References:
1. Elmaghraby, S.E., Activity Networks: Project Planning and Control by Network Models, John Wiley & Sons (1977).
2. S lowinski, R. Two approaches to problems of resource allocation among project activities-a comparative study", Journal of the Operational Research Society, 31(8), pp. 711{723 (1980).
3. Talbot, F.B. Resource-constrained project scheduling with time-resource tradeo s: The non-preemptive case", Management Science, 28(10), pp. 1197{1210 (1982).
4. Patterson, J.H., S lowinski, R., Talbot, F.B., and Weglarz, J. An algorithm for a general class of precedence and resource constrained scheduling problems", Advances in Project Scheduling, Elsevier, Amsterdam, pp. 3{28 (1989).
5. Drexl, A. and Gruenewald, J. Nonpreemptive multimode resource-constrained project scheduling", IIE Transactions, 25(5), pp. 74{81 (1993).
6. Speranza, M.G. and Vercellis, C. Hierarchical models for multi-project planning and scheduling", European Journal of Operational Research, 64(2), pp. 312{325 (1993).
7. Hartmann, S. and Briskorn, D. A survey of variants and extensions of the resource-constrained project scheduling problem", European Journal of Operational Research, 207, pp. 1{14 (2010).
8. Sprecher, A., Hartmann, S., and Drexl, A. An exact algorithm for project scheduling with multiple modes", Operations-Research-Spektrum, 19(3), pp. 195{203 (1997).
9. Demeulemeester, E.L. and Herroelen, W.S. An efficient optimal solution procedure for the preemptive resource-constrained project scheduling problem", European Journal of Operational Research, 90(2), pp. 334{348 (1996).
10. Boctor, F.F. Heuristics for scheduling projects with resource restrictions and several resource-duration modes", The International Journal of Production Research, 31(11), pp. 2547{2558 (1993).
11. Boctor F.F. A new and ecient heuristic for scheduling projects with resource restrictions and multiple execution modes", European Journal of Operational Research, 90(2), pp. 349{361 (1996).
12. Kolisch, R. and Drexl, A. Local search for nonpreemptive multi-mode resource-constrained project scheduling", IIE transactions, 29(11), pp. 987{999 (1997).
13. Sprecher, A. and Drexl, A. Solving multi-mode resource-constrained project scheduling by a simple, general and powerful sequencing algorithm", European Journal of Operational Research, 107(2), pp. 431{450 (1998).
14. Bouleimen, K. and Lecocq, H.A. new ecient simulated annealing algorithm for resource constrained scheduling problem", Technical Report, Service de
Robotique et Automatisation, University de Liege, pp.
1{10 (1998).
15. Hartmann, S. Project scheduling with multiple
modes: a genetic algorithm", Annals of Operations
Research, 102(1{4), pp. 111{135 (2001).
16. Jozefowska, J., Mika, M., Ro_zycki, R., Waligora, G.,
and Weglarz, J. Simulated annealing for multi-mode
resource-constrained project scheduling", Annals of
Operations Research, 102(1{4), pp. 137{155 (2001).
17. Alcaraz, J., Maroto, C., and Ruiz, R. Solving the
multi-mode resource-constrained project scheduling
problem with genetic algorithms", Journal of the
Operational Research, 54(6), pp. 614{626 (2003).
18. Mika, M., Waligora, G., and Weglarz, J. Simulated
annealing and Tabu-search for multi-mode resource
constrained project scheduling with positive
discounted cash
ows and di erent payment models",
European Journal of Operational Research, 164(3), pp.
639{668 (2005).
19. Zhang, H., Tam, C.M., and Li, H. Multi-mode project
scheduling based on particle swarm optimization",
Computer-Aided Civil and Infrastructure Engineering,
21(2), pp. 93{103 (2006).
20. Jarboui, B., Damak, N., Siarry, P., and Rebai, A. A
combinatorial particle swarm optimization for solving
multi-mode resource-constrained project scheduling
problems", Applied Mathematics and Computation,
195(1), pp. 299{308 (2008).
21. Van Peteghem, V. and Vanhoucke, M. An arti-
cial immune system for the multi-mode resourceconstrained
project scheduling problem", In European
M. Akhbari/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 427{446 445
Conference on Evolutionary Computation in Combinatorial
Optimization, Springer, Berlin, Heidelberg. pp.
85{96 (2009, April).
22. Van Peteghem, V. and Vanhoucke, M. Genetic algorithm
for the preemptive and non-preemptive multimode
resource-constrained project scheduling problem",
European Journal of Operational Research,
201(2), pp. 409{418 (2010).
23. Barrios, A., Ballestn, F., and Valls, V. A double
genetic algorithm for the MRCPSP/max", Computers
& Operations Research, 38(1), pp. 33{43 (2011).
24. Khalilzadeh, M., Kianfar, F., Shirzadeh Chaleshtari,
A., Shadrokh, S., and Ranjbar, M. A modi ed PSO
algorithm for minimizing the total costs of resources
in MRCPSP", Mathematical Problems in Engineering,
2012, pp. 1{18 (2012). DOI: 10.1155/2012/365697
25. Wang, L. and Fang, C. An e ective estimation of
distribution algorithm for the multi-mode resourceconstrained
project scheduling problem", Computers
& Operations Research, 39(2), pp. 449{460 (2012).
26. Li, H. and Zhang, H. Ant colony optimizationbased
multi-mode scheduling under renewable and
nonrenewable resource constraints", Automation in
Construction, 35, pp. 431{438 (2013).
27. Messelis, T. and De Causmaecker, P. An automatic
algorithm selection approach for the multi-mode
resource-constrained project scheduling problem", European
Journal of Operational Research, 233(3), pp.
511{528 (2014).
28. Aquilano, N.J. and Smith, D.E. A formal set of
algorithms for project scheduling with critical path
method material requirements planning", Journal of
Operations Management, 1(2), pp. 57{67 (1980).
29. Smith-Daniels, D.E. and Aquilano, N.J. Constrained
resource project scheduling subject to material constraints",
Journal of Operations Management, 4(4),
pp. 369{387 (1984).
30. Smith-Daniels, D.E. and Smith-Daniels, V.L. Optimal
project scheduling with materials ordering", IIE
Transactions, 19(2), pp. 122{129 (1987).
31. Smith-Daniels, D.E. and Smith-Daniels, V. L. Maximizing
the net present value of a project subject to
materials and capital constraints", Journal of Operations
Management, 7(1{2), pp. 33{45 (1987).
32. Erbasi, A. and Sepil, C. A modi ed heuristic procedure
for materials management in project networks",
International Journal of Industrial Engineering: Theory,
Applications and Practice, 6(2), pp. 132{140
(1999).
33. Dodin, B. and Elimam, A.A. Integrated project
scheduling and material planning with variable activity
duration and rewards", Iie Transactions, 33(11), pp.
1005{1018 (2001).
34. Sajadieh, M.S., Shadrokh, S., and Hassanzadeh, F.
Concurrent project scheduling and material planning:
A genetic algorithm approach", Scientia Iranica,
Transaction E, Industrial Engineering, 16(2), pp. 91{
99 (2009).
35. Tabrizi, B.H. and Ghaderi, S.F. An integrated mixedinteger
programming model to address concurrent
project scheduling and material ordering", International
Journal of Mechanical, Aerospace, Industrial,
Mechatronic and Manufacturing Engineering, 9, pp.
1960{1963 (2015).
36. Tabrizi, B.H. and Ghaderi, S.F. A robust bi-objective
model for concurrent planning of project scheduling
and material procurement", Computers & Industrial
Engineering, 98, pp. 11{29 (2016).
37. Zoraghi, N., Shahsavar, A., Abbasi, B., and Van Peteghem,
V. Multi-mode resource-constrained project
scheduling problem with material ordering under
bonus-penalty policies", Top, 25(1), pp. 49{79 (2017).
38. Shahsavar, A., Zoraghi, N., and Abbasi, B. Integration
of resource investment problem with quantity
discount problem in material ordering for minimizing
resource costs of projects", Operational Research,
18(2), pp. 315{342 (2018).
39. Zoraghi, N., Shahsavar, A., and Niaki, S.T.A. A
hybrid project scheduling and material ordering problem:
Modeling and solution algorithms", Applied Soft
Computing, 58, pp. 700{713 (2017).
40. Tabrizi, B.H. Integrated planning of project scheduling
and material procurement considering the environmental
impacts", Computers & Industrial Engineering,
120, pp. 103{115 (2018).
41. Kolisch, R. Serial and parallel resource-constrained
project scheduling methods revisited: Theory and
computation", European Journal of Operational Research,
90(2), pp. 320{333 (1996).
42. Pierezan, J. and Coalho, L. Coyote Optimization
Algorithm: A new metaheuristic for global optimization
problems", IEEE Congress on Evolutionary
Computation (IEEE CEC), 2018 IEEE, pp. 2633{2640
(2018).
43. Mirjalili, S., Mirjalili, S.M., and Lewis, A. Grey wolf
optimizer", Advances in Engineering Software, 69, pp.
46{61 (2014).
44. Long, W. and Xu, S. A novel grey wolf optimizer
for global optimization problems", Advanced Information
Management, Communicates, Electronic and
Automation Control Conference (IMCEC), pp. 1266{
1270 (2016).
45. Muro, C., Escobedo, R., Spector, L., and Coppinger,
R.P. Wolf-pack (Canis lupus) hunting strategies
emerge from simple rules in computational simulations",
Behavioural Processes, 88(3), pp. 192{197
(2011).
46. Eberhart, R. and Kennedy, J. A new optimizer using
particle swarm theory", In MHS'95. Proceedings of the
Sixth International Symposium on Micro Machine and
Human Science, pp. 39{43 (1995).
47. Taguchi, G., Introduction to Quality Engineering,
White Plains, Asian Productivity Organization,
NewYork (1986).
446 M. Akhbari/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 427{446
48. Eberhart, R. and Kennedy, J. A new optimizer
using particle swarm theory", In Micro Machine and
Human Science, MHS'95., Proceedings of the Sixth
International Symposium on IEEE, pp. 39{43 (1995).