type zi in ith
subsystem

cizi Cost of component, type zi in ith
subsystem

c0izi Cost of reducing the failure rate of each
component, type zi in ith subsystem

�izi Cost parameter of internal relation for
component, type zi in ith subsystem

�izi Reducing factor of failure rate for type
zi component in ith subsystem

W Total acceptable weight of the system
A Index of subsystems with active

redundancy strategy
S Index of subsystems with cold standby

redundancy strategy
Rl1 Reliability of the subsystem with active

redundancy strategy
Rl2 Reliability of the subsystem with cold

standby redundancy strategy
Rl System reliability
P Probability of working the switch in

switching time

3.2. Mathematical model
In the presented mathematical model, the reliability
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and cost of the system are designed to be optimized
simultaneously. One of the most important system
constraints in the RAPs is the system weight con-
straint. This constraint is considered in the proposed
mathematical model. Another considered constraint is
the upper bound for reducing components failure rates.
In light of these explanations, the decision variables of
this problem are the number of components in each
subsystem and reducing the factor of failure rate for
all of the components in each subsystem.

maxRl (t) =

(Y
i2A

Rl1 (t)

)
�
(Y
i2S

Rl2 (t)

)
; (1)

minC =
sX
i=1

�
cizi fni + f (�izi)g+ c0izif (�i)

	
; (2)

s.t.:
sX
i=1

wizini �W; (3)

0 � �i � ai; (4)

ni 2 (ki; 2; :::; nmax); i = (1; 2; :::; s); (5)

zi 2 (1; 2; :::;mi); i = (1; 2; :::; s): (6)

In this model, Eq. (1) is the �rst objective
function, i.e., maximizing the system reliability. Eq. (2)
is the second objective function, i.e., minimizing the
system cost. We consider that the system cost contains
the cost of redundant components, the cost of internal
relation [62], and the cost of reducing the components
failure rates. In this paper, f(�i) and f(�izi) are
de�ned as follows:

f (�i) = e�i�izi ; f(�izi) = e�izini : (7)

Eq. (3) is the constraint of system weight. Eq. (4)
is the upper and lower limits of reducing components
failure rate and Eqs. (5) and (6) de�ne the maximum
number and type of components in each subsystem,
respectively. The �rst objective function is divided

into two parts. The �rst part is the reliability of the
subsystems with an active redundancy strategy, and
the second part is the reliability of the subsystems with
a cold standby redundancy strategy.

The reliability of a system with n identical compo-
nent and active redundancy strategy when the failure
rate of the component is related to the number of the
working component can be calculated as follows [31]:

R(t) =

0@ nY
j=k

�j

1A
�

nX
i=k

�
n !

i(k � 1)!

0B@ nY
�=k
� 6=i

1
� � �� � i� �i

1CA
�e�i��i�t

�i

�
: (8)

In Eq. (7), �i is the failure rate of components
when the system is working with i components. In
a real situation, when a component fails, the load
on other working components increases. Eq. (9)
makes a relation between the failure rates of working
components [31]:

�k =
k � 
 (k � 1)

k
�1: (9)

In Eq. (9), 0 � 
 � 1 can tune the relations
between failure rates of the component. When 
 = 0
the failure rate of working components is independent
of the number of working components and when 
 = 1
the failure rate of working components is �k = �1=k.
For the presented model, Eq. (9) is transformed into
Eq. (10):

�iziki =
ki � 
 (ki � 1)

ki
�izi1: (10)

We combined Eqs. (8) and (10), so, the reliability
of the systems with active redundancy strategy, and the
failure rate depends on the number of working elements
and can be calculated in Eq. (11) as shown in Box I.

Rl1 (t) =
niX
i=ki

Pi (t) =

0@ niY
j=ki

j � 
 (j � 1)
j

�izi1

1A
�

niX
i=ki

2664 ni !
i (ki � 1) !

0BB@ niY
!=ki
! 6=i

1
ff! � 
 (! � 1)g � fi� 
 (i� 1)gg�izi1

1CCA� e�fi�
(i�1)g�izi1t
fi� 
 (i� 1)g�izi1

3775: (11)

Box I
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The reliability formula for a cold standby sub-
system is presented in Eq. (12); in these subsystems,
the switch detects the failures of a working component
and changes the failed component with a new one.
The switching system is a discrete detection switching
and may work in each detection by the probability p
and maybe failed in each detection by the probability
(1� p).

Rl2 (t) =
ni�ki�1X
j = 0

(
(1� p) pj

jX
m=0

e�ki�iziki t: (ki�izikit)m
m !

)
+pni�ki

ni�kiX
m=0

e�ki�iziki t: (ki�izikit)m
m !

: (12)

Since RAP belongs to NP-hard problems and
the �rst objective function of this problem is non-
linear, the exact solutions have less e�ciency in solving
this problem. So, we used the NSGA-II and NRGA
metaheuristic algorithms to solve the presented model.
These algorithms are presented in the next section.

4. Solving methods

We used NSGA-II and NRGA algorithms to solve
the presented problem. These two algorithms are
based on population, so the solution structures of both
algorithms are the same.

4.1. Solution encoding
Each solution is a 4 � s matrix. The ith column of
the matrix belongs to the ith subsystem. The �rst
row of the matrix represents the redundancy strategy
of the subsystem components; the second row shows
the component type of the subsystem. The third part
contains the number of components in each subsystem,
and the last row is the failure rate reduction coe�cient
of the component in the subsystem. The structure of
an encoded solution is shown in Figure 1. In this �gure,
in the �rst subsystem, 4 components of type three

exist, and the components have an active redundancy
strategy. Also, the failure rate of the components in
this subsystem was reduced by 18.66%.

4.2. NSGA-II algorithm
In 1994, Srinivas and Deb [63] used Goldberg ideas
and presented the concepts of NSGA. This algorithm
is e�cient but too complicated, unable to solve multi-
objective problems. Deb et al. [64] presented the
NSGA-II algorithm to overcome the weakness of the
NSGA algorithm regarding particle election and the
complexity. In this algorithm, the Pareto solutions are
obtained using dominant and non-dominant solutions,
and the mutation operator of the genetic algorithm is
used to �nd the new solutions.

4.3. NRGA algorithm
Improvement of operators is a way to improve the
e�ciency of multi-objective algorithms. Improve-
ment of selection operators has more e�ects on the
improvement of algorithms e�ciency and makes the
evolutionary algorithms more converging. So, Al
Jadaan et al. [65] improved an evolutionary multi-
objective algorithm based on Ranked based roulette
wheel selection and Pareto-based population ranking
and called it NRGA. In this combination, a two-layer
ranking is presented based on roulette wheel selection
that randomly selects the new generation from old
ones based on selecting the best solutions (based on
�tness and span). The NRGA can better achieve a
wide range of solutions and converge to optimal Pareto
versus other evolutionary algorithms.

In both algorithms, the solutions in each pop-
ulation rank are based on their non-dominant rate.
The solutions in the �rst category are the best non-
dominant solutions, and the solutions in the last
category are the worst non-dominant solutions. So,
the solutions in the �rst category have the maximum
�tting, and the solutions in the last category have the
minimum �tting. After ranking the categories, the
solutions in each category rank are based on the swarm.
The solution with maximum swarm has the maximum
rank, and the solution with minimum swarm has the
minimum rank in the category. NSGA-II and NRGA
di�er in selecting a strategy, ordering the population,

Figure 1. Encoded solution.
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and selecting for the next generation. NRGA used
RRWS instead of the tournament operator. In this
operator, the solutions with better �tting have a higher
chance to be selected for reproduction and creation
of the next generation. Al Jadaan et al. [65] used
a selected modi�ed algorithm based on the roulette
wheel in which each solution has the �tting value
equal to the rank of the solution in the population.
The solutions in the population rank are based on
two speci�cations. First, the rank of the containing
category of the solution, and second the rank of the
solution in the category. For selecting a solution, at
�rst, a non-dominant category must be selected. The
probability of selecting the ith non-dominant category
is calculated using Eq. (13) [65]:

pi =
2� ranki

Nf � (Nf + 1)
=

ranki
pP
i=1

ranki
; (13)

where ranki is the rank of ith category and Nf is the
number of the categories. The probability of selecting
jth solution in ith non-dominant category is calculated
using Eq. (14) [65]:

pji =
2� rankji

Nj � (Nj + 1)
=

rankji
pP
j=1

rankji
; (14)

where Nj is the number of solutions in ith category and
rankji is the rank of jth solution in ith category.

In the roulette wheel, the �rst two real intervals
[0; S1] and [0; S2] values S1 =

Pn
i=1 pi and S2 =Pm

j=1 pj are de�ned. Then the solutions in each
category occupy a certain amount of [0; S1] and [0; S2]
based on the probability of their selection. Then two
random numbers are selected between zero and one,
and the �rst random number is used to select in [0; S1]
and the second random number is used to select an
answer in [0; S2]. The 
ow chart of both algorithms is
presented in Figure 2.

4.4. Comparison metrics
Convergence with Pareto optimal solutions and pro-
viding density and diversity among the set of solutions
are two distinct and somewhat con
icting objectives
in multi-objective evolutionary algorithms, a criterion
that can be used alone and does not exist in ab-
solute terms for calculating the performance of the
algorithm [66].

For this reason, we used �ve performance metrics
to better evaluate the performance of the two presented
algorithms better.

4.4.1. Maximum spread or diversity
This index measures the length of the space cubic diam-
eter used in the �nal values of the targets for the non-
dominant solutions. Eq. (15) shows the computational

Figure 2. The results for Non-dominated Sorting Genetic
Algorithm II (NSGA-II) and Non-dominated Ranked
Genetic Algorithm (NRGA) algorithms.

procedure of this index. Therefore, the larger this
criterion, the more the archived Pareto front spreads.

D =

vuut mX
j=1

�
max
i
f ji �min

i
f ji
�2
: (15)

4.4.2. Spacing
This scale calculates the relative distance of consecutive
solutions using Eq. (16):

S =

vuut 1
jnj

nX
i=1

(di � �d)2; (16)

where �d =
Pn
i=1 di=jnj and di = min

k2nk 6=1

P2
m=1 jf im �

fkmj. This scale measures the standard deviations of
di�erent values di. When the solutions are close to the
gathering, S has smaller a value, and the performance
of the algorithm with a small spacing scale is better
than other algorithms [66].
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Table 2. Data for numerical example.

Subsystem Component type 1 Component type 2 Component type 3 Component type 4

i ki �i1 �ci1 wi1 �i2 �ci2 wi2 �i3 �ci3 wi3 �i4 �ci4 wi4
1 1 0.001054 1 3 0.000726 1 4 0.000943 2 2 0.000513 2 5

2 2 0.000513 2 8 0.000619 1 10 0.000726 1 9 {

3 1 0.001625 2 7 0.001054 3 5 0.001393 1 6 0.000834 4 4

4 2 0.001863 3 5 0.001393 4 6 0.001625 5 4 {

5 1 0.000619 2 4 0.000726 2 3 0.000513 3 5 {

6 2 0.000101 3 5 0.000202 3 4 0.000305 2 5 0.000408 2 4

7 1 0.000943 4 7 0.000834 4 8 0.000619 5 9 {

8 2 0.002107 3 4 0.001054 5 7 0.000943 6 6 {

9 3 0.000305 2 8 0.000101 3 9 0.000408 4 7 0.000943 3 8

10 3 0.001863 4 6 0.001625 4 5 0.001054 5 6 {

11 3 0.000619 3 5 0.000513 4 6 0.000408 5 6 {

12 1 0.002357 2 4 0.001985 3 5 0.001625 4 6 0.001054 5 7

13 2 0.000202 2 5 0.000101 3 5 0.000305 2 6 {

14 3 0.001054 4 6 0.000834 4 7 0.000513 5 6 0.000101 6 9

4.4.3. Number of Pareto Solution (NPS)
This scale shows the NPSs in each algorithm.

4.4.4. Mean Ideal Distance (MID)
This scale indicates the distance to the ideal Pareto
level and is calculated using Eq. (17). The lower values
of this scale indicate that the algorithm is working
properly.

MID =

nP
i=1

p
f2
i1 + f2

i2

n
; (17)

where fi1 and fi2 are the �rst and second objective
functions in ith solution.

4.4.5. Time of algorithm
This scale de�nes the time of the algorithm running to
satisfy stop criteria.

5. Numerical example

In this section, we present a numerical example to
illustrate the e�ectiveness of the presented algorithms.
The example data are obtained from the data of Coit
and Smith [5]. The example is a series-parallel system
with the k-out-of-n subsystem. Three or four di�erent
component types are available for each subsystem,
and the redundancy strategy of each subsystem is
a variable. The cost, weight, and failure rate of
components and a minimum number of components
in each subsystem are presented in Table 2. The
maximum number of each subsystem component is
six. The objectives are maximizing system reliability
and minimizing system cost underweight constraint [6].

Table 3. Range of algorithms tuned parameters.

Solving methodologies Parameter Range

NSGA-II

nPop 50{100

Pc 0.3{0.6

Pm1 0.1{0.3

Pm2 0.1{0.3

NRGA

nPop 50{100

Pc 0.3{0.6

Pm1 0.1{0.3

Pm2 0.1{0.3

Also, the switch reliability is considered as p = 0:99
[19]. The internal connection cost for all subsystems is
�izi = 0:25 [62] and 
 = 0:2, also the cost of reducing
components failure rate is 0:75Cizi .

5.1. Parameter tuning
The parameters of NRGA and NSGA-II algorithms are
tuned in this section. The Response Surface Methodol-
ogy (RSM) is used for parameter tuning. These param-
eters are population size (nPop), crossover rate (Pc),
mutation rate (Pm1), and max-min operator(Pm2).
Table 3 presents the range of these parameters and
Table 4 shows the results of parameter tuning.

5.2. Results
This section deals with comparing the results of NSGA-
II and NRGA algorithms. For this comparison, we
used a Laptop with 6G RAM and 1.73 GH CPU
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Table 4. Optimal values of parameters.

Solving methodologies Parameter Optimum value

NSGA-II

nPop 79

Pc 0.30

Pm1 0.30

Pm2 0.10

NRGA

nPop 75

Pc 0.45

Pm1 0.20

Pm2 0.20

speed, and the algorithm codded using MATLAB
2018. Each algorithm ran �ve times with the optimal
values of parameters. The iteration of each algorithm
was considered 100. The results of the algorithm
performance were presented in Figure 3. In NPS,
concerning diversity and time scales, the NSGA-II has a
better performance than those in the NRGA algorithm,
and in other scales, NRGA is better than NSGA-II.

5.2.1. Results analysis
To �nd the di�erence between the results of the
indexes, we used a one-way ANOVA test using 1�� =
0:95. Table 5 presents the results for the ANOVA test.

The ANOVA test results show that there are
meaningful di�erences between the indexes of the two
algorithms, and reject the assumption that the results
of the two algorithms are the same.

5.2.2. Sensitivity analysis
To further evaluate the model in this section, we
intend to solve 33 di�erent numerical examples for
the presented multi-objective model using NSGA-II
and NRGA algorithms. The information for these 33
numerical examples is similar to Table 2. However,
the available weight of the system varies from 159
to 191. The result of the performance indices of
each algorithm on these 33 numerical examples are
graphically illustrated in Figure 4.

6. Managerial insights

Increasing the number of parallel components in a
system can promote the reliability of this system,
but it is not su�cient. Related researches show that

Figure 3. The results for Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Non-dominated Ranked Genetic
Algorithm (NRGA) algorithms.

Table 5. Results of algorithms.

Performance metrics P -value Result Final result

MID 0.001 H0 is rejected NRGA
NPS 0.000 H0 is rejected NSGA-II

Spacing 0.039 H0 is rejected NSGA-II
Diversity 0.047 H0 is rejected NRGA

Time 0.006 H0 is rejected NSGA-II
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Figure 4. Sensitivity analysis of the proposed model by Non-dominated Sorting Genetic Algorithm II (NSGA-II) and
Non-dominated Ranked Genetic Algorithm (NRGA) algorithms.

improving the performance of each used component in
a system can be utilized as another way to improve
the reliability of the entire system. Therefore, in
this paper, both of these criteria are employed to
improve the performance of the system. It should be
considered that the required parameters for designing
the problem are formed based on the e�ects of each
approach mentioned above and their related costs. On
the other hand, if there is a budget capacity constraint,
e�ort in promoting components' availability leads to a
less redundancy assignment and vice versa.

Many realistic examples of failure rate improve-
ment are given in the literature. For instance, consider
the action of the installation of a vibration monitoring
system for the FD fan and the ID fan. Vibration
monitoring can monitor the health condition of the
fans, and preventive replacements can be performed
to prevent unexpected failures. Therefore, the failure
rates of the can be reduced, thereby reducing the failure
rate of the generating unit from the 300 MW state
to the 150 MW state. Before adopting the vibration
monitoring system, the reduction in the failure rates
of the fans, i.e., the bene�t of installing the vibration
monitoring system, can be estimated based on the
failure histories, or by the vibration monitoring system
provider based on their experiences. Other examples
are: installing monitor systems and maintenance plan-
ning.

7. Conclusion and further studies

Many parameters a�ect the reliability of the systems,
and the failure rate of components is one of the most
important parameters. In this paper, we worked on
a two-objective reliability model. In this model, the

failure rate of the components is constant and depends
on the number of working components in the system.
The components failure rates could be cost-e�ective.
The system contains s subsystems, and the subsystems
have the k-out-of-n con�guration. All subsystems may
have two active and cold standby redundancy strategies
that are system variables. Besides, the number and the
type of each subsystem component and the reduction of
the failure of the component rate are other variables of
the model. Because Redundancy Allocation Problem
(RAP) belongs to the NP-hard problem, we used
Non-dominated Sorting Genetic Algorithm II (NSGA-
II) and Non-dominated Ranked Genetic Algorithm
(NRGA) multi-objective algorithms for solving the
presented problem. Also, we used 5 di�erent indexes
for comparing the algorithm performance. The re-
sults showed that NSGA-II has better performance in
Number of Pareto Solution (NPS), diversity, and time
indexes, and for other indexes, the NRGA has better
performance.

For further studies, the components can be con-
sidered as repairable components. In addition, the
combination of di�erent components in each subsystem
can also be considered a new idea. Also, another multi-
objective metaheuristic algorithm can be considered for
solving the proposed problem.
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