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Abstract. In this paper, a mixed binary integer mathematical programming model is
developed for integration of Multimode Resource-Constrainted Project Scheduling Problem
(MRCPSP) under bonus-penalty policies and Quantity Discount Problem in Material
Ordering (QDPMO) with the objective of minimizing the total project cost. By proving a
theorem, an important property of the optimum solution of the problem is found, which
reduces the search space signi�cantly compared to previous studies. Since the Resource-
Constraint Project Scheduling Problem (RCPSP) belongs to the class of problems that are
NP-hard, four hybrid meta-heuristic algorithms called COA-GA, GWO-GA, PSO-GA, and
GA-GA are developed and tuned to solve the problem. Each of the proposed algorithms
consists of outside and inside search components, which determine the best schedule and
materials procurement plan, respectively. Finally, a set of standard PROGEN test problems
is solved using the proposed hybrid algorithms under �xed CPU time. The results show
that the COA-GA algorithm outperforms others.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Over the past decades, project scheduling has attracted
extensive attention from both scienti�c and practi-
cal perspectives. The Resource-Constrained Project
Scheduling Problem (RCPSP) introduced by Kelley in
1963 is one of the most widely studied cases of project
scheduling problems. In its standard form, RCPSP
attempts to minimize the makespan of a project by
assigning a start time to each non-preemptive activity
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with respect to the precedence relations and the scarce
renewable resource availabilities. While the makespan
minimization is one of the most popular objectives,
there are various other objectives such as project cost
minimization, earliness and tardiness minimization,
minimization of resource idle time, or maximization of
project Net Present Value (NPV).

Standard RCPSP assumes that each activity can
have only one execution way which is determined by
a �xed duration and �xed required resources. El-
maghraby [1] made changes to this assumption by
allowing several alternatives or modes in which an
activity could be executed. This extension led to
the introduction of well-known Multi-mode Resource-
Constrained Project Scheduling Problem (MRCPSP).
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Slowi�nski [2] proposed a linear programming opti-
mization method to solve the MRCPSP, and Talbot [3]
and Patterson et al. [4] designed an approach based on
an enumeration scheme. Drexl and Gruenewald [5] sug-
gested the application of an e�cient stochastic schedul-
ing method that solves MRCPSPs. Also, Speranza and
Vercellis [6] suggested using a depth-�rst branch-and-
bound algorithm; Hartmann and Briskorn [7] examined
the algorithm correctness and accuracy and found that
the algorithm might not yield an optimal solution when
involving more than one renewable resource. Sprecher
et al. [8] presented an exact algorithm based on the gen-
eralization of the branch-and-bound algorithm, which
was proposed by Demeulemeester and Herroelen [9], to
solve RCPSP. They enhanced the basic enumeration
scheme by de�ning dominance rules to increase the
performance of the algorithm.

Boctor [10] attempted to identify the most e�-
cient heuristics in a comparative study and suggested
a combination of �ve heuristics to solve MRCPSPs.
In 1996, he developed another e�cient heuristic for
solving MRCPSPs which outperformed his previously
employed �ve heuristics [11]. A year later, Kolisch and
Drexl [12] proposed a local search method consisting
of three phases: (1) A local search phase which tries
to reach an initial feasible solution; (2) A construction
phase which performs a single-neighborhood search on
the sets of feasible mode assignments; and (3) An
intensi�cation phase which tries to �nd a schedule
with an improved objective function based on the best
mode assignment. Besides, they demonstrated that
the problem of discovering a feasible schedule was NP-
complete in the presence of at least two nonrenewable
resources. Moreover, Sprecher and Drexl [13] proved
that exact optimization methods could not solve the
MRCPSP with more than 20 activities and three modes
for each activity in the logical elapsed run time.

Due to the hardness of the problem, various meta-
heuristic methods have been proposed in the litera-
ture. Bouleimen and Lecocq [14] employed a simulated
annealing algorithm to solve this problem. In 2001,
Hartmann [15] proposed a solution method based on
Genetic Algorithm (GA) to solve MRCPSP. J�ozefowska
et al. [16] developed another simulated annealing ap-
proach and compared the obtained results with those of
two previous algorithms. Alcaraz et al. [17], developed
a new GA, extending the representation, operators,
and �tness function in comparison with Hartmann's
algorithm. In their algorithm, infeasible individuals
can participate in the genetic process and transmit
their good characteristics to their o�spring. Mika et
al. [18] considered MRCPSP with positive discounted
cash 
ows and di�erent payment models and proposed
solution methods based on simulated annealing and
tabu search algorithms. Zhang et al. [19] introduced
a methodology for solving the MRCPSP based on

Particle Swarm Optimization (PSO). Jarboui et al. [20]
suggested a combinatorial PSO for solving this prob-
lem. Van Peteghem and Vanhoucke [21] presented
an Arti�cial Immune System (AIS) for the MRCPSP.
They proposed solution methods based on GA to
solve preemptive and non-preemptive MRCPSPs [22].
Barrios et al. [23] developed a two-phase GA for the
MRCPSP with maximum time lags. Khalilzadeh et
al. [24] presented a metaheuristic algorithm based on
the Tchomt�e and Gourgand's modi�ed PSO to solve
MRCPSP with the objective function of minimizing
the total costs of both renewable and nonrenewable
resource usage. They developed a prioritization rule
for activities and several improvements and local search
methods. Wang and Fang [25] designed an Estimation
of Distribution Algorithm (EDA) for solving the MR-
CPSP. Li and Zhang [26] presented another solution
method for the MRCPSP based on the Ant Colony
Optimization (ACO). Messelis and De Causmaecker
[27] constructed an automatic algorithm selection tool
for the MRCPSP. This super-algorithm chooses an al-
gorithm from a portfolio of state-of-the-art algorithms
based on the characteristics of the given instance. As
demonstrated by the results, it outperformed all of the
algorithms individually.

In all of the mentioned studies, if non-renewable
resources (material) are presented, the availability of
them throughout the project lifetime is one of the
assumptions of the model. In fact, if the material
planning is done before the scheduling of the project
activities, it may lead to increased costs such as holding
costs because of the time di�erence between the supply
and consumption dates of the materials or the cost of
delay in the projects with the bonus-penalty policies
due to the lack of the materials to start the activities
earlier. This study considers simultaneous multi-mode
resource-constrained project scheduling and Material
Ordering Problem (MOP).

Aquilano and Smith [28] assumed simultaneous
material ordering and Project Scheduling Problem
(PSP) �rstly and suggested a hybrid model consisting
of Critical Path Method (CPM) and Material Require-
ments Planning (MRP). Later, their work was im-
proved further by Smith-Daniels and Aquilano [29] who
presented a heuristic procedure for scheduling large
projects subject to the availability of renewable and
non-renewable resources. Smith-Daniels and Smith-
Daniels [30] presented a mixed integer binary program-
ming formulation of a Project Scheduling-Materials
Ordering Problem (PSMOP) to determine an optimal
schedule of both project activities and materials orders.
Their research was enhanced further upon maximizing
NPV as the objective and suggesting the late start
date schedule [31]. Erbasi and Sepil [32] considered a
heuristic method to �nd the trade-o� between material
ordering expenses and project delay.



M. Akhbari/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 427{446 429

In all the studies mentioned above, the price of
the material was considered constant, while purchasing
options might change according to order quantity in the
real world.

Dodin and Elimam [33] extended the previ-
ous works considering variable activity duration, the
bonus-penalty policies, and material ordering quantity
discounts and formulated the problem as a mixed-
integer programming model. They used the con-
ventional branch and bound algorithm to solve the
instance problems with up to thirty activities.

Sajadieh et al. [34] extended the research of
Dodin and Elimam [33] by developing a solution
approach based on GA so that the model could be
solved for large-scale PSMOPs. Tabrizi and Ghaderi
[35] proposed a mixed-integer programming model for
PSMOP with the objective of maximizing NPV. They
considered the presence of multiple suppliers o�ering
distinctive discount strategies. They developed a
GA to solve large-scale problems. Moreover, they
tested the e�ect of in
ation on the objective function
value (NPV) through sensitivity analysis. In the
subsequence study, Tabrizi and Ghaderi [36] developed
a robust multi-objective mixed-integer programming
mathematical model for PSMOP. The purpose of the
research was to minimize execution costs and maximize
the schedule robustness. They applied the Non-
dominated Sorting Genetic Algorithm II (NSGA-II)
and a modi�ed version of multi-objective di�erential
evolution algorithm as the solution methodologies.

Zoraghi et al. [37] considered the Multi-mode,
Resource-Constrained, project-Scheduling and the Ma-
terial Ordering Problem (MRCSMOP) simultaneously
to minimize the total costs of the project consisting
of material holding cost, material ordering cost, bonus
paid by the client, and penalty of possible delays.
To solve this problem, they developed three hybrid
meta-heuristic algorithms called PSO-GA, GA-GA,
and SA-GA, each of which included two parts: (1)
An outside search, for the �nding the best schedule
and mode assignment, and (2) An inside search to
determine time and quantity of orders. Shahsavar et
al. [38] considered a combination of PSP and MOP
with the quantity discount policies and constructed
three hybrid methods, namely GA-DP, GA-SA, or GA-
PSO. Zoraghi et al. [39] extended the MRCSMOP
to a problem with three objectives: minimizing the
makespan, maximizing the schedule robustness, and
minimizing the total costs including renewable and
nonrenewable resources costs. They also investigated
the total quantity discount policy. They applied four
multi-objective evolutionary algorithms, namely: (1)
NSGA-II, (2) Strength Pareto Evolutionary Algorithm
II (SPEA-II), (3) Multi-Objective Particle Swarm Op-
timization (MOPSO), and 4) Multi-Objective Evolu-
tionary Algorithm based on Decomposition (MOEAD),

in order to �nd an optimal Pareto frontier for the
developed triple objective model.

Recently, Tabrizi [40] addressed simultaneous
planning of the project schedule and material procure-
ment problems and developed a bi-objective mathe-
matical model with the goal to minimize total project
costs and the environmental impacts of its execution.
They applied NSGA-II and Multi-Objective Migrating
Bird Optimization (MOMBO) algorithms to �nd so-
lutions considering the start time of activities as well
as the time and quantity of material orders to each
supplier.

In this study, a combination of MRCPSP and
Quantity Discount Problem in Material Ordering
(QDPMO) is addressed. It is worth noting that this
study is an extension to the problems investigated by
Zoraghi et al. [37] and Shahsavar et al. [38] considering
multi-mode activities, quantity discount policies, and
bonus-penalty policy simultaneously in order to ensure
that applications are closer to the real world. Also,
according to the assumptions, by proving a theorem,
a property of the optimum solution is presented for
simplicity and higher e�ciency of problem-solving al-
gorithms.

The paper is organized in 8 sections. In Sec-
tion 2, the problem is de�ned and the assumptions are
introduced. The notations and the integrated model
entitled to MRCPSP-QDPMO are fully described and
mathematically formulated in Section 3. Section 4
demonstrates a mathematical proof to narrow the solu-
tions' search space. Section 5 provides the descriptions
of the hybrid algorithms developed for the problem.
Section 6 �rst elaborates the process of tuning the
algorithm parameters using statistical techniques and,
then, includes the computational results of algorithms.
A sensitivity analysis comes next in Section 7 and,
�nally, the concluding remarks are reported in Sec-
tion 8.

2. Problem de�nition

Consider a project consisting of non-preemptable activ-
ities each of which can be executed in multiple modes
with di�erent durations and resource requirements.
These activities need to be scheduled under precedence
rules and resource constraints. Each activity could
start if all of its predecessors have �nished, all of its
renewable resources are available, and also its required
non-renewable resources or materials are provided. The
main assumptions include the following: the initial in-
ventory of all items with the number of non-renewable
resources is set to zero; no more than one order can
be placed for a speci�c item in a period of time, and
depending on the order quantity, there is an all-unit
discount scheme to purchase some items. Also, we
de�ned the total cost of projects as costs of renewable
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and non-renewable resources plus the penalty or bonus
resulting from the project tardiness or earliness.

The solving procedure for MRCPSP-QDPMO
problem attempts to determine a schedule that satis�es
relations and resource feasibilities as well as a material
ordering plan (times and quantities of orders) with the
objective of minimizing the total cost of the project.

3. Mathematical formulation

A summary of all the notations used in the model is
given in Table 1. By using the above notations, the
proposed Mixed Integer Programming (MIP) model
can be formulated as follows:

MRCPSP-QDPMO model:

Min Z =
nX
i=1

MiX
m=1

TX
t=1

PX
p=1

rpimcrpdimximt

+
QX
q=1

TX
t=1

HqIqt +
QX
q=1

TX
t=1

Aq�qt

+
QX
q=1

TX
t=1

KX
k=1

�tqkPqkQqt +$ (FT �D) y

�# (D � FT ) (1� y) ; (1)

subject to:

MiX
m=1

TX
t=1

ximt = 1 8i 2 f0; 1; :::; ng; (2)

predij
MiX
m=1

TX
t=1

tximt �
MiX
m=1

TX
t=1

(t� djm)xjmt

8i; j 2 f0; 1; :::; ng; (3)

MiX
m=1

TX
t=1

tximt � FT 8i 2 f0; 1; :::; ng; (4)

nX
i=1

MiX
m=1

rpim
t+dim�1X
b=t

ximt � respt

8t 2 f1; : : : ; Tg ; 8p 2 f1; 2; : : : ; Pg ; (5)

Iqt = Iqt�1 +Qqt �
nX
i=1

t+dim�1X
b=1

MiX
m=1

aqimximb

8t 2 f1; : : : ; Tg ; 8q 2 f1; 2; : : : ; Qg ; (6)

Iq0 = 0 8q 2 f1; 2; : : : ; Qg ; (7)

Qqt � �qtBigM
8t 2 f1; : : : ; Tg ; 8q 2 f1; 2; : : : ; Qg ; (8)

1� (1� �qt)BigM � Qqt 8t 2 f1; : : : ; Tg ;
8q 2 f1; 2; : : : ; Qg ; (9)

�tqkOk�1q � Qqt 8t 2 f1; : : : ; Tg ;
8q 2 f1; 2; : : : ; Qg ; 8k 2 f1; : : : ;Kqg ; (10)

�tqkQqt � Okq 8t 2 f1; : : : ; Tg ;
8q 2 f1; 2; : : : ; Qg ; 8k 2 f1; : : : ;Kqg : (11)

KX
k=1

�tqk = 1 8t 2 f1; : : : ; Tg ;

8q 2 f1; 2; : : : ; Qg ; (12)

FT (1� y) � D; (13)

Dy � FT; (14)

Iqt�0 8t 2 f1; : : : ; Tg ; 8q 2 f1; 2; : : : ; Qg ; (15)

ximt 2 f0; 1g 8i 2 f0; 1; : : : ; ng ;
8t 2 f1; : : : ; Tg ; 8m 2 f1; : : : ;Mig ; (16)

y 2 f0; 1g ; (17)

�qt 2 f0; 1g 8t 2 f1; : : : ; Tg ; 8q 2 f1; 2; : : : ; Qg ;
(18)

�tqk 2 f0; 1g 8t 2 f1; : : : ; Tg ;
8q 2 f1; 2; : : : ; Qg ; 8k 2 f1; : : : ;Kqg : (19)

The objective function (1) minimizes the total
cost of the project considering the following six factors:

1. The renewable resources cost;
2. The inventory holding cost;
3. The material ordering cost;
4. Procurement cost;
5. The project tardiness penalty; and
6. The project earliness bonus.

Eq. (2) states that every activity is assigned
exactly one mode and exactly one �nishing time. Con-
straint (3) ensures the precedence relations between
activities. Inequality (4) ensures that the makespan
is the maximum of its activities' �nish times. Con-
straint (5) enforces the renewable resource constraints
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Table 1. Summary of the notations.

Indices:
i; j 2 f0; 1; : : : ; ng Index of project activities
t; b 2 f1; : : : ; Tg Index of time periods
p 2 f1; 2; : : : ; pg Index of renewable resources
q 2 f1; 2; : : : ; Qg Index of materials
m 2 f1; : : : ;Mig Index of modes of activity for the ith activity
k 2 f1; : : : ;Kqg Index of price breakpoint for material q
Parameters:
dim Duration of activity i executed in mode m

predij =

8<:1

0

If activity i is the predecessor of activity j
Otherwise

respt Number of units of renewable resource p available in period t

rpim
Number of units of renewable resource p required by activity
i executed in mode m

aqim
Number of units of non-renewable resource q required by
activity i executed in mode m

crp Cost of renewable resource p per period
Hq Inventory holding cost per unit of material q per period
Aq Ordering cost per replenishment of material q
BigM Big number

Pq =

8>>>>><>>>>>:
Pq1 1 � Qqt � Oq1
Pq2 Oq1 + 1 � Qqt � Oq2

...
...

...
PqK OqK�1 + 1 � Qqt

Purchasing cost of material q under AUD scheme

! Penalty per period of delay
# Bonus per period of early completion
D Due date of the project
T Planning horizon
� Project income at the end of the project
Binary variables:

ximt =

8<:1

0

If activity i is performed in mode m and �nished in time period t
Otherwise

y =

8<:1

0

If the project is �nished after due date
Otherwise

�qt =

8<:1

0

If material q is ordered in period t
Otherwise

�tqk =

8<:1

0

If material q is purchased at price breakpoint k in period t
Otherwise

Continuous variables:
FT Makespan
Qqt Ordered quantity of material q in period t
Iqt Inventory level of material q at the end of period t
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at time interval t. Eq. (6) determines the inventory
level of materials at the end of each period of the
project. Based on Eq. (7), no inventory level is
available in the advent of the project. Inequalities (8)
and (9) ensure that the order quantity of each material
for each period can be provided if it is ordered in
that period. Constraints (10) and (11) determine
the discount range for each material in each period.
Eq. (12) ensures that only one price is allocated to
each material in each period. Inequalities (13) and
(14) determine the earliness or tardiness of the project.
Finally, Constraints (15){(19) denote the domain of the
variables.

4. Optimum solution property

This section demonstrates an important property of
the optimum MRCPSP-QDPMO solution, which can
reduce the search space signi�cantly. The following
theorem establishes that in the optimum solution, only
the start time of activities can be used to order tasks.

Theorem 1. In the optimum MRCPSP-QDPMO
solution, the required quantity of each material in each
period is ordered at the beginning of that time period
or is merged with the last order of the material.

In other words, if the required quantity of a
material is ordered at any time following the last
replenishment time(s) and before t, the total cost of
the project increases.

Proof. Let Q be the required quantity of materials
q in the period t for the optimum MRCPSP-QDPMO
solution. Therefore, we have:

Q =
nX
i=1

MiX
m=1

aqimx�im(t+dim�1): (20)

Let PTCtb be the total cost of Q if i is ordered in period
b and consumed in period t (s � b � t).

Thus, TCtt indicates the total cost for Q which is
ordered and consumed in period t:
TCtt = Aq + PqQ; (21)

and TCte is the Total Cost of Q if it is ordered in period
e, s < e < t:

TCte = Aq + PqQ+
t�eX
j=1

HqQ s < e < t; (22)

and:
TCtt < TCte: (23)

Thus, early ordering in period e, when s < e < t, is
not suggested. However, the ordering of Q in period
and buying the material in large quantities may bring
about better prices and reduce the total cost (TCts)
in comparison with TCtt . Thus, the best ordering of

the required material quantity q in a speci�c period is
either t or s.

Remark 1. Based on Theorem 1, in the optimum
solution, only the start times of activities can be used
as the ordering points.

The application of this important property of
the optimum solution signi�cantly reduces the search
space of the algorithm in comparison with the methods
used by Tabrizi and Ghaderi [36], Zoraghi et al. [37],
Shahsavar et al. [38], and Zoraghi et al. [39], in which
all time periods are considered as the possible ordering
points.

5. Solving methodologies

This discusses four hybrid meta-heuristic algorithms
that have been proposed to solve the problem. Each
hybrid solving procedure consists of two optimization
levels: an outside search level and an inside search level
in which the MRCPSP solution and QDPMO solution
parts of the problem are generated, respectively. The
MRCPSP solution part represents the best priority of
the project activities and their assignment mode, and
the QDPMO solution part represents its best ordering
plan.

5.1. Solution representation
MRCPSP solution part is represented by a 2-
dimensional matrix, Y = [Yji]2�(n), where n is the
number of project activities. Each Yji is generated
randomly at an interval of [0,1]. The �rst row of
Y relates to the sequence in which the activities are
scheduled, and the second row contributes to the mode
of activities and each Y2i is converted to a mode based
on mi = [Y2i �Mi]+1, where mi is the execution mode
of activity i.

The activity sequence list and the activity mode
list act as the inputs of the Serial Scheduling Scheme
(SSS). In each step of the SSS, the activity with no
unscheduled predecessor and the least sequence value
is selected to be scheduled based on its mode [41].

Figure 1 represents an example of the MRCPSP
solution part of a project with �ve activities that can
be executed in one of three possible modes.

QDPMO solution part is represented by a 2-
dimensional matrix, X = [Xqj ]Q�U , where Q is the
number of project material types and U is the number
of unique activities' start time based on the schedule
generated by SSS. Each j 2 f1; 2; :::; Ug is a period of
time in a project in which at least one activity starts.

Xqj is a 0-1 integer. If it equals 1, it means the
required quantity of material q in the jth period will be
ordered in the same period. Otherwise, if Xqj equals
0, it means the required quantity of material q in the
jth period will be ordered with the last ordering of



M. Akhbari/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 427{446 433

Figure 1. An example of the Multimode Resource-Constraint Project Scheduling Problem (MRCPSP) solution part
(Zoraghi et al. (2016a) [37]).

Figure 2. The pseudo-code of the solution procedure.

material q. Xqj ; q 2 f1; 2; : : : ; Qg and j 2 f2; 3; : : : ; Ug
are generated randomly, and since there is not any
ordering point before the �rst start time, each Xq1; q 2f1; 2; : : : ; Qg equals 1.

5.2. Solution procedure
The pseudo-code of the solution procedure is shown in
Figure 2.

The characteristics of these algorithms are ex-
plained in the following subsections.

5.3. The outside search algorithms
5.3.1. Coyote Optimization Algorithm (COA)
COA proposed by Pierezan and Coalho [42] is a
recent population-based algorithm that is inspired by

the social structure and experience exchange among
coyotes in nature.

In the COA, the population of coyotes is divided
into Np packs with Nc coyotes in each pack. Therefore,
the total population is N�pNc. The social conditions of
the coyotes (soc) are the solutions to the optimization
problem and its adaptation to the environment is the
cost of the objective function. Thus, each soc is the set
of decision variables as follows:

socp:tc = Y = [Yji]2�n; (24)

where t is the current iteration, c and p indicate
the related coyote and pack, respectively, and n is
the number of project activities and each Yji. i 2
f1; 2; : : : ; ng and constitute the social conditions in
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which the random variable is calculated as follows:
Yji = lbji + rji (ubji � lbji) ; (25)

where lbji and ubji are lower and upper bounds of Yji
(in this problem, lbji is 0 and ubji is 1), and rji is a
random number between [0; 1]; therefore, Yji = rji.

The adaptation of coyotes in the respective cur-
rent social conditions (fitp;tc ) is evaluated based on the
objective function (f(x)):

fitp;tc = f
�
socp;tc

�
: (26)

Initially, coyotes are randomly assigned to the packs;
however, the coyotes sometimes leave their pack and
joint another pack by chance. The coyote eviction
probability depends on the number of coyotes in the
pack and is calculated as follows:

Pe = 0:005Nc2: (27)

Based on Eq. (27), the number of coyotes per pack
is at most 14. This process helps COA to diversify
the interaction between all the coyotes and simulates a
cultural exchange in the global population.

The birth of new coyotes is written as a combi-
nation of the social conditions of parents (randomly
chosen) plus an environmental in
uence such that:

pupp;tk =

8><>:soc
p;t
r1;k; rndk < Paork = k1

socp;tr2;k; rndk � Ps + Paork = k2

Rk; otherwise
(28)

where r1 and r2 are random coyotes from the pth pack;
k1 and k2 are two random dimensions of the problem.
Ps is the scatter probability, while Pa is the association
probability. Moreover, Rk is a random number inside
the kth decision variable bound and rndk is a random
number inside [0,1]. Ps and Pa are de�ned as follows:

Ps =
1
D
; (29)

Pa =
1� Ps

2
; (30)

where D is the size of the problem which is 2n in this
study. It is worth noting that n is the number of project
activities.

Let agep;tc be the age of the cth coyote in the pth
pack at the tth instant of time. The higher the coyote's
age, the higher the mortality probability.

In order to keep the population size constant,
COA performs this procedure: if the new pup has the
worst objective value in the pack, it will not have the
chance to live. Otherwise, in the group of coyotes with
the adaption value worse than the pup, the oldest one
dies; and if there is more than one coyote with the
same highest age in this group, the coyote with the
least adaption value dies.

In this algorithm, alphap;t is the �ttest solution
in the pth pack at the tth instant of time.

Due to the evident signs of swarm intelligence in
this species, the COA assumes that the coyotes are
su�ciently organized to share the social conditions.
Thus, the COA aggregates all information concerning
the coyotes and the cultural tendency of each pack is
computed as the median social conditions of all coyotes
as follows:

cultp;ti =

8<:Op;t(Nc+1)
2 ;i

Nc is odd
Op;tNc

2 ;i
+Op;tNc

2 +1;i

2 otherwise
(31)

where Op;tj;i represents the jth rank of the ordered ith
social condition of all coyotes in the pth pack at the tth
instant of time.

In each iteration of COA, every coyote is updated
using alpha and the cultural tendency of its pack as
follows:

new � socp;tc = socp;tc + r1
�
alphap;t � socp;tcr1

�
+r2

�
cultp;t � socp;tcr2

�
; (32)

where r1 and r2 are two random numbers inside [0,1],
and cr1 and cr2 are two random coyotes in the pack.

The next population would be updated as follows:

socp;t+1
c =�

new � socp;tc f (new � socp;tc ) < f (socp;tc )
socp;tc otherwise (33)

The pseudo code of the COA algorithm is shown in
Figure 3.

5.3.2. Grey Wolf Optimizer (GWO)
GWO described by Mirjalili et al. [43] is a population-
based algorithm which is inspired by the social hier-
archy and hunting behavior of grey wolves in nature.
Social hierarchy is simulated by de�ning four types of
grey wolves such as alpha, beta, delta, and omega.
Moreover, hunting behavior is simulated by implement-
ing the three main steps of hunting, searching for prey,
and encircling and attacking prey [44].

Hierarchy of grey wolves
The leaders of wolves include a male and a female,
called alphas. They typically responsible for making
decisions about hunting, sleeping time and place, and
so on. The wolves at the second level are called beta,
which are the successor of alphas and help them to
make a decision. The lowest on the hierarchy is called
omega that plays the role of scapegoat. Omega is able
to satisfy all the other dominant wolves. The third level
on the hierarchy is called delta, which is subordinate to
alpha and beta, but they dominate the omega. Delta
should scout to protect and ensure the safety of the
whole group of grey wolves.

In the mathematical model of GWO, alpha (�)
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Figure 3. The pseudo code of the COA algorithm.

is considered as the �ttest solution. Consequently,
beta (�) and delta (�) are the second and third best
solutions, respectively. The remaining solutions are
omega (!). In the GWO algorithm, the hunting
(optimization) is guided by �, �, and �. The ! wolves
follow them.

Mathematical model of hunting behavior
Another amusing gregarious characteristic of gray
wolves is their 
ock hunting process. In their hunting
process, there are three main phases [45]: �rst, track-
ing, chasing, and approaching the prey; then, pursuing,
encircling, and harassing the prey until it stops moving
and �nally, attacking the prey.

In order to mathematically model the encircling
behavior, the following formulation is proposed:

Yk (t+ 1) = Yp (t)�A jCYp (t)� Yk (t)j ; (34)

where t is the current iteration, Yk is the kth grey wolf
position vector, and Yp is the position vector of the
prey. A and C are coe�cient vectors that are calculated
as follows:

A = 2a:r1 � a; (35)

C = 2:r2; (36)

where r1 and r2 are random vectors at [0,1]; compo-
nents of a linearly decrease from to over the course of
iterations.

In order to mathematically simulate the hunting
behavior of grey wolves to determine the location of the
optimum (prey), the �rst three best solutions obtained

(Y�, Y� , and Y�) are saved and others including omegas
should update their positions according to the positions
of the best search agents based on the following
formulas:
Y1 = Y� �A1 jC1Y� � Y j ; (37)

Y2 = Y� �A2 jC2Y� � Y j ; (38)

Y3 = Y� �A1 jC3Y� � Y j ; (39)

Y (t+ 1) =
Y1 + Y2 + Y3

3
: (40)

When the prey stops moving, the grey wolves attack it
and �nish the hunting. As mentioned earlier, the values
of the components of a are reduced linearly over the
course of iterations, and based on Eq. (35), the 
uctu-
ating range of A also decreases; therefore, approaching
the prey is mathematically modeled. When random
values of A are in the range of [�1; 1] or jAj � 1, the
next position of a search agent can be in any position
between its current position and the position of the
prey and it forces the wolves to attack the prey.

In order to mathematically model divergence, the
random values of A with jAj > 1 oblige the search
agent to diverge from the prey to �nd a better prey
hopefully. This highlights exploration and allows the
GWO algorithm to search globally.

Another component of GWO that helps explo-
ration is . This component emphasizes (when (jCj > 1)
or deemphasizes (when jCj < 1) the e�ect of prey
position in de�ning the distance in Eq. (34).

The pseudocode code of the GWO algorithm is
given in Figure 4.
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Figure 4. The pseudo of the GWO algorithm.

Figure 5. Chromosome representation of the Quantity Discount Problem Material Ordering (QDPMO) solution part X.

5.3.3. The Particle Swarm Optimization (PSO)
PSO described by Eberhart and Kennedy [46] is a
swarm-based algorithm that is inspired by the social
behavior of bird 
ocking and �sh schooling. Each par-
ticle in PSO has its own velocity, position vector, and
a �tness value determined by the objective function.
Moreover, PSO has memory and the previous particle
information is re
ected in it and is used in general
backpropagation processes. Hence, a continuous pro-
gression towards the global optimum point is provided.
The following equations demonstrate how the velocity
and new position of each particle are calculated in every
iteration:

V (t+ 1) = !V (t) + c1r1 (Ypbest (t)� Y (t))

+c2r2 (Ygbest (t)� Y (t)) ; (41)

Y (t+ 1) = Y (t) + V (t+ 1) ; (42)

where ! is inertia weight, V (t) is former velocity, and
c1 and c2 are acceleration constants that control how
the particles approach the local best and global best
positions, respectively. r1 and r2 are random values
within [0; 1]. Y (t) is the former position, Ypbest(t) is
the best position of the particle and Ygbest(t) is the
global best position of the whole swarm.

5.3.4. The genetic algorithm (GA)
GA is the evolutionary methodology introduced by
Holland in 1975 and is based on natural selection and
genetics. A GA works on an initial population; it

selects parents, applies crossover and mutation op-
erators, and evaluates the children. The goal is to
successively produce better solutions by selecting the
better ones among existing solutions with a higher
chance for recombination. For the description about
GA used in our study, we refer readers to the work of
Zoraghi et al. [37].

5.3.5. The inside search: GA
This section describes another GA that is applied at
the second level of hybrid algorithms to discover the
best ordering policy of the schedule.

First QDPMO solution part X = [Xqj ]Q�U ,
which was explained in Section 5.1, is encoded to a
chromosome as shown in Figure 5 (as mentioned before,
Xq1 is equal to 1; therefore, it is omitted from the
chromosome).

This algorithm begins with a random population
of initial chromosomes and continues to produce new
generations using crossover and mutation operators.

In each generation, a set of chromosomes is
generated through a recombination process. To this
end, the roulette wheel selection pattern is used to
select parents and two kinds of crossover operators are
applied with the same probability to produce o�spring
(Figure 3).

In the one-point crossover, a number r is ran-
domly generated in the range of f1; 2; ::; Q(U�1)g. The
data for each o�spring is a mixed combination of one
parent (before r) and another parent (after r). Figure
6(a) shows a simple example of this operator.
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Figure 6. (a) The one-point crossover. and (b) The two-point crossover.

Also, the two-point crossover in which two points
r1; r2 2 f1; 2; :::; Q(U�1)g of the parents are randomly
selected such that r1 < r2 is employed. The columns
between these two points of parents are exchanged and
two o�spring are created. Figure 6(b) shows a simple
example of this operator.

In addition, a single-point mutation is applied
with a certain probability that changes 1 to 0, and
vice versa.

6. Computational experiments

In this step, the model is implemented using hybrid
algorithms to demonstrate their performance and ap-
plicability in practice. To do so, �rst, a parameter
tuning procedure is utilized based on Taguchi method
to provide robust solutions. Next, the developed
mathematical model is also solved using the BARON
solver in GAMS and the obtained results are compared
with those obtained from hybrid algorithms. The com-
parisons were carried out for problems with di�erent
sizes to point to the performance of meta-heuristics.
All computations were performed on a Core (TM) i7-
2600k PC with 3.4 GHz CPU speed and 8 GB of RAM.
MATLAB software was employed to code the proposed
meta-heuristics.

6.1. Parameter tuning
The performance of meta-heuristic algorithms is highly
related to the values of their structural parameters (fac-
tors). In this regard, there are di�erent ways for tuning
the parameters in order to improve the robustness of
the algorithms. In this study, we applied the Taguchi
method, which can consider a large number of decision
variables with a small number of experiments [47].

In Taguchi method, the factors are separated into
two main categories: controllable and noise factors.
However, noise factors do not have direct e�ect on
results and their removal is impractical and often
impossible. The Taguchi method attempts to minimize
the e�ect of noise and determine the optimal level of
signi�cant controllable factors to achieve robustness.

Taguchi method uses a special set of standard
arrays called orthogonal arrays. The orthogonal ar-
rays determine how to conduct the minimal number
of experiments that could give the full information
of all the factors that a�ect the response variables.
An appropriate orthogonal array is determined based
on the number of factors and their levels. In the
orthogonal array, the columns correspond to the pa-
rameters, the entries in the columns correspond to the
levels of the factors, and the rows correspond to the
experiments.

This method uses the Signal-to-Noise (S=N) ratio
to re
ect the extant variation in the response variable,
where a higher S=N ratio implies smaller variation.
Eq. (43) shows the calculation for S=N ratio in the
minimization (the smaller-the-better type) problem:

SNj = �10log
�Pn

i=1 yij
2

n

�
; (43)

where yij is the response value of the ith observation
at trial j of the orthogonal array and n is the number
of observations in each trial.

In this study, the relative deviation percentage for
a single problem i is assumed at trial j (RDPij) of the
orthogonal array as the response value (yij), de�ned as
follows:

RDPij =
Z�ij �Min (Z�ik)

Min (Z�ik)
; (44)

where Z�ij is the objective value for the problem i at
the trial j of the orthogonal array.

We tuned the hybrid algorithms' parameters in
two steps:

Step 1: Tuning of the inside search algorithm
(GA) Inside search uses the schedule of activities
and their modes generated by outside search to solve
the MOP. Therefore, we assumed some problems
with di�erent sizes and their schedules and modes
of activities and employed Taguchi method to tune
the parameters of inside search algorithm (GA).
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Table 2. Inside GA factors and their levels.

Factors Description Levels

1 2 3

Pc Crossover probability of GA 0.7 0.8 0.9

Pm Mutation probability of GA 0.1 0.2 0.3

MG Population size of GA 10 30 60

NGA Maximum iteration of GA 100 150 200

Table 3. The orthogonal array for parameters of the
inside Genetic Algorithm (GA) and results.

Trial Pc Pm MG NGA RDP S=N

1 1 1 1 1 0.038 28.312

2 1 2 2 2 0.023 32.670

3 1 3 3 3 0.014 36.002

4 2 1 2 3 0.014 35.330

5 2 2 3 1 0.019 34.507

6 2 3 1 2 0.017 30.682

7 3 1 3 2 0.006 39.702

8 3 2 1 3 0.012 37.007

9 3 3 2 1 0.011 37.728

Table 4. Optimum factor levels and values for inside
Genetic Algorithm (GA) algorithm.

Inside search
Factors Pc Pm MG NGA

Optimal levels 0.9 0.3 10 150

Step 2: Tuning of the outside search algo-
rithms This section describes the Taguchi method
for tuning the parameters in
uencing the perfor-
mance of the inside algorithm, each at three levels.
Table 2 presents four parameters a�ecting the per-
formances of the GA and their di�erent levels. Based
on Taguchi method, at �rst, an orthogonal array,
L9(34), is selected as the �ttest design. Then, the
experiments are performed for a set of 5 problems
from the PSPLIB library with 10, 16, 20, 30, and
60 activities. However, other essential assumptions
such as holding costs, ordering costs, material prices,
and a schedule for activities and their modes for each
problem are added to complete the matter.

The data in Table 3 show the orthogonal array of
parameters for the Inside GA and observations' results
including RDP's mean and S=N ratio in each trial.

In Figure 7, there is a S=N ratio plot resulting
from the inside GA and its best parameter levels are
shown in Table 4.

The same approach was applied to tune param-

Figure 7. Main e�ects plot for the inside Genetic
Algorithm (GA) factor levels; SN is signal-to-noise ratio.

Table 5. Optimum factor levels and values for Coyote
Optimization Algorithm (COA) algorithm.

Factors Iter Np Nc

Optimal levels 200 15 14

Table 6. Optimum factor levels and values for GWO
algorithm.

Factors Iter Search Agents no

Optimal levels 200 30

Table 7. Optimum factor levels and values for Particle
Swarm Optimization (PSO) algorithm.

Factors Iter Swarm size c1 c2 !

Optimal levels 400 30 2.9 1.9 0.65

Table 8. Optimum factor levels and values for Genetic
Algorithm (GA) algorithm.

Factors Pc Pm MG NGA

Optimal levels 0.9 0.3 20 200

eters for outside search algorithms and the optimum
levels are given in Tables 5{8.

Performance evaluation of the hybrid algorithms
uses these optimal parameter values.

6.2. Performance analysis of the hybrid
algorithms

Initially, the performance of the aforementioned meta-
heuristics to solve the MRCPSP-QDPMO problem is
considered for a typical instance, and the results are
compared with that of BARON solver.

Consider a project including 16 activities with an
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Table 9. The list of activities with their durations and required renewable and non-renewable resources with respect to
each mode.

Mode 1 Mode 2 Mode 3
Duration Required resources Duration Required resources Duration Required resources

Activity R1a R2 NR1b NR2 R1 R2 NR1 NR2 R1 R2 NR1 NR2

1 1 9 3 10 5 2 5 2 12 3 3 3 1 12 3
2 2 6 0 0 3 4 4 0 0 3 5 3 0 0 2
3 2 5 10 6 0 3 3 5 5 0 3 6 4 4 0
4 2 10 8 0 4 4 8 8 0 4 6 6 8 0 3
5 8 9 2 8 2 10 8 1 7 5 10 5 2 8 4
6 1 0 5 8 0 3 0 5 4 0 5 0 4 3 0
7 7 7 5 0 5 9 5 3 0 4 10 10 1 0 2
8 1 7 9 7 0 2 5 5 3 0 4 2 2 3 0
9 5 5 6 4 0 7 5 3 2 1 10 3 2 3 1
10 4 8 0 0 8 6 6 0 0 6 8 5 0 0 5
11 2 10 0 0 8 2 0 8 0 3 5 12 0 0 6
12 5 2 10 7 0 9 6 5 4 1 9 5 4 6 3
13 6 8 8 4 1 8 12 5 5 2 10 10 4 15 0
14 2 7 8 6 0 3 5 4 10 0 5 3 3 3 0
15 5 6 7 0 3 6 3 5 5 3 9 6 2 15 3
16 2 5 2 5 1 4 3 1 5 0 7 5 0 2 1

aR: Renewable resource; bNR: Non-Renewable resource.

Figure 8. AON precedence network of the typical
instance.

AON precedence network as shown in Figure 8. Each
activity has three possible execution modes.

Table 9 presents a list of activities with their
durations and required renewable and non-renewable
resources separately for each mode. Project's due date
is at the end of time unit 25. Delay penalty is 10,000
per time unit and earliness bonus is $15,000 per time
unit.

Table 10 presents the costs of materials and
Table 11 shows the prices for each of them at di�erent
break points. Table 12 includes the available number
of renewable resources and their cost per time unit.
Tables 13{15 show the results after implementing the
meta-heuristics and BARON.

According to the results in Table 13, COA-GA
and GWO-GA outperformed BARON signi�cantly.

For the purpose of evaluating the performance of
four solving algorithms, the project generator software
(PROGEN) developed by Kolisch and Sprecher in 1996
was used, which resulted in 270 numerical MRCPSP
problems having 10, 12, 14, 16, 18, 20, 30, 60, and
90 non-dummy activities; each one can be executed

Table 10. The costs of materials.

Non-renewable
resources

1 2
Holding cost ($) per time unit 100 1,200
Ordering cost ($) 1,000 1,500

Table 11. The prices of materials at di�erent break
points.

Non-renewable resources

1 2
Range Price ($) Range Price ($)

1 � Oa � 10 700 1 � O � 5 3,200
11 � O � 20 650 6 � O � 10 2,800
21 � O � 30 630 11 � O 2,500
31 � O � 40 600

41 � O 590
aO : Order quantity

Table 12. The cost and maximum level of each renewable
resource.

Renewable resources
1 2

$/time unit 100 200
Max level 19 15

in one of three modes. According to Table 16, the
problems di�er with respect to the number of renewable
and nonrenewable resources. For each of 27 classes of
problems, 10 instances were generated, resulting in 270
test problems. To solve each problem, every hybrid
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Table 13. The costs and the �nish time of the problem found by the metaheuristics and BARON.

Method BARON COA-GA GWO-GA PSO-GA GA-GA

Total cost ($) 227,650 223,000 223,000 233,400 235,900

FT 23 23 23 24 24

Renewable resource cost 93,500 90,600 90,600 92,500 93,400

Holding cost 7,300 700 700 1,100 5,100

Ordering cost 16,000 14,000 14,000 14,000 15,000

Procurement cost 130,850 137,700 137,700 135,800 132,400

Penalty (Bonus) (20,000) (20,000) (20,000) (10,000) (10,000)

Table 14. The schedules of the problem found by the metaheuristics and BARON.
Activity BARON COA-GA GWO-GA PSO-GA GA-GA

Start time Mode Start time Mode Start time Mode Start time Mode Start time Mode

1 0 2 0 2 0 2 0 2 0 2
2 0 1 0 1 0 1 0 1 0 1
3 0 1 0 1 0 1 0 1 0 1
4 2 1 2 1 2 1 2 1 2 1
5 4 1 4 3 4 3 4 1 10 1
6 4 2 10 1 10 1 4 1 10 1
7 2 2 2 2 2 2 2 1 2 1
8 17 1 11 2 11 2 5 3 11 3
9 11 1 11 1 11 1 12 1 9 1
10 17 1 16 1 16 1 17 1 14 3
11 15 2 14 2 14 2 15 2 18 1
12 16 1 16 1 16 1 17 1 14 1
13 10 1 4 1 4 1 9 1 4 1
14 21 1 21 1 21 1 22 1 22 1
15 17 2 16 2 16 2 17 2 20 1
16 21 1 21 1 21 1 22 1 20 1

Table 15. The procurement plan of the problem obtained from the metaheuristics and BARON.
Date BARON COA-GA GWO-GA PSO-GA GA-GA

Material 1 Material 2 Material 1 Material 2 Material 1 Material 2 Material 1 Material 2 Material 1 Material 2

1 18 6 18 6 18 6 18 6 18 6
2 0 0 0 0 0 0 0 0 0 0
3 0 10 0 8 0 8 0 8 0 11
4 3 0 0 0 0 0 0 0 0 0
5 9 0 12 5 12 5 12 5 19 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 4 1
11 8 1 15 0 15 0 8 0 0 0
12 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 4 0
14 0 0 0 0 0 0 0 0 0 0
15 0 0 0 3 0 3 0 3 0 0
16 7 3 0 0 0 0 0 0 0 3
17 0 0 12 11 12 11 19 9 0 0
18 12 11 0 0 0 0 0 0 12 11
19 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0
21 11 0 0 0 0 0 0 0 0 0
22 0 1 11 1 11 1 0 0 0 0
23 11 1 11 1
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Table 16. Comparison of the metaheuristics based on RDP .

N RR NR CPU time (s) COA-GA GWO-GA PSO-GA GA-GA

10
1 1 60 0.00% 0.00% 3.00% 1.03%

2 2 100 0.00% 0.31% 1.02% 3.32%

3 3 120 0.21% 0.35% 3.63% 1.25%

12
1 1 100 0.02% 0.22% 2.55% 3.01%

2 2 120 0.03% 2.03% 3.50% 2.13%

3 3 150 0.03% 2.03% 3.50% 2.13%

14
1 1 120 0.12% 1.02% 4.55% 3.53%

2 2 150 1.32% 3.07% 4.08% 6.83%

3 3 200 1.35% 1.07% 6.08% 10.80%

16
1 1 150 0.21% 0.18% 10.23% 18.23%

2 2 200 2.06% 2.34% 10.07% 18.91%

3 3 250 2.21% 1.18% 15.03% 18.25%

18
1 1 200 2.53% 3.07% 12.21% 24.35%

2 2 250 3.51% 2.28% 18.43% 19.23%

3 3 300 1.50% 2.54% 22.13% 18.99%

20
1 1 250 3.23% 4.07% 17.21% 22.27%

2 2 300 3.23% 7.63% 16.31% 20.04%

3 3 350 2.23% 4.07% 17.21% 25.87%

30
1 1 300 0.68% 1.54% 20.33% 28.95%

2 2 350 3.25% 4.00% 19.23% 25.04%

3 3 400 2.90% 2.76% 20.73% 25.17%

60
1 1 500 0.25% 1.93% 20.60% 29.09%

2 2 600 3.90% 1.66% 17.71% 29.17%

3 3 700 4.23% 6.63% 18.31% 28.04%

90
1 1 1000 3.50% 3.54% 25.33% 25.99%

2 2 1000 5.23% 6.00% 19.32% 29.04%

3 3 1000 6.12% 7.76% 20.73% 29.96%

algorithm runs for a constant CPU time based on its
size. Table 16 demonstrates the mean of the relative
deviation percentage from the best-known solution
(RDP ), resulting from every four algorithms for each
class. In this table, the algorithms are compared using

RDP . RDP of 0.00% means the best result or the
minimum total project cost.

According to Figure 9, we can strongly claim
that the proposed hybrid COA-GA and GWO-GA
algorithms are quite e�ective in solving MRCPSP-
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Figure 9. Comparison of the algorithms based on the
mean of the relative deviation percentage.

QDPMO problems, evidently outperforming PSO-GA
and GA-GA algorithms.

To compare the COA-GA and GWO-GA algo-
rithms, a paired sample T-test is conducted to test
the equality of the RDP means obtained by the two
algorithms (H0) against the COA-GA outperforming
GWO-GA or the RDP mean of COA-GA is lower than
the mean of GWO-GA (H1). The two hypotheses for
this test are as follows:�

H0 : �d = 0
H1 : �d > 0

where d is the di�erence between two paired RDP
(RDPGWO�GA �RDPCOA�GA).

The test statistic (2.88) denotes that null hypoth-
esis is rejected at a con�dence level of 95%, indicat-

ing that COA-GA algorithm signi�cantly outperforms
GWO-GA.

7. Sensitivity analysis

This section seeks to determine the e�ect of di�erent
features of the problem on the total project cost. To
deal with this issue, again, we used the typical instance
illustrated in Section 6.2 to assess the sensitivity of
the objective function with respect to changing �ve
factors including holding cost, ordering cost, material
price, penalty, and bonus. Figures 10{14 (Logarithmic
diagrams are used to represent all the cases in a graph
according to di�erent cost scales.) show the sensitivity
of objective function to each factor based on changing
its value by a di�erent percentage compared to its base
value, while other factors remain unaltered. Figures
10{14 show the results after solving the problems with
the best metaheuristic, COA-GA.

According to the results in Figure 10, increasing
the holding costs in the presence of �xed other costs
leads to smaller order sizes to reduce the material
inventories and projects' holding costs.

As shown in Figure 11, increase of the ordering
costs results in reducing the number of orders and
increasing their amount, hence a greater chance to use
better discounts. The increase in project's holding cost
actually represents more inventories due to increase in
the number of orders.

Figure 10. The costs and the �nish time of the problem found by COA-GA with di�erent values of holding costs.

Figure 11. The costs and the �nish time of the problem found by COA-GA with di�erent values of ordering costs.



M. Akhbari/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 427{446 443

Figure 12. The costs and the �nish time of the problem found by COA-GA with di�erent values of material prices.

Figure 13. The costs and the �nish time of the problem found by COA-GA with di�erent values of penalty.

Figure 14. The costs and the �nish time of the problem found by COA-GA with di�erent values of bonus.

As Figure 12 shows, higher material prices lead to
increase in the number of orders in order to make use
of more discounts. In such situations, higher holding
costs are acceptable.

The impact of the penalty factor can be seen in its
elimination. When there is no tardiness penalty in this
project, the activities are carried out in modes with
lower costs and longer durations; thus, it is obvious
that the project �nish time increases (Figure 13).

According to Figure 14, with low earliness bonus,
selection of activity modes with a lower duration and
higher costs is not justi�able, simply because the bonus
cannot compensate for the increased project cost.

8. Conclusions

This study investigated a more realistic class of project

scheduling problems, a combination of Multi-mode
Resource-Constraint Project Scheduling Problem (MR-
CPSP) under bonus-penalty policies and Quantity Dis-
count Problem in Material Ordering (QDPMO) under
an all-unit discount scheme, which is called MRCPS-
QDPMO problem. The model was mathematically
formulated with the objective of minimizing the to-
tal cost of the project including costs of renewable
resources, non-renewable resources (ordering, holding,
and purchasing) and the penalty or bonus resulting
from the project's tardiness or earliness.

By proving a theorem, we found that an im-
portant property of the optimum solution is the fact
that activities' start times are the only choice for
ordering points. This property reduces the search space
signi�cantly compared to previous studies.

Since this problem is NP-hard, four hybrid algo-
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rithms (COA-GA, GWO-GA, PSO-GA, and GA-GA)
incorporating an outside and an inside search were
presented to solve the model.

In fact, the outside search (COA, GWO, PSO, and
GA) focuses on �nding solutions to the MRCPSP to
present the schedules and the inside search (GA), which
is the same among all the proposed hybrid algorithms
focusing on solving (QDPMO) to discover the best
ordering plan for the generated schedules.

After tuning the parameters of the algorithms by
the Taguchi method, for solving a typical instance,
the algorithms were applied and their results were
compared with the solution obtained from BARON
solver of GAMS software. The comparison demon-
strated that COA-GA and GWO-GA outperformed
BARON. Finally, hybrid metaheuristics were compared
with each other in order to determine the best solutions
in a �xed time. In this regard, the developed algorithms
were tested on a set of problems generated by the
PROGEN with some assumptions, and it was observed
that the hybrid COA-GA outperformed others.
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