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Abstract. Two inventory models for perishable products in the chain are proposed in
this paper, one with starting shortages and the other with ending shortages. The demand
for perishable products is dependent on price and stock. The supply chain is composed
of one manufacturer, one distribution center, and one retailer. The objective of these
two models is to maximize the average pro�t per unit time by determining the optimal
replenishment cycle, frequency, and quantity. The property of optimal solutions for two
cases of two models is discussed to verify the existence of optimal solutions. Algorithms
for searching for optimal solutions are presented. To investigate the e�ect of parameters
on optimal solutions and obtain some management insights, computational experiments
with sensitivity analyses are carried out. Finally, conclusions are presented, as well as
recommendations for further research.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Inventory cost is an indispensable part of the total
cost. The value of inventory is approximately 14%
of the gross domestic product in the United States
and inventory control is very important to keep the
normal operation of enterprises. Too much or too
little stock has a negative impact on the enterprises
[1]. High inventory levels increase the responsiveness
of enterprises, nevertheless, increase the holding cost of
inventory [2]. Low inventory levels reduce the holding
inventory cost, but, could cause losses in production
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and sales. It is necessary to control inventory and
maintain an appropriate stock. In other words, in-
ventory decisions should be optimized to minimize the
average inventory cost [3] or maximize the average
pro�t per unit time [4]. The purpose of this paper
is to maximize the average pro�t per unit time for two
inventory systems, that is, starting with shortages and
ending with shortages inventory systems.

Nowadays, to make more pro�ts, many enterprises
strengthen cooperation with both upstream and down-
stream enterprises and form a supply chain by sharing
their demand and inventory information [5]. Flexibility
and integration in the supply chain play important
roles to improve performance [6]. The supply chain
includes a set of suppliers, manufacturers, warehouses,
distribution centers, and retailers. Merchandises are
produced and supplied in the appropriate amounts,
to the right locations, at the right times, to min-
imize system-wide cost while satisfying service level



Z. Dai et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 320{342 321

requirements, thanks to their coordination. Inventory
control is one of the important �elds in supply chain
management and attracts the attention of scholars and
practitioners. They study the optimization problems of
two-echelon [7,8] or three-echelon [6] inventory systems
in the supply chain. In this paper, two multi-echelon
inventory systems will be optimized.

The demand for commodities is a�ected by many
factors. In general, price is the most important factor.
Lower prices tend to increase the demand for many
commodities, and vice versa [9,10]. In other words,
demand is the monotone decreasing continuous func-
tion of price [11]. In addition to price, many market
researchers and sellers of goods have realized that in
some retail systems such as supermarkets, the demand
for goods is related to the stock in the showrooms or
on the shelves. The goods displayed in the showrooms
or on the shelves promote the purchasing desire of
customers. Therefore, with the increasing quantity
of displayed products, the demand for these products
will also increase. There are two main reasons for the
appearance of stock-dependent demand. One is the
selection e�ect. The other is the advertising e�ect. In
this study, we assumed that price and stock have an
impact on demand.

Product perishability is a critical problem for
certain enterprises [12]. Perishable products can be
classi�ed into two categories. The �rst category
includes products such as blood and drugs with a �xed
life that are completely perished at the end of the
planning horizon [13]. The second categories contain
products such as fresh foods, vegetables, fruits, and

owers with continuous deterioration. For the products
of the �rst categories, there is no residual value at
the end. Nevertheless, for the products of the second
category, there is some residual value. Thus, these
perishable products could be reclaimed by suppliers at
a discounted price. In this study, we assumed that the
perishable products can be recovered at a discounted
price. For the products of the �rst category, the
discounted rate is zero. For the products of the second
category, the discounted rate is a positive number less
than 1.

The cost of losses increases as perishable products
deteriorate. Hence, the pro�ts of inventory systems
are a�ected by the conditions of perishable products at
the time of their deliveries to the customers. If deteri-
oration of perishable products and the cost of losses
are not considered, the pro�ts will be exaggerated.
Di�erent products have di�erent deterioration rates.
For instance, the deterioration speed of fresh food is
faster than that of fruit. Some prior investigations
assumed that the rate of degradation is constant.
According to some studies, the rate of deterioration
follows a Weibull distribution. Other studies, such as
[14], claim that the rate of deterioration is a function of

time. In this paper, the deterioration rate is assumed
to be constant.

In summary, this research proposes two multi-
echelon inventory models, one that ends with a short-
age and the other that begins with a shortage. In these
two models, perishable products with price and stock-
dependent demand are considered. Each model, which
includes a single manufacturer, distribution center,
and retailer is optimized to maximize average pro�t
per unit time by determining not only the optimal
replenishment cycle and frequency but also the optimal
replenishment quantity. To solve these two models and
develop an algorithm, each model is considered in two
scenarios, with four propositions o�ered and proven
based on the model analysis.

The rest of this article is organized as follows.
Section 2 summarizes the existing research on this topic
and highlights the contributions of the present study.
Notations and assumptions are presented in Section
3. Sections 5 and 6 put forward two mathematical
models and algorithms, respectively. In Section 6,
computational experiments are presented. Finally, the
�ndings and recommendations for further research are
presented.

2. Literature review

2.1. Optimizing multi-echelon inventory
system

Some scholars investigated the optimization problem
of the multi-echelon inventory system. Guerrero et
al. [15] put forward a multi-echelon pharmaceutical
distribution system, which is composed of external
suppliers, center pharmacies, hospital pharmacies, and
care units. To minimize the stock-on-hand value, a
heuristic algorithm is presented to �nd near-optimal
inventory policies. Tsai and Liu [16] solved a multi-
echelon inventory problem using a decision support
system. This multi-echelon inventory consists of mul-
tiple �eld depots, a warehouse inventory center, and
a warehouse repair center. New decision support
algorithms are applied in di�erent scenarios. Zhao and
Zhao [17] constructed a �ve-echelon inventory system
in two scenarios to analyze the causes of the bullwhip
e�ect. This inventory system includes raw material,
supplier, manufacturer, distributor, retailer, and cus-
tomer. The result shows that the on-hand inventory
and the stockout are reversed in the two scenarios.
Fichtinger and Yates [18] proposed an optimization
approach for multi-echelon supply chain segmentation,
which is composed of factories, consolidation centers,
and segments. By a real case study, the e�ectiveness
of this approach is demonstrated. Ross et al. [19] used
branch-cut and price heuristics to solve a three-echelon
location inventory model, which consists of warehouses,
distribution centers, retail stores, and donation-only



322 Z. Dai et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 320{342

centers. The purpose was to determine the location
of facilities and to minimize the total annual cost. The
e�ectiveness of the method is validated by numerical
examples. Dai et al. [1] presented multi-echelon inven-
tory models with three types of demand in the supply
chain. The supply chain is composed of a retailer, a
plant, and many middlemen. Computational experi-
ments demonstrated the applicability of the proposed
models and the e�ectiveness of procedures. The impact
of parameters on optimal solutions is discussed through
sensitivity analyses. Wang et al. [20] considered a
multi-echelon inventory system with lateral transship-
ment and developed an agent-based approach. The
e�ciency of the proposed method is veri�ed by a two-
echelon inventory system. Shen et al. [21] considered
a multi-echelon inventory system including a single
warehouse and multiple retailers. They tried to �nd
an optimal policy to minimize the average cost of
this multi-echelon inventory system. The optimization
problem of the multi-echelon inventory system is stud-
ied in the above articles. However, the perishability of
products is not considered in these articles.

2.2. Optimizing inventory for perishable
products

Some articles studied the inventory optimization of
perishable products. Duan and Liao [22] proposed a
new replenishment policy for high perishable products
to minimize the outdate rate with a predetermined
shortage level. This new replenishment policy is
compared with the other two order-up-to policies under
two di�erent control modes. The results show this
new replenishment policy is the best among all three.
The management of perishable product inventories,
according to Haijema [23], can be improved by using
optimal ordering, issuance, and disposal policies, which
can be obtained using stochastic dynamic program-
ming. To verify the validity of the policy proposed
in this study, it is compared to a base stock policy,
which is commonly used in practice. Under general
assumptions, Coelho and Laporte [24] introduced a
problem of joint replenishment and delivery of per-
ishable products, which they solved using an exact
branch-and-cut algorithm. To evaluate the perfor-
mance of this algorithm, a set of instances are tested.
Liu et al. [25] considered a �nite-period inventory
model for perishable products and determined the
optimal purchasing and inventory retrieval policies to
maximize the total expected pro�t. Computational
experiments are performed to study the sensitivity of
parameters. Two approximate policies are compared
with the proposed policies to demonstrate the value
of their model. Kaasgari et al. [26] used Vendor
Managed Inventory strategy for perishable products in
a two-level supply chain, which is composed of a single
vendor and multiple retailers. To minimize the total

inventory cost for perishable products, they developed
a nonlinear programming model and solved it by a
Genetic algorithm and Particle Swarm Optimization
(PSO) algorithm. Jaggi et al. [27] studied a two-
warehouse inventory system for perishable products
with the imperfect quality considering the permissible
delay in payments. Numerical examples demonstrated
the e�ectiveness of the proposed model. Teimoury and
Kazemi [28] studied a two-stage supply chain model
for a single deteriorating product with a constant
deteriorating rate to maximize the total pro�t of the
supply chain. Two cases with and without shortage
are considered to demonstrate the applicability of the
model. The above studies considered the inventory
problem of perishable products. However, these studies
stipulated that demand is not dependent on stock.

2.3. Optimizing inventory with stock
dependent demand

Sarkar and Sarkar [29] expanded an inventory model
with stock-dependent demand for perishable products
to minimize the expected total cost by determining the
optimal cycle length. They determined the necessary
and su�cient conditions to show the existence and
uniqueness of the optimal solution. Finally, some
numerical examples are used to demonstrate the ap-
plication of the proposed model. Panda et al. [30]
proposed the selection problem of inventory locations
under the assumption that demand is dependent on
stock. They developed three mathematical models and
provided selection strategies under di�erent conditions.
Finally, sensitivity analyses and numerical examples
are carried out. Ghiami et al. [31] optimized a
two-echelon inventory model with stock-dependent de-
mand. The optimization is done from the perspectives
of the wholesaler and retailer. A genetic algorithm is
presented to solve this model. A numerical example
with sensitivity analysis is carried out. Yang [32]
proposed an inventory model with stock-dependent
demand and partially backlogged. Moreover, shortages
are allowed. This model aims to maximize the total
average pro�t by determining the ending inventory
level and the optimal order quantity. Finally, numerical
examples and sensitivity analysis are provided. Bhunia
et al. [33] developed an inventory model with a
perishable product with stock dependent on demand.
Two algorithms are applied to solve this model. The
impact of di�erent parameters on the optimal solu-
tions is investigated by computational experiments.
Lim [34] considered an inventory system with stock
dependent on demand and transformed this model
into an equivalent programming problem. An optimal
inventory replenishment policy is found and validated
by a numerical example. The literature cited above
examines the inventory optimization problem with
stock-dependent demand from various perspectives.
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However, these researches did not take into account
the impact of price on demand.

2.4. Optimizing inventory with price
dependent demand

Panda et al. [4] developed warehouse-inventory models
with the assumption that demand is dependent on price
and the storage space of retailers is limited. The model
with fuzzy parameters aims to maximize the average
pro�t. A genetic algorithm is put forward to solve this
model and computational experiments are presented.
Maihami and Kamalabadi [35] optimized the joint pric-
ing and inventory model with price and time-dependent
demand, shortages allowed, and partially backlogged.
The objective of this study was to maximize the total
pro�t. They proved the existence and uniqueness of
the solution and proposed an algorithm for �nding
the optimal solution. Finally, a numerical example is
presented to illustrate the algorithm and the solution
procedure. Alfares and Ghaithan [11] thought that the
demand rate is a�ected by many factors. One of them
is price. Based on this fact, an inventory and pric-
ing model with price-dependent demand, time-varying
holding cost, and quantity discounts is developed.
A solution method is put forward to determine the
optimal solution. A numerical example and sensitivity
analysis are carried out. Banerjeea and Agrawal [36]
analyzed an inventory model with price-dependent de-
mand. General deterioration distribution and general
demand function are considered. Managerial insights
are obtained from sensitivity analysis. Jadidi et al. [37]
addressed the optimization problem of joint pricing
and inventory with price-dependent stochastic demand.
Two new mathematical models are formulated. The
computational results demonstrated that discounts can
increase the pro�ts for the buyer and the supplier and
the end customer bene�ts from a competitive price.
San-Jos�e et al. [38] analyzed an inventory model with
price and time-dependent demand. The objective was
to maximize the average pro�t by using an algorithm.
Computational experiments veri�ed the applicability
of the model and the e�ectiveness of the algorithm.
Johari et al. [39] put forward a supply chain including
a supplier and a retailer whose demand is dependent on
price. The results showed that a coordination scheme
can improve the pro�t of the overall supply chain and
its member. The above articles enrich the research
content of inventory optimization by introducing price-
dependent demand. Perishable products, on the other
hand, are believed to be entirely perished by the end
of the planning horizon and have no residual value,
according to these studies.

Based on the above literature, the main contribu-
tions of this article are summarized as follows:

� Perishable goods have a residual value at the end
of the planning horizon and can be recovered at a

discount price. The recovery revenue is composed of
one part of the total revenue;

� Two inventory systems are built and optimized, in-
cluding starting with the shortages inventory system
and ending with the shortages inventory system.
The analysis of models led to the formulation of
eight propositions;

� Price and stock-dependent demand are simulta-
neously considered. Most previous studies sepa-
rately considered an inventory system with price-
dependent demand or an inventory system with
stock-dependent demand;

� Multi-echelon inventory systems are taken into con-
sideration, which is comprised of three subjects: one
manufacturer, one distribution center, and one re-
tailer. Previous studies only considered one subject
or two subjects.

3. Notation and assumptions

3.1. Notations and indices
i Index of model (i = 1; 2)
j Index of case (j = 1; 2)
v Index of subcase (v = 1; 2; 3)
t Index of time

Parameters
p Price of unit product
� Deterioration rate of perishable

product
� Impacting coe�cient of inventory on

demand
D Demand rate of customer
w Recovery price of unit perishable

product
g Loss cost of unit perishable product
h Inventory cost of the unit product of

retailer
h1 Inventory cost of the unit product of

distribution center
h2 Inventory cost of the unit product of

the manufacturer
s Ordering cost of retailer
s1 Ordering cost of distribution center
s2 The startup cost for production of the

manufacturer
c The production cost of unit perishable

product
l The maximum quantity of perishable

product allowed on the shelf
d Demand related to price



324 Z. Dai et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 320{342

Decision variables
I(t) Inventory level at time t

Parameters
rij(v) Time when the inventory is zero in

subcase v of case j of model i (subcase
v is optional)

Tij(v) Replenishment cycle of the retailer in
subcase v of case j of model i (subcase
v is optional)

nij(v) Replenishment frequency of retailer in
subcase v of case j of model i, which is
a positive integer number (subcase v is
optional)

qij(v) Replenishment quantity of the retailer
in subcase v of case j of model i
(subcase v is optional)

sqij(v) Shortage quantity of the retailer in
subcase v of case j of model i (subcase
v is optional)

RHCij(v) Holding cost of the retailer in subcase
v of case j of model i (subcase v is
optional)

RLCij(v) Loss cost of the retailer in subcase
v of case j of model i (subcase v is
optional)

DHCij(v) Holding cost of the distribution center
in subcase v of case j of model i
(subcase v is optional)

MHCij(v) Holding cost of the manufacturer in
subcase v of case j of model i (subcase
v is optional)

SRij(v) Sales revenue in subcase v of case j of
model i (subcase v is optional)

RRij(v) Recovery revenue in subcase v of case
j of model i (subcase v is optional)

r�ij(v) Optimal time when the inventory is
zero in subcase v of case j of model i
(subcase v is optional)

T �ij(v) Optimal replenishment cycle of retailer
in subcase v of case j of model i
(subcase v is optional)

n�ij(v) Optimal replenishment frequency of
the retailer in subcase v of case j of
model i, which is a positive integer
number (subcase v is optional)

q�ij(v) Optimal replenishment quantity of the
retailer in subcase v of case j of model
i (subcase v is optional)

sq�ij(v) Optimal shortage quantity of the
retailer in subcase v of case j of model
i (subcase v is optional)

AP �
ij(v)

Optimal average pro�t of the supply
chain in subcase v of case j of model i
(subcase v is optional)

3.2. Assumptions
1. The quantity of perishable products on the shelf is

limited.

2. According to Mishra et al. [40] and Chen et al. [41],
the demand of customers is a�ected by the price and
stock of a perishable product and inventory level
and the demand function can be written as:

D(p; I(t)) =

(
d(p) + �I(t) if I(t) � 0
d(p) if I(t) < 0

d(p) is a non-negative monotone non-increasing
function, that is, d(p) � 0 and d0(p) < 0.

3. Shortage of the retailer is allowed. The shortage is
complete backlogging.

4. According to Teimoury and Kazemi [28] and Pervin
et al. [42], the deterioration rate is constant. Dete-
rioration only happens on the shelf of the retailer.
The perishable product has a residual value at the
end of the planning horizon and is repurchased at
a discounted price.

5. The discounted rate is a positive number less than 1.

4. Mathematical models

The multi-echelon inventory system consists of one
plant, one distribution center, and one retailer. The
average total cost of a multi-echelon inventory system
includes the following costs: inventory holding cost,
ordering cost, and loss cost of the retailer, ordering cost
and holding cost of the distribution center, ordering
cost, holding cost, and production cost of the manufac-
turer. The average revenue is composed of average sales
revenue and recovery revenue of residual value. The
average pro�t of the supply chain equals the di�erence
between average revenue and average total cost. This
study aims to maximize the average pro�t of the supply
chain by determining q�ij , r�ij , T �ij , and n�ij . Two models
for starting with shortages and ending with shortages
are optimized for perishable products with price and
stock-dependent demand in the supply chain.

4.1. Model 1 (ending with shortages)
4.1.1. Establishment of model
The multi-echelon inventory model ending with short-
ages is shown in Figure 1. The purpose of this model
is to maximize the average pro�t of the supply chain.

The inventory cost of retailer
As we can see from Figure 1, the replenishment arrives
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Figure 1. Inventory system ending with shortage.

in retailer at time 0. The inventory of retailer is
decreased to zero at time r1j(v) due to the demand of
customers and the deterioration of perishable products.
The demand after time r1j(v) is backlogging. Based on
the above description, the inventory at time t could be
formulated by the following equation:

dI(t)
dt

=

8<: �d(p)� �I(t)� �I(t) 0 � t � r1j(v)

�d(p) r1j(v) � t � T1j(v) (1)

We solve the above equation with the boundary condi-
tion I(r1j(v)) = 0. The solution is given by:

I(t)

=

8<: d(p)
�+� (e(�+�)(r1j(v)�t) � 1) 0 � t � r1j(v)

d(p)(r1j(v) � T1j(v)) r1j(v) � t � T1j(v)(2)

The holding cost of the retailer from time 0 to time
r1j(v) is calculated by:

RHCij(v) = h
Z r1j(v)

0
I(t)dt
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= h
Z r1j(v)

0

d(p)
� + �

(e(�+�)(r1j(v)�t) � 1)dt

=
hd(p)

(�+�)2 (e(�+�)r1j(v) � 1)� hd(p)r1j(v)

(� + �)
: (3)

The loss cost of the retailer from time 0 to time r1j(v)
is calculated by:

RLC1j(v) = g
Z r1j(v)

0
�I(t)dt

= �g(
d(p)

(� + �)2 (e(�+�)r1j(v) � 1)

� d(p)
(� + �)

r1j(v)): (4)

The ordering cost of the retailer from time 0 to time
T1j(v) is s. The shortage quantity from r1j(v) to time
T1j(v) is:

sq1j(v) = d(p)(T1j(v) � r1j(v)): (5)

The order quantity of the retailer from time 0 to time
T1j(v) is given by:

q1j(v) =I(0) + sq1j(v) =
d(p)
� + �

(e(�+�)r1j(v) � 1)

+ d(p)(T1j(v) � r1j(v)): (6)

If r�1j(v) and T �1j(v) are determined, the optimal order
quantity q�1j(v) is written as:

q�1j(v) =I(0) + sq1j(v) =
d(p)
� + �

(e(�+�)r�1j(v) � 1)

+ d(p)(T �1j(v) � r�1j(v)): (7)

The inventory cost of the distribution center and
manufacturer
The ordering cost of a distribution center in n1j(v)T1j(v)
is s1. As shown in Figure 1, the holding cost of the
distribution center in n1j(v)T1j(v) is calculated by:

DHC1j(v) = h1T1j(v)q1j(v)
n1j(v)(n1j(v) � 1)

2
: (8)

The startup cost of the manufacturer in n1j(v)T1j(v)
is s2. The production cost of the manufacturer in
n1j(v)T1j(v) is cn1j(v)q1j(v). As we can see from
Figure 1, the holding cost of the manufacturer in
n1j(v)T1j(v) is:

MHC1j(v) = (n1j(v))2q1j(v)T1j(v)h2=2: (9)

The revenue of supply chain
The sales revenue of the supply chain from 0 to T1j(v)
is written as:

SR1j(v) =p
Z r1j(v)

0
(d(p) + �I(t))dt

+ pd(p)(T1j(v) � r1j(v))

= p(d(p)r1j(v) +
d(p)�

(� + �)2 (e(�+�)r1j(v) � 1)

� d(p)�
�+�

r1j(v)+d(p)(T1j(v)�r1j(v))):
(10)

The recovery revenue of the supply chain from 0 to
T1j(v) is given by:

RR1j(v) = w
Z r1j(v)

0

d(p)�
� + �

(e(�+�)(r1j(v)�t) � 1)dt

=
wd(p)�
(� + �)2 (e(�+�)r1j(v) � 1)

� wd(p)�r1j(v)

� + �
: (11)

Based on the above calculation, the average pro�t of
the supply chain is formulated as follows:

AP1j(v)(n1j(v);r1j(v); T1j(v)) = p(d(p)r1j(v)

+
d(p)�

(� + �)2 (e(�+�)r1j(v) � 1)

� d(p)�
� + �

r1j(v) + d(p)(T1j(v) � r1j(v)))=T1j(v)

+
�
wd(p)�
(� + �)2 (e(�+�)r1j(v) � 1)

� wd(p)�r1j(v)

� + �

�
=T1j(v)

�
�

hd(p)
(� + �)2 (e(�+�)r1j(v) � 1)

� hd(p)r1j(v)

(� + �)

�
=T1j(v)

� �g
�

d(p)
(� + �)2 (e(�+�)r1j(v) � 1

�
� d(p)

(� + �)
r1j(v))=T1j(v) � s=T1j(v)

� s1=n1j(v)=T1j(v) � h1T1j(v)

q1j(v)
n1j(v)(n1j(v) � 1)

2
=n1j(v)=T1j(v)
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� (n1j(v))2q1j(v)T1j(v)h2=2=n1j(v)=T1j(v)

� s2=n1j(v)=T1j(v)

� cn1j(v)q1j(v)=n1j(v)=T1j(v): (12)

The objective of this model is to maximize AP1j(v)
(n1j(v); r1j(v),T1j(v)) with the storage space limitation
of shelf by determining n1j(v), r1j(v), and T1j(v).

4.1.2. Analysis of model
This subsection analyzes the model in two cases,
demonstrates the uniqueness of the solutions, and
provides the solutions.

Based on Eq. (12), we can see AP1j(v) is the
function of variables n1j(v), r1j(v), and T1j(v). We
discuss the impact of n1j(v) on AP1j(v) under the
assumption that r1j(v) and T1j(v) are �xed. Taking the
�rst-order and second-order derivative of AP1j(v) with
respect to n1j(v), we obtain:

@AP1j(v)(n1j(v);r1j(v); T1j(v))
@n

=
s1

T1j(v)n2
1j(v)

� h1q1j(v)

2
� q1j(v)h2

2
+

s2

T1j(v)n2
1j(v)

; (13)

@2AP1j(v)(n1j(v); r1j(v); T1j(v))
@n2

1j(v)
=

� 2s1

T1j(v)n3
1j(v)

� 2s2

T1j(v)n3
1j(v)

< 0: (14)

Eq. (14) implies AP1j(v) is strictly concave. Therefore,
Eq. (13) = 0 has at most one solution. Then, we
discuss the property of AP1j(v)(n1j(v); r1j(v); T1j(v))
with respect to r1j(v) and T1j(v) if n�1j(v) is given.
Plugging Eq. (6) into Eq. (12) and taking the �rst-
order of AP1j(v) with respect to r1j(v), we obtain:

@AP1j(v)(n�1j(v); r1j(v); T1j(v))
@r1j(v)

= (d(p)e(�+�)r1j(v)

� d(p))
�
p� + w� � h� �g � c(� + �)

T1j(v)(� + �)

� h1(n�1j(v) � 1) + n�1j(v)h2

2

�
:

(15)

Based on the value of p�+w�� h� �g� c(�+ �), two
cases are discussed for Model 1.

Case 1: p� + w� � h� �g � c(� + �) � 0.

Proposition 1. For a given n�11, if p� + w� � h�

�g � c(� + �) � 0, the optimal solution of Eq. (12)
is (n�11; 0; T �11) where T �11 could be obtained by the
following equation:

@AP11(n�11; 0; T11)
@T11

=
s

T11
2 +

s1

n�11T11
2

� h1(n�11 � 1)d(p11)
2

� n�11d(p11)h2

2

+
s2

n�11T11
2 = 0: (16)

The proof of proposition 1 is in Appendix A.

Case 2: p� + w� � h� �g � c(� + �) > 0.
There are three subcases to discuss.

Case 2.1. p�+w��h��g�c(�+�)
T121(�+�) � h1(n121�1)+n121h2

2 <0.

Proposition 2. For a given n�121, if:

p�+w��h��g�c(�+�)
T121(�+�)

� h1(n�121�1)+n�121h2

2
<0;

the optimal solution of Eq. (12) is (n�121; 0; T �121)
where T �121 could be obtained by the following equation.
Otherwise, (n�121; 0; T �121) is not a feasible solution.

@AP121(n�121; 0; T121)
@T121

=
s

T121
2 +

s1

n�121T121
2

� h1(n�121 � 1)d(p)
2

� n�121d(p)h2

2

+
s2

n�121T121
2 = 0: (17-1)

The proof of Proposition 2 is in Appendix B.

Case 2.2 p�+w��h��g�c(�+�)
T122(�+�) �h1(n122�1)+n122h2

2 > 0.

Proposition 3. For a given n�122, if:

p�+w��h��g�c(�+�)
T122(�+�)

� h1(n�122�1)+n�122h2

2
>0;

the optimal solution of Eq. (12) is (n�122; T �122; T �122)
where T �122 could be obtained by the following equation.
Otherwise, (n�122; T �122; T �122) is not a feasible solution.

T �122 = ln
�
l(� + �)
d(p)

+ 1)=(� + �
�
: (17-2)

The proof of Proposition 3 is in Appendix C.

Case 2.3 p�+w��h��g�c(�+�)
T123(�+�) �h1(n123�1)+n123h2

2 = 0.

Proposition 4. If:
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p�+w��h��g�c(�+�)
T123(�+�)

� h1(n123�1)+n123h2

2
=0;

there is no optimal value for AP123(n123; r123; T123).
The proof of Proposition 4 is in Appendix D.

4.2. Model 2 (starting with shortages)
4.2.1. Establishment of model
The inventory cost of retailer
The multi-echelon inventory model starting with short-
ages is shown in Figure 2.

The replenishment arrives at the retailer at time
r2j(v). The inventory of retailer is decreased to zero
at time T2j(v) due to the demand of customers and the
deterioration of perishable products. The demand from
time 0 to time r2j(v) is complete backlogging. Based
on the above description, the inventory at time t could

be formulated by the following equation:
dI(t)
dt

=8<: �d(p) 0 � t � r2j(v)

�d(p)��I(t)��I(t) r2j(v)� t�T2j(v) (18)

The above equation is solved with the boundary
condition I(r2j(v)) = 0. The solution is written as:

I(t) =8><>:�d(p)t 0 � t � r2j(v)

d(p)
�+� (e(�+�)(T2j(v)�t) � 1) r2j(v) � t � T2j(v)(19)

Figure 2. Inventory system starting with shortage.
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The holding cost of the retailer from time r2j(v) to time
T2j(v) is given by:

RHC2j(v) = h
Z T2j(v)

r2j(v)

I(t)dt

=h
Z T2j(v)

r2j(v)

d(p)
� + �

(e(�+�)(T2j(v)�r2j(v))�1)dt

=
hd(p)

(� + �)2 (e(�+�)(T2j(v)�r2j(v)) � 1)

� hd(p)(T2j(v) � r2j(v))
(� + �)

: (20)

The loss cost of the retailer from time r2j(v) to time
T2j(v) is calculated by:

RLC2j(v) =g
Z T2j(v)

r2j(v)

�I(t)dt = �g
�

d(p)
(� + �)2

(e(�+�)(T2j(v)�r2j(v)) � 1)

� d(p)
(� + �)

(T2j(v) � r2j(v))
�
: (21)

The ordering cost of the retailer from time r2j(v) to
time T2j(v) is s. The shortage quantity from time 0 to
time r2j(v) is:

sq2j(v) = d(p)r2j(v): (22)

The order quantity of retailer from time 0 to time T2j(v)
is calculated by:

q2j(v) =I(0)+sq2j(v) =
d(p)
�+�

�
e(�+�)(T2j(v)�r2j(v))�1

�
+ d(p)r2j(v): (23)

If r�2j(v) and T �2j(v) are determined, the optimal order
quantity q�2j(v) is given by:

q�2j(v) =I(0) + sq2j(v) =
d(p)
� + �

(e(�+�)(T�2j(v)�r�2j(v)) � 1) + d(p)r�2j(v): (24)

The inventory cost of distribution center and
manufacturer
The ordering cost of the distribution center in
n2j(v)T2j(v) is s1. As we can see from Figure 2, the
holding cost of the distribution center in n2j(v)T2j(v) is
written as:
DHC2j(v) =h1(0 � r2j(v) + (n2j(v) � 1)q2j(v)T2j(v)

+ (n2j(v) � 2)

q2j(v)T2j(v) + � � � q2j(v)T2j(v)

+ 0 � (T2j(v) � r2j(v))) = h1T2j(v)q2j(v)

n2j(v)(n2j(v) � 1)
2

: (25)

The startup cost of the manufacturer in n2j(v)T2j(v)
is s2. The production cost of the manufacturer in
n2j(v)T2j(v) is cn2j(v)q2j(v). The holding cost of the
manufacturer in n2j(v)T2j(v) is:

MHC2j(v) = h2(2n2j(v)q2j(v) � r2j(v)q2j(v)=T2j(v))

r2j(v)=2 + h2(n2j(v)T2j(v) � r2j(v))

(n2j(v)q2j(v) � r2j(v)q2j(v)=T2j(v))=2

= (n2j(v))2q2j(v)T2j(v)h2=2: (26)

The revenue of supply chain
The sales revenue of the supply chain from 0 to T2j(v)
is given by:

SR2j(v) =p
Z T2j(v)

r2j(v)

(d(p) + �I(t))dt

+ pd(p)r2j(v) = pd(p)T2j(v)

� pd(p)�
(� + �)2 (1� e(�+�)(T2j(v)�r2j(v)))

� pd(p)�
(� + �)

(T2j(v) � r2j(v)): (27)

The recovery revenue of the supply chain from 0 to
T2j(v) is calculated by:

RR2j(v) = w
Z T2j(v)

r2j(v)

d(p)�
� + �

(e(�+�)(T2j(v)�r2j(v)) � 1)dt

=
wd(p)�
(� + �)2 (e(�+�)(T2j(v)�r2j(v)) � 1)

� wd(p)�
� + �

(T2j(v) � r2j(v)): (28)

Based on the above calculation, the average pro�t of
the supply chain is given as follows:

AP2j(v)(n2j(v);r2j(v); T2j(v)) = p2j(v)(d(p)T2j(v)

+
d(p)�

(� + �)2 (e(�+�)(T2j(v)�r2j(v)) � 1)

� d(p)�
� + �

(T2j(v) � r2j(v)))=T2j(v)

+
�
wd(p)�
(� + �)2 (e(�+�)(T2j(v)�r2j(v)) � 1)
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� wd(p)�(T2j(v) � r2j(v))
� + �

�
=T2j(v)

�
�

hd(p)
(� + �)2 (e(�+�)(T2j(v)�r2j(v)) � 1)

� hd(p)(T2j(v) � r2j(v))
(� + �)

�
=T2j(v)

� �g
�

d(p)
(� + �)2 (e(�+�)(T2j(v)�r2j(v)) � 1)

� d(p)(T2j(v) � r2j(v))
(� + �)

�
=T2j(v) � s=T2j(v)

� s1=n2j(v)=T2j(v) � h1T2j(v)q2j(v)

n2j(v)(n2j(v) � 1)
2

=n2j(v)=T2j(v)

� (n2j(v))2q2j(v)T2j(v)h2=2=n2j(v)=T2j(v)

�s2=n2j(v)=T2j(v)�cn2j(v)q2j(v)=n2j(v)=T2j(v):
(29)

The purpose of this model is to maximize AP2j(v)
(n2j(v); r2j(v), T2j(v)) with the space limitation of shelf
by determining n2j(v), r2j(v), and T2j(v).

4.2.2. Analysis of model
In this subsection, the model is analyzed in two cases
and the solutions and their properties are provided.

Based on Eq. (29), we can see AP2j(v) is the
function of variables n2j(v), r2j(v), and T2j(v). We study
the impact of n2j(v) on AP2j(v) under the assumption
that r2j(v) and T2j(v) are �xed. We take the �rst-order
and second-order derivatives of AP2j(v) with respect to
n2j(v).

@AP2j(v)(n2j(v);r2j(v); T2j(v))
@n2j(v)

=
s1

T2j(v)n2
2j(v)

� h1q2j(v)

2
� q2j(v)h2

2
+

s2

T2j(v)n2
2j(v)

; (30)

@2AP2j(v)(n2j(v); r2j(v); T2j(v))
@n2

2j(v)
= � 2s1

T2j(v)n3
2j(v)

� 2s2

T2j(v)n3
2j(v)

< 0: (31)

Eq. (31) indicates Eq. (30) = 0 has at most one
solution. Then, we discuss the property of AP2j(v)
(n2j(v), r2j(v), T2j(v)) with respect to r2j(v) and T2j(v)
if n�2j(v) is given. We plug Eq. (23) into Eq. (29) and

take the �rst-order of AP2j(v) with respect to r2j(v).

@AP2j(v)(n�2j(v); r2j(v); T2j(v))
@r2j(v)

=

(�d(p)e(�+�)(T2j(v)�r2j(v)) + d(p))�
p� + w� � h� �g � c(� + �)

T2j(v)(� + �)

� h1(n�2j(v) � 1) + n�2j(v)h2

2

�
: (32)

Based on the value of p�+w�� h� �g� c(�+ �), two
cases are discussed for Model 2.

Case 1: p� + w� � h� �g � c(� + �) � 0:

Proposition 5. For a given n�21, if p� + w� � h �
�g � c(� + �) � 0, the optimal solution of Eq. (29)
is (n�21; T �21; T �21) where T �21 could be obtained by the
following equation:

@AP21(n�21; T21; T21)
@T21

=
s

T21
2 +

s1

n�21T21
2

� h1(n�21 � 1)d(p)
2

� n�21d(p)h2

2

+
s2

n�21T21
2 = 0: (33)

The proof of Proposition 5 is in Appendix E.

Case 2: p� + w� � h� �g � c(� + �) > 0. There are
three subcases to discuss.

Case 2.1: p�+w��h��g�c(�+�)
T221(�+�) �h1(n221�1)+n221h2

2 <0.

Proposition 6. For a given n�221, if:

p�+w��h��g�c(�+�)
T221(�+�)

� h1(n�221�1)+n�221h2

2
<0;

the optimal solution of Eq. (29) is (n�221; T �221; T �221)
where T �221 could be solved by the following equation,
otherwise (n�221; T �221; T �221) is not a feasible solution.

@AP221(n�221; T221; T221)
@T221

=
s

T221
2 +

s1

n�221T221
2

� h1(n�221 � 1)d(p)
2

� n�221d(p)h2

2

+
s2

n�221T221
2 = 0:

(34-1)

The proof of Proposition 6 is in Appendix F.
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Case 2.2: p�+w��h��g�c(�+�)
T222(�+�) � h1(n222�1)+n222h2

2 >0:

Proposition 7. For a given n�222, if:

p�+w��h��g�c(�+�)
T222(�+�)

� h1(n�222�1)+n�222h2

2
>0;

the optimal solution of Eq. (29) is (n�222; 0; T �222) where
T �222 could be solved by the following equation. Other-
wise, (n�222; 0; T �222) is not a feasible solution.

T �222 = ln
�
l(� + �)
d(p222)

+ 1
�
=(� + �): (34-2)

The proof of Proposition 7 is in Appendix G.

Case 2.3 p�+w��h��g�c(�+�)
T223(�+�) �h1(n223�1)+n223h2

2 = 0.

Proposition 8. If:

p�+w��h��g�c(�+�)
T223(�+�)

� h1(n223�1)+n223h2

2
=0;

there is no optimal value for AP223(n223; r223; T223).
The proof of Proposition 8 is in Appendix H.

The above two models can be simpli�ed to other
models. First, if � = 0, these two models are simpli�ed
to the models for non-perishable products. Second,
if w = 0, recovering for perishable products will not
be considered. Third, if � = 0, demand is not
dependent on stock. Fourth, if d(p) = 0, demand
will not be a�ected by price. Therefore, these two
models include at least four simpli�ed models. In other
words, simpli�ed models that appear in other studies
are special cases of the proposed models in this paper.

5. Algorithms

5.1. Algorithm for Model 1
Based on the analysis of Subsection 4.1.2, we can use
the following algorithm to solve Model 1:

Step 1. Set the value for parameters;
Step 2. If p� + w� � h � �g � c(� + �) � 0, go to

algorithm 1-1;
Step 3. If p� + w� � h � �g � c(� + �) > 0, go to

Algorithm 1-2.

Algorithm 1-1
Step 1. Set r�11 = 0 and n�11 = 1;
Step 2. Obtain T �11;n�11

by solving Eq. (16) and plug
T �11;n�11

and r�11 into Eq. (7) to obtain q�11;n�11
;

Step 3. Plug q�11;n�11
, n�11, r�11, and T �11;n�11

into Eq.
(12) to obtain AP �11(1; r�11; T �11;n�11

);
Step 4. n�11 = 1 + n�11;

Step 5. Obtain T �11;n�11
by solving Eq. (16) and plug

T �11;n�11
and r�11 into Eq. (7) to obtain q�11;n�11

;
Step 6. Plug q�11;n�11

n�11, r�11, and T �11;n�11
into

Eq. (12) to obtain AP �11(n�11; r�11; T �11;n�11
);

Step 7. If AP �11(n�11; r�11; T �11;n�11
) > AP �11(n�11 � 1;

r�11; T �11;n�11�1), go to Step 4, otherwise go to
Step 8;

Step 8. Output the optimal solution (n�11 � 1, r�11,
T �11;n�11�1).

Algorithm 1-2
Step 1. Set r�121 = 0, n�12 = 1;
Step 2. Obtain T �121;n�12

by solving Eq. (17-1) and
plug T �121;n�12

and r�121 into Eq. (7) to obtain
q�121;n�12

;

Step 3. If p�+w��h��g�c(�+�)
T�121;n�12

(�+�) � h1(n�12�1)+n�12h2
2 < 0,

plug q�121;n�12
, n�12, r�121, and T �121;n�12

into
Eq. (12) to obtain AP �121(n�12; r�121; T �121;n�12

),
otherwise let AP �121(n�12; r�121; T �121;n�12

) =
�10000;

Step 4. Obtain T �122;n�12
by solving Eq. (17-2) and set

r�122;n�12
= T �122;n�12

. Then plug T �122;n�12
and

r�122;n�12
into Eq. (7) to obtain q�122;n�12

;

Step 5. If p�+w��h��g�c(�+�)
T�122;n�12

(�+�) � h1(n�12�1)+n�12h2
2 >

0, plug q�122;n�12
, n�12, r�122;n�12

and T �122;n�12

into Eq. (12) to obtain AP �122(n�122, r�122;n�12
,

T �122;n�12
), otherwise, let AP �122(n�12, r�122;n�12

,
T �122;n�12

) = �10000;

Step 6. AP �12(n�12, r�12;n�12
, T �12;n�12

)=maxfAP �121(n�12,
r�121; T �121;n�12

), AP �122(n�12; r�122;n�12
; T �122;n�12

)g;
Step 7. Set n�12 = 1 + n�12;
Step 8. Obtain T �121;n�12

by solving Eq. (17-1) and
plug T �121;n�12

and r�121 into Eq. (7) to obtain
q�121;n�12

;

Step 9. If p�+w��h��g�c(�+�)
T�121;n�12

(�+�) � h1(n�12�1)+n�12h2
2 < 0,

plug q�121;n�12
, n�12, r�121, and T �121;n�12

into
Eq. (12) to obtain AP �121(n�12; r�121; T �121;n�12

),
otherwise, let AP �121(n�12; r�121; T �121;n�12

) =
�10000;

Step 10. Obtain T �122;n�12
by solving Eq. (17-2) and set

r�122;n�12
= T �122;n�12

. Then plug T �122;n�12
and

r�122;n�12
into Eq. (7) to obtain q�122;n�12

;

Step 11. If p�+w��h��g�c(�+�)
T�122;n�12

(�+�) � h1(n�12�1)+n�12h2
2 > 0,

plug q�122;n�12
; n�12; r�122;n�12

and T �122;n�12
into

Eq. (12) to obtain AP �122(n�12; r�122;n�12
;

T �122;n�12
), otherwise, let AP �122(n�12; r�122;n�12

;
T �122;n�12

) = �10000;
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Step 12. AP �12(n�12; r�12;n�12
; T �12;n�12

) =
maxfAP �121(n�12; r�121; T �121;n�12

);
AP �122(n�12; r�122;n�12

; T �122;n�12
)g ;

Step 13. If AP �12(n�12, r�12;n�12
, T �12;n�12

) > AP �12(n�12�1,
r�12;n�12�1, T �12;n�12�1), go to Step 7, otherwise
go to Step 14;

Step 14. Output the optimal solution (n�12 � 1,
r�12;n�12�1, T �12;n�12�1).

5.2. Algorithm for Model 2
Based on the analysis of Subsection 4.2.2, we can use
the following algorithm to solve Model 2.

Step 1. Set the value for parameters;
Step 2. If p� + w� � h � �g � c(� + �) � 0, go to

Algorithm 2-1;
Step 3. If p� + w� � h � �g � c(� + �) > 0, go to

Algorithm 2-2.

Algorithm 2-1
Step 1. Set n�21 = 1;
Step 2. Obtain T �21;n�21

by solving Eq. (33) , set
r�21;n�21

= T �21;n�21
, and plug T �21;n�21

and r�21;n�21

into Eq. (24) to obtain q�21;n�21
;

Step 3. Plug q�21;n�21
, n�21, r�21;n�21

, and T �21;n�21
into Eq.

(29) to obtain AP �21(n�21; r�21;n�21
; T �21;n�21

);
Step 4. n�21 = 1 + n�21;
Step 5. Obtain T �21;n�21

by solving Eq. (33) and plug
T �21;n�21

and r�21;n�21
into Eq. (24) to obtain

q�21;n�21
;

Step 6. Plug q�21;n�21
n�21, r�21;n�21

, and T �21;n�21
into Eq.

(29) to obtain AP �21(n�21; r�21;n�21
; T �21;n�21

);

Step 7. If AP �21(n�21, r�21;n�21
, T �21;n�21

) > AP �21(n�21�1,
r�21;n�21�1, T �21;n�21�1), go to Step 4, otherwise,
go to Step 8;

Step 8. Output the optimal solution (n�21 � 1;
r�21;n�21�1; T �21;n�21�1).

Algorithm 2-2
Step 1. Set n�22 = 1;
Step 2. Obtain T �221;n�22

by solving Eq. (34-1), set
r�221;n�22

= T �221;n�22
, and plug T �221;n�22

and
r�221;n�22

into Eq. (24) to obtain q�221;n�22
;

Step 3. If p�+w��h��g�c(�+�)
T�221;n�22

(�+�) � h1(n�22�1)+n�22h2
2 <

0, plug q�221;n�22
, n�22, r�221;n�22

and T �221;n�22

into Eq. (29) to obtain AP �221(n�22; r�221;n�22
;

T �221;n�22
), otherwise, let AP �221(n�22; r�221;n�22

;
T �221;n�22

) = �10000;

Step 4. Obtain T �222;n�22
by solving Eq. (34-2) and

set r�222 = 0. Then plug T �222;n�22
and r�222

into Eq. (24) to obtain q�222;n�22
;

Step 5. If p�+w��h��g�c(�+�)
T�222;n�22

(�+�) { h1(n�22�1)+n�22h2
2 > 0,

plug q�222;n�22
, n�22, r�222 and T �222;n�22

into
Eq. (29) to obtain AP �222(n�22;r�222; T �222;n�22

),
otherwise, let AP �222(n�22; r�222; T �222;n�22

) =
�10000;

Step 6. AP �22(n�22; r�22;1; T �22;1) = maxfAP �221(n�22;
r�221;n�22

; T �221;n�22
);AP �222(n�22; r�222,T �222;n�22

)g;
Step 7. Set n�22 = 1 + n�22;
Step 8. Obtain T �221;n�22

by solving Eq. (34), set
r�221;n�22

= T �221;n�22
and plug T �221;n�22

and
r�221;n�22

into Eq. (24) to obtain q�221;n�22
;

Step 9. If p�+w��h��g�c(�+�)
T�221;n�22

(�+�) -h1(n�22�1)+n�22h2
2 < 0,

plug q�221;n�22
, n�22, r�221;n�22

and T �221;n�22
into

Eq. (29) to obtain AP �221(n�22; r�221;n�22
;

T �221;n�22
), otherwise, let AP �221(n�22; r�221;n�22

;
T �221;n�22

) = �10000;

Step 10. Obtain T �222;n�22
by solving Eq. (34-2) and

set r�222 = 0. Then plug T �222;n�22
and r�222

into Eq. (24) to obtain q�222;n�22
;

Step 11. If p�+w��h��g�c(�+�)
T�222;n�22

(�+�) �h1(n�22�1)+n�22h2
2 >

0, plug q�222;n�22
, n�22, r�222 and T �222;n�22

into
Eq. (29) to obtainAP �222(n�22; r�222; T �222;n�22

),
otherwise, let AP �222(n�22; r�222; T �222;n�22

) =
�10000;

Step 12. AP �22(n�22; r�22;n�22
; T �22;n�22

)=maxfAP �221(n�22,
r�221;n�22

;T �221;n�22
);AP �222(n�22; r�222;T �222;n�22

)g;
Step 13. If AP �22(n�22, r�22;n�22

, T �22;n�22
) > AP �22(n�22 �

1; r�22;n�22�1; T �22;n�22�1), go to Step 7, other-
wise, go to Step 14;

Step 14. Output the optimal solution (n�22 � 1,
r�22;n�1; T �22;n�1).

6. Computational experiments

In this section, two multi-echelon inventory systems
for perishable products are solved using the algorithm
proposed in Section 5. Sensitivity analyses for two
cases of two models are performed. All programs are
coded in MATLAB and run on a PC with a Pentium
(R) Processor (2 GHz) and 2 GB of memory.

6.1. Numerical example for Case 1 of Model 1
The parameters for Case 1 of model 1 are shown in
Table 1. The demand function is d(p) = 9500 � 500p.

Table 1. Parameters for Case 1 of Model 1.

p � � w h h1 h2 g f s s1 s2 l

10 0.6 0.3 1 3 1 5 6 5 5 3 3 150
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According to Algorithm 1-1 presented in Subsection
5.1, we can obtain the following optimal results:

r�11 = 0; T �11 = 0:0313; n�11 = 1;

q�11 = 140:71; AP �11 = 21796:44:

r�11 = 0 indicates that the holding cost, loss cost of
the retailer, and recovery revenue of the supply chain
is zero. n�11 = 1 means that the holding cost of the
distribution center is zero.

Sensitivity analysis is used to investigate the
impact of parameters on optimal solutions. All pa-
rameters take four values. p, �, �, and w reduce 10%
each time. h, h1, h2, g, c, s, s1, and s2 increase 10%
each time. l increases 50 each time. The results of
sensitivity analysis are presented in Table 2.

As we can see from Table 2, none of the param-
eters have any e�ect on n�11 and r�11. p has a positive
correlation with T �11 and AP �11. Nevertheless, p has a
negative correlation with q�11. �, �, w, h, h1, g, and l
have no e�ect on T �11, q�11 and AP �11. h2 has a negative
relationship with T �11, q�11, and AP �11. c has no e�ect
on T �11 and q�11. And c has a negative correlation with
AP �11. s, s1, and s2 are positively related to T �11 and
T �11 and q�11 are negatively related to AP �11.

Next, we analyze the reasons for the impact of the
parameters on AP �11. The reason that p has a positive
impact on AP �11 is that sales revenue increases with
increasing p. Since the holding cost of the retailer,
loss cost of the retailer, recovery revenue of supply
chain, and the holding cost of the distribution center
are zero, �, �, w, h, h1, and g do not a�ect AP �11.
With increasing h2, c, s, s1, and s2, the ordering cost
and holding cost increased which led to the decrease of
AP �11. Finally, l does not work as the inventory of the
retailer is zero. Therefore, l does not a�ect AP �11.

6.2. Numerical example for Case 2 of Model 1
The parameters for Case 2 of Model 1 are shown in
Table 3. The demand function is d(p) = 9500 � 500p.
According to the Algorithm 1-2 given in Subsection 5.1,
the following optimal results can be obtained:

r�12 = 0:0186; T �12 = 0:0186; n�12 = 8;

q�12 = 150; AP �12 = 18518:27:

r�11 = T �12 = 0 indicates that no shortage happens.
q�12 = 150 implies that the space of the shelf is fully
used.

Sensitivity analysis is performed to investigate the
impact of parameters on optimal solutions. Similar to
Case 1, all parameters take four values. p, �, �, and
w increase 10% each time. h, h1, h2, g, c, s, s1, and
s2 decrease 10% each time. l increases 50% each time.
The results are shown in Table 4.

Table 2. Sensitivity analysis for Case 1 of Model 1.

Parameter Value n�11 r�11 T �11 q�11 AP �11

p 10 1 0 0.0313 140.71 21796.4
9 1 0 0.0297 148.32 19258.4
8 1 0 0.0283 155.56 15722.2
7 1 0 0.0271 162.48 11187.6

� 0.6 1 0 0.0313 140.71 21796.4
0.54 1 0 0.0313 140.71 21796.4
0.48 1 0 0.0313 140.71 21796.4
0.42 1 0 0.0313 140.71 21796.4

� 0.3 1 0 0.0313 140.71 21796.4
0.27 1 0 0.0313 140.71 21796.4
0.24 1 0 0.0313 140.71 21796.4
0.21 1 0 0.0313 140.71 21796.4

w 1 1 0 0.0313 140.71 21796.4
0.9 1 0 0.0313 140.71 21796.4
0.8 1 0 0.0313 140.71 21796.4
0.7 1 0 0.0313 140.71 21796.4

h 3 1 0 0.0313 140.71 21796.4
3.3 1 0 0.0313 140.71 21796.4
3.6 1 0 0.0313 140.71 21796.4
3.9 1 0 0.0313 140.71 21796.4

h1 1 1 0 0.0313 140.71 21796.4
1.1 1 0 0.0313 140.71 21796.4
1.2 1 0 0.0313 140.71 21796.4
1.3 1 0 0.0313 140.71 21796.4

h2 5 1 0 0.0313 140.71 21796.4
5.5 1 0 0.0298 134.16 21762.1
6 1 0 0.0285 128.45 21729.3

6.5 1 0 0.0274 123.41 21697.8
g 6 1 0 0.0313 140.71 21796.4

6.6 1 0 0.0313 140.71 21796.4
7.2 1 0 0.0313 140.71 21796.4
7.8 1 0 0.0313 140.71 21796.4

c 5 1 0 0.0313 140.71 21796.4
5.5 1 0 0.0313 140.71 19546.4
6 1 0 0.0313 140.71 17296.4

6.5 1 0 0.0313 140.71 15046.4
s 5 1 0 0.0313 140.71 21796.4

5.5 1 0 0.0320 143.87 21780.6
6 1 0 0.0327 146.97 21765.2

6.5 1 0 0.0333 150.00 21750.0
s1 3 1 0 0.0313 140.71 21796.4

3.3 1 0 0.0317 142.62 21786.9
3.6 1 0 0.0321 144.50 21777.5
3.9 1 0 0.0325 146.36 21768.2

s2 3 1 0 0.0313 140.71 21796.4
3.3 1 0 0.0317 142.62 21786.9
3.6 1 0 0.0321 144.50 21777.5
3.9 1 0 0.0325 146.36 21768.2

l 150 1 0 0.0313 140.71 21796.4
200 1 0 0.0313 140.71 21796.4
250 1 0 0.0313 140.71 21796.4
300 1 0 0.0313 140.71 21796.4
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Table 3. Parameters for Case 2 of Model 1.

p � � w h h1 h2 g f s s1 s2 l

3 0.6 0.1 2 0.6 0.3 0.1 0.1 0.5 20 20 20 150

As shown in Table 4, none of the parameters have
any e�ect on q�12 except for l and none of the parameters
have any e�ect on n�12 except for h1, h2, and l. p and
l have a positive correlation with r�12 and T �12. Except
for p and l, none of the parameters have any e�ect on
r�12 and T �12. p, �, �, w, and l are positively related to
AP �12 because the increment of revenue is larger than
that of cost. AP �12 reduced as h, h1, h2, g, c, s, s1,
increased and s2 caused the ordering cost, holding cost,
and production cost to be increased.

6.3. Numerical example for Case 1 of Model 2
The parameters for Case 1 of Model 2 are listed in
Table 5. The demand function is d(p) = 6000 � 500p.
Running the Algorithm 2-1 provided in Subsection 5.2,
we can obtain the following optimal results: r�21 =
0:042, T �21 = 0:042, n�21 = 1, q�21 = 104:88, AP �21 =
4475:6. r�21 = T �21 = 0 implies that the inventory of the
retailer is zero. n�21 = 1 means that the inventory of
the distribution center is zero.

We investigate the relationship of parameters
and optimal solutions by sensitivity analysis. All
parameters have four values. p, �, �, and w reduce
10% at a time. h, h1, h2, g, c, s, s1, and s2 increase
10% at a time. l increases 50% at a time. The results
of sensitivity analysis are shown in Table 6.

As we can see from Table 6, none of the parame-
ters have any e�ect on n�21. p has positive correlation
with r�21 and T �21 has negative correlation with q�21. �,
�, w, h, h1, g, c, and l have no impact on r�21, T �21, and
q�21. h2 is negatively related to r�21, T �21, and q�21. s, s1,
and s2 are positively related to r�21, T �21, and q�21. p is
positively related to AP �21 since sales revenue increases
with increasing p. Because the inventory of retailer and
distribution center is zero, �, �, w, h, h1, g, and l have
no impact on AP �21. The reason for this is that the
holding cost and ordering cost increase with increasing
h2, c, s, s1, and s2, which have a negative e�ect on
AP �21.

6.4. Numerical example for Case 2 of Model 2
The parameters for Case 2 of Model 2 are given in
Table 7. The demand function is d(p) = 5000 � 250p.
We carry out the Algorithm 2-2 presented in Subsection
5.2 and get the following optimal results:
r�22 = 0; T �22 = 0:0535; n�22 = 5;

q�22 = 150; AP �22 = 23070:25:

r�22 = 0 means that there is no shortage. q�22 = 150
indicates the space of shelf has been used up.

Table 4. Sensitivity analysis for Case 2 of Model 1.

Parameter Value n�12 r�12 T �12 q�12 AP �12

p 3 8 0.0186 0.0186 150 18518.27
3.3 8 0.0190 0.0190 150 20536.73
3.6 8 0.0193 0.0193 150 22465.2
3.9 8 0.0197 0.0197 150 24303.66

� 0.6 8 0.0186 0.0186 150 18518.27
0.66 8 0.0186 0.0186 150 18528.73
0.72 8 0.0186 0.0186 150 18539.19
0.78 8 0.0186 0.0186 150 18549.64

� 0.1 8 0.0186 0.0186 150 18518.27
0.11 8 0.0186 0.0186 150 18519.19
0.12 8 0.0186 0.0186 150 18520.11
0.13 8 0.0186 0.0186 150 18521.03

w 2 8 0.0186 0.0186 150 18518.27
2.2 8 0.0186 0.0186 150 18519.76
2.4 8 0.0186 0.0186 150 18521.26
2.6 8 0.0186 0.0186 150 18522.76

h 0.6 8 0.0186 0.0186 150 18518.27
0.54 8 0.0186 0.0186 150 18522.76
0.48 8 0.0186 0.0186 150 18527.25
0.42 8 0.0186 0.0186 150 18531.74

h1 0.3 8 0.0186 0.0186 150 18518.27
0.27 9 0.0186 0.0186 150 18536.09
0.24 9 0.0186 0.0186 150 18554.09
0.21 10 0.0186 0.0186 150 18572.7

h2 0.1 8 0.0186 0.0186 150 18518.27
0.09 9 0.0186 0.0186 150 18524.84
0.08 9 0.0186 0.0186 150 18531.59
0.07 9 0.0186 0.0186 150 18538.34

g 0.1 8 0.0186 0.0186 150 18518.27
0.09 8 0.0186 0.0186 150 18518.34
0.08 8 0.0186 0.0186 150 18518.42
0.07 8 0.0186 0.0186 150 18518.49

c 0.5 8 0.0186 0.0186 150 18518.27
0.45 8 0.0186 0.0186 150 18920.89
0.4 8 0.0186 0.0186 150 19323.5
0.35 8 0.0186 0.0186 150 19726.12

s 20 8 0.0186 0.0186 150 18518.27
18 8 0.0186 0.0186 150 18625.63
16 8 0.0186 0.0186 150 18733
14 8 0.0186 0.0186 150 18840.36

s1 20 8 0.0186 0.0186 150 18518.27
18 8 0.0186 0.0186 150 18531.69
16 8 0.0186 0.0186 150 18545.11
14 8 0.0186 0.0186 150 18558.53

s2 20 8 0.0186 0.0186 150 18518.27
18 8 0.0186 0.0186 150 18531.69
16 8 0.0186 0.0186 150 18545.11
14 8 0.0186 0.0186 150 18558.53

l 150 8 0.0186 0.0186 150 18518.27
200 6 0.0248 0.0248 200 18817.73
250 5 0.0309 0.0309 250 19011.27
300 4 0.0370 0.0370 300 19149.87
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Table 5. Parameters for Case 1 of Model 2.
p � � w h h1 h2 g f s s1 s2 l
7 0.6 0.1 2 2 1 5 6 5 5 3 3 150

Table 6. Sensitivity analysis for Case 2 of Model 1.

Parameter Value n�21 r�21 T �21 q�21 AP �21

p 7 1 0.0420 0.0420 104.88 4475.60
0.63 1 0.0393 0.0393 111.98 3145.09
0.56 1 0.0371 0.0371 118.66 1326.70
0.49 1 0.0352 0.0352 124.98 -979.90

� 0.6 1 0.0420 0.0420 104.88 4475.60
0.54 1 0.0420 0.0420 104.88 4475.60
0.48 1 0.0420 0.0420 104.88 4475.60
0.42 1 0.0420 0.0420 104.88 4475.60

� 0.1 1 0.0420 0.0420 104.88 4475.60
0.09 1 0.0420 0.0420 104.88 4475.60
0.08 1 0.0420 0.0420 104.88 4475.60
0.07 1 0.0420 0.0420 104.88 4475.60

w 2 1 0.0420 0.0420 104.88 4475.60
1.8 1 0.0420 0.0420 104.88 4475.60
1.6 1 0.0420 0.0420 104.88 4475.60
1.4 1 0.0420 0.0420 104.88 4475.60

h 2 1 0.0420 0.0420 104.88 4475.60
2.2 1 0.0420 0.0420 104.88 4475.60
2.4 1 0.0420 0.0420 104.88 4475.60
2.6 1 0.0420 0.0420 104.88 4475.60

h1 1 1 0.0420 0.0420 104.88 4475.60
1.1 1 0.0420 0.0420 104.88 4475.60
1.2 1 0.0420 0.0420 104.88 4475.60
1.3 1 0.0420 0.0420 104.88 4475.60

h2 5 1 0.0420 0.0420 104.88 4475.60
5.5 1 0.0400 0.0400 100.00 4450.00
6 1 0.0383 0.0383 95.74 4425.54

6.5 1 0.0368 0.0368 91.99 4402.09
g 6 1 0.0420 0.0420 104.88 4475.60

6.6 1 0.0420 0.0420 104.88 4475.60
7.2 1 0.0420 0.0420 104.88 4475.60
7.8 1 0.0420 0.0420 104.88 4475.60

c 5 1 0.0420 0.0420 104.88 4475.60
5.5 1 0.0420 0.0420 104.88 3225.60
6 1 0.0420 0.0420 104.88 1975.60

6.5 1 0.0420 0.0420 104.88 725.60
s 5 1 0.0420 0.0420 104.88 4475.60

5.5 1 0.0429 0.0429 107.24 4463.81
6 1 0.0438 0.0438 109.54 4452.28

6.5 1 0.0447 0.0447 111.80 4440.98
s1 3 1 0.0420 0.0420 104.88 4475.60

3.3 1 0.0425 0.0425 106.30 4468.49
3.6 1 0.0431 0.0431 107.70 4461.48
3.9 1 0.0436 0.0436 109.09 4454.56

s2 3 1 0.0420 0.0420 104.88 4475.60
3.3 1 0.0425 0.0425 106.30 4468.49
3.6 1 0.0431 0.0431 107.70 4461.48
3.9 1 0.0436 0.0436 109.09 4454.56

l 150 1 0.0420 0.0420 104.88 4475.60
200 1 0.0420 0.0420 104.88 4475.60
250 1 0.0420 0.0420 104.88 4475.60
300 1 0.0420 0.0420 104.88 4475.60

Table 7. Parameters for Case 2 of Model 2.

p � � w h h1 h2 g f s s1 s2 l

9 0.6 0.1 2 0.6 0.3 0.1 0.1 0.5 20 20 20 150

We carry out the sensitivity analysis to investigate
the impact of parameters on optimal solutions. Similar
to Case 1, all parameters have four values. p, �, �, and
w increase 10% at a time. h, h1, h2, g, c, s, s1, and
s2 decrease 10% at a time. l increases 50% at a time.
The results are shown in Table 8.

As we can see from Table 8, none of the parame-
ters have any e�ect r�22. None of the parameters have
any e�ect n�22 except for p, h1, and l. And none of
the parameters have any e�ect on q�22 except for l. p
and l are positively related to T �22 and � is negatively
related to T �22. Other parameters do not a�ect T �22.
According to the demand function, if the price equals
10, sales revenue reaches the maximum. Therefore, if
the price is larger than 10, price is negatively related to
AP �22. If the price is smaller than 10, price is positively
related to AP �22. With the increase of �, �, w, and
l, AP �22 also increased. The reason is that the added
revenue is larger than the added cost. AP �22 decreased
as h, h1, h2, g, c, s, s1 increased and s2 caused the
ordering cost, holding cost, and production cost to be
increased.

In summary, the impact of p, �, �, l, and w
on AP �ij is complex. Whether the e�ect is positive
or negative depends on the demand function and the
values of these parameters. If the added revenue
generated by increasing these parameters exceeds the
added cost generated by increasing these parameters,
the impact of these parameters is positive, and vice
versa. Therefore, decision-makers should adjust the pa-
rameters according to the actual situation to maximize
the average pro�ts. The impact of h, h1, h2, g, c, s, s1,
and s2 on AP �ij is clear. If the value of these parameters
increases, AP �ij will be cut down. In other words, these
parameters have a negative impact on AP �ij . Thus
decision-makers should reduce these parameters as far
as possible to cut down the cost. They could also
choose direct sales to cut out the middleman and lower
costs.

7. Conclusions and future researches

This paper proposes and optimizes two inventory
models for perishable products with price and stock-
dependent demand in the supply chain. The supply
chain is composed of one manufacturer, one distri-
bution center, and one retailer. The objective is to
maximize the average pro�t of the supply chain. The
following conclusions can be made. In terms of model,
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Table 8. Sensitivity analysis for Case 2 of Model 2.

Parameter Value n�22 r�22 T �22 q�22 AP �22

p 9 5 0 0.0535 150 23070.25
9.9 5 0 0.0582 150 23512.30
10.8 5 0 0.0638 150 23549.25
11.7 4 0 0.0705 150 23182.72

� 0.6 5 0 0.0535 150 23070.25
0.66 5 0 0.0534 150 23108.10
0.72 5 0 0.0533 150 23145.91
0.78 5 0 0.0532 150 23183.67

� 0.1 5 0 0.0535 150 23070.25
0.11 5 0 0.0535 150 23071.13
0.12 5 0 0.0535 150 23072.00
0.13 5 0 0.0535 150 23072.88

w 2 5 0 0.0535 150 23070.25
2.2 5 0 0.0535 150 23071.75
2.4 5 0 0.0535 150 23073.24
2.6 5 0 0.0535 150 23074.73

h 0.6 5 0 0.0535 150 23070.25
0.54 5 0 0.0535 150 23074.73
0.48 5 0 0.0535 150 23079.20
0.42 5 0 0.0535 150 23083.67

h1 0.3 5 0 0.0535 150 23070.25
0.27 5 0 0.0535 150 23079.25
0.24 5 0 0.0535 150 23088.25
0.21 6 0 0.0535 150 23098.91

h2 0.1 5 0 0.0535 150 23070.25
0.09 5 0 0.0535 150 23074.00
0.08 5 0 0.0535 150 23077.75
0.07 5 0 0.0535 150 23081.50

g 0.1 5 0 0.0535 150 23070.25
0.09 5 0 0.0535 150 23070.33
0.08 5 0 0.0535 150 23070.40
0.07 5 0 0.0535 150 23070.48

c 0.5 5 0 0.0535 150 23070.25
0.45 5 0 0.0535 150 23210.36
0.4 5 0 0.0535 150 23350.47
0.35 5 0 0.0535 150 23490.58

s 20 5 0 0.0535 150 23070.25
18 5 0 0.0535 150 23107.62
16 5 0 0.0535 150 23144.98
14 5 0 0.0535 150 23182.34

s1 20 5 0 0.0535 150 23070.25
18 5 0 0.0535 150 23077.73
16 5 0 0.0535 150 23085.20
14 5 0 0.0535 150 23092.67

s2 20 5 0 0.0535 150 23070.25
18 5 0 0.0535 150 23077.73
16 5 0 0.0535 150 23085.20
14 5 0 0.0535 150 23092.67

l 150 5 0 0.0535 150 23070.25
200 4 0 0.0709 200 23282.25
250 3 0 0.0881 250 23458.32
300 3 0 0.1051 300 23610.39

eight propositions are put forward and proved for two
models. These models could be reduced to at least
four simpli�ed models if one of the parameters is set
to zero. Through sensitivity analysis, parameters that
have positive and negative correlations with average
pro�ts are found. Decision-makers can adjust these
parameters to achieve more pro�ts. Taking direct sales
is also a good way to increase pro�ts. In terms of
method, algorithms for two cases of two models are
developed, and the e�ectiveness of these algorithms is
demonstrated by computational experiments.

This paper provides an interesting topic for the
optimization problem of inventory. However, there
is some improvable room to extend this study. For
example, we can study this problem under the as-
sumption that the shortage is partial backlogging.
Other demand-a�ecting elements, such as in
ation
and quantity discount, could be included in these
models. Multi-objective and multi-product inventory
optimization problems under uncertain environment
could be considered. In addition, the joint optimization
problem of location-inventory-routing is a promising
research �eld.
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Appendix A

The proof of Proposition 1
For a given n�11:

p� + w� � h� �g � c(� + �) � 0:

@AP11(n�11;r11;T11)
@r11

< 0 if r11 > 0 and @AP11(n�11;r11;T11)
@r11

>
0 if r11 < 0. Hence, AP11(n�11; r11; T11) takes the

maximum value when r�11 = 0. Plugging r�11 = 0 and
Eq. (6) into Eq. (12), AP11 can be written as:

AP11(n�11;0; T11) = pd(p)� s
T11
� s1

n�11T11

� h1(n�11 � 1)d(p)T11

2
� n�11d(p)T11h2

2

� s2

n�11T11
� cd(p): (A.1)

The �rst and second order derivatives of AP11 with
respect to T11 are:

@AP11(n�11; 0; T11)
@T11

=
s

T11
2 +

s1

n�11T11
2

� h1(n�11�1)d(p11)
2

�n�11d(p11)h2

2
+

s2

n�11T11
2 ;

(A.2)

@2AP11(n�11; 0; T11)
@T11

2 =� 2s
T11

3 � 2s1

n�11T11
3

� 2s2

n�11T11
3 < 0: (A.3)

Eq. (A.3) implies AP11(n�11; 0; T11) is strictly concave.
Therefore, there is at most one solution T �11 to max-
imize AP11(n�11; 0; T11) for a given n�11. T �11 could
be solved by Eq. (A.2) = 0. Plugging T �11 and r�11
into Eq. (7), we can obtain q�11. As r�11 = 0, the
space limitation of the shelf is satis�ed. The proof is
completed.

Appendix B

The proof of Proposition 2
For a given n�121:

p�+w��h��g�c(� + �)
T121(� + �)

� h1(n�121�1)+n�121h2

2
<0;

@AP121(n�121;r121;T121)
@r121

< 0 if r121 > 0 and
@AP121(n�121;r121;T121)

@r121
> 0 if r121 < 0. Hence,

AP121(n�121; r121; T121) takes the maximum value when
r�121 = 0. Plugging r�121 = 0 and Eq. (6) into Eq. (12),
AP121 can be written as:

AP121(n�121; 0; T121) = pd(p)� s
T121

� s1

n121T121

� h1(n�121 � 1)d(p)T121

2
� n�121d(p)T121h2

2

� s2

n�121T121
� cd(p): (B.1)
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The �rst and second-order derivatives of AP121 with
respect to T121 are:
@AP121(n�121; 0; T121)

@T121
=

s
T121

2 +
s1

n�121T121
2

� h1(n�121 � 1)d(p)
2

� n�121d(p)h2

2

+
s2

n�121T121
2 ; (B.2)

@2AP121(n�121; 0; T121)
@T121

2 = � 2s
T121

3 � 2s1

n�121T121
3

� 2s2

n�121T121
3 < 0: (B.3)

Eq. (B.3) implies AP121(n�121; 0; T121) is strictly con-
cave. Therefore, there is at most one solution T �121 to
maximize AP121(n�121; 0; T121) for a given n�121. T �121
could be obtained by solving Eq. (B.2) = 0. Plugging
T �121 and r�121 into Eq. (7), we can obtain q�121. As
r�121 = 0, the space limitation of the shelf is satis�ed.

In brief, for a given n�121, If:
p� + w� � h� �g � c(� + �)

T �121(� + �)

�h1(n�121 � 1) + n�121h2

2
< 0;

we can calculate AP �121(n�1210; T �121) by plugging n�121
and T �121 into Eq. (12) otherwise (n�121; 0; T �121) is not a
feasible solution. The proof is completed.

Appendix C

The proof of proposition 3
For a given n�122, if:
p�+w��h��g�c(�+�)

T122(�+�)
� h1(n�122�1)+n�122h2

2
> 0;

@AP122(n�122; r122; T122)
@r122

� 0:

This means AP122(n�122; r122; T122) is a non-decreasing
function. Therefore, AP122(n�122; r122; T122) reaches the
maximum value when r�122 = T122.

Plugging Eq. (6) into Eq. (12) and replacing r122
by T122, we obtain the following equation:

AP122(n�122; T122; T122) =
d(p)(e(�+�)T122 � 1)

� + �
Z

� s
T122

� s1

n�122T122
� s2

n�122T122
+ p
�
d(p)

� d(p)�
� + �

�
�wd(p)�

� + �
+

hd(p)
(� + �)

+
d(p)�g
(� + �)

;
(C.1)

Z =
�
p� + w� � h� �g � c(� + �)

T122(� + �)

� h1(n�122 � 1) + n�122h2

2

�
:

Taking the �rst-order derivative of Eq. (C.1) with
respect to T122, we obtain:

@AP122(n�122; T122; T122)
@T122

= d(p)e(�+�)T122

Z +
s

T 2
122

+
s1

n�122T 2
122

+
s2

n�122T 2
122

: (C.2)

As Z > 0,we have:

@AP122(n�122; T122; T122)
@T122

> 0:

Hence, AP122(n�122; T122; T122) is an increasing func-
tion. T122 should take the maximum value without
exceeding the space limitation of the shelf. We replace
r122 by T122 and let q122 = l for Eq. (6). The following
equation can be obtained:

l =
d(p)
� + �

(e(�+�)T122 � 1): (C.3)

Solving Eq. (C.3), we get T122 by:

T �122 = ln
�
l(� + �)
d(p)

+ 1
�
=(� + �): (C.4)

In brief, for a given n�122, if:

p� + w� � h� �g � c(� + �)
T �122(� + �)

�h1(n�122 � 1) + n�122h2

2
> 0;

we can calculate AP �122(n�122; T �122; T �122) by plugging
n�122 and T �122 into Eq. (12), otherwise (n�122; T �122; T �122)
is not a feasible solution. The proof is completed.

Appendix D

The proof of Proposition 4
We take the second-order derivative of Eq. (12) with
respect to r123, therefore, we can obtain the following
equation:

@2AP123(n123;r123; T123)
@r1232 =

(� + �)e(�+�)r123d(p)e(�+�)r123�
p� + w� � h� �g � c(� + �)

T123(� + �)

� h1(n123 � 1) + n123h2

2

�
: (D.1)
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Obviously,

@2AP123(n123;r123; T123)
@r1232 = 0;

because:

p�+w��h��g�c(�+�)
T123(�+�)

=
h1(n123�1) + n123h2

2
:

Thus, the Hessian matrix AP123(n123; r123; T123) satis-
�es the following equation:

@2AP123(n123;r123; T123)
@r1232

@2AP123(n123;r123; T123)
@T123

2

�
�
@2AP123(n123;r123; T123)

@T123@r123

�2

� 0: (D.2)

Therefore, there is no optimal value for AP123(n123,
r123; T123). The proof is completed.

Appendix E

The proof of proposition 5
For a given n�21, if:

p� + w� � h� �g � c(� + �) � 0;

@AP21(n�
21
;r21;T21)

@r21
< 0 when r21 > T21 and

@AP21(n�21;r21;T21)
@r21

>0 when r21<T21.
Hence, AP21(n�21; r21; T21) takes the maximum value
when r�21 = T21. Plugging r�21 = T21 and Eq. (23)
into Eq. (29), AP21 can be obtained as follows:

AP21(n�21; T21; T21) = pd(p)� s
T21

� s1

n�21T21
� h1(n�21 � 1)d(p)T21

2

� n�21d(p)T21h2

2
� s2

n�21T21
� cd(p): (E.1)

The �rst and second-order derivatives of AP21 with
respect to T21 are respectively:

@AP21(n�21; T21; T21)
@T21

=
s

T21
2 +

s1

n�21T21
2

� h1(n�21�1)d(p)
2

�n�21d(p)h2

2
+

s2

n�21T21
2 ; (E.2)

@2AP21(n�21; T21; T21)
@T21

2 =� 2s
T21

3� 2s1

n�21T21
3

� 2s2

n�21T21
3 < 0: (E.3)

Eq. (E.3) implies that there is at most one solution
T �21 to maximize AP21(n�21; T21; T21) for a given n�21.
T �21 could be solved by Eq. (E.2) = 0. Plugging T �21
and r�21 into Eq. (24), we can obtain q�21. As r�21 = T21,
the space limitation of the shelf is not violated. The
proof is completed.

Appendix F

The proof of Proposition 6
For a given n�221, if

p� + w� � h� �g � c(� + �)
T221(� + �)

�h1(n�221 � 1) + n�221h2

2
< 0;

@AP221(n�221; r221; T221)
@r221

< 0

if r221 > T221 and @AP221(n�221;r221;T221)
@r221

> 0 if r221 <
T221. Hence, AP221(n�221; r221; T221) takes the maxi-
mum value when r�221 = T221. Plugging r�221 = T221and
Eq. (24) into Eq. (29), AP221 can be obtained as
follows:

AP221(n�221; T221; T221) = pd(p)� s
T221

� s1

n�221T221
� h1(n�221 � 1)d(p)T221

2

� n�221d(p)T221h2

2
� s2

n�221T221
� cd(p): (F.1)

The �rst and second-order derivatives of AP221 with
respect to T221 are respectively:

@AP221(n�221; T221; T221)
@T221

=
s

T221
2 +

s1

n�221T221
2

� h1(n�221�1)d(p)
2

�n�221d(p)h2

2
+

s2

n�221T221
2 ;

(F.2)

@2AP221(n�221; T221; T221)
@T221

2 = � 2s
T221

3 � 2s1

n�221T221
3

� 2s2

n�221T221
3 < 0: (F.3)

Eq. (F.3) implies that there is at most one solution T �221
to maximize AP221(n�221; T221; T221) for a given n�221.
T �221 could be solved by Eq. (F.2) = 0. Plugging T �221
and r�221 into Eq. (24), we can obtain q�221. As r�221 =
T221, the space limitation of shelf is satis�ed. In brief,
for a given n�221, if:
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p� + w� � h� �g � c(� + �)
T �221(� + �)

�h1(n�221 � 1) + n�221h2

2
< 0;

we can calculate AP �221(n�221; 0; T �221) by plugging n�221
and T �221 into Eq. (29). Otherwise, (n�221; 0; T �221) is not
a feasible solution. The proof is completed.

Appendix G

The proof of Proposition 7
For a given n�222, if:

p�+w��h��g�c(�+�)
T222(�+�)

� h1(n�222�1)+n�222h2

2
>0;

then @AP222(n�222;r222;T222)
@r222

�0. This means AP222
(n�222; r222; T222) is a non-increasing function. There-
fore, AP222(n�222; r222; T222) reaches the maximum
value when r�222 = 0.

Plugging Eq. (23) into Eq. (29) and replacing r222
by 0, the following equation can be obtained:

AP222(n�222; 0; T222) =
d(p)(e(�+�)T222 � 1)

� + �
Y � s

T222

� s1

n�222T222
� s2

n�222T222
+ p222

�
d(p)

� d(p)�
�+�

�
� wd(p)�

�+�
+
hd(p)
(�+�)

+
d(p)�g
(�+�)

: (G.1)

In Eq. (G.1):

Y =
�
p� + w� � h� �g � c(� + �)

T222(� + �)

�h1(n�222 � 1) + n�222h2

2

�
:

Taking the �rst-order derivative of Eq. (G.1) with
respect to T222, we obtain:

@AP222(n�222; 0; T222)
@T222

= d(p)e(�+�)T222Y +
s

T 2
222

+
s1

n�222T 2
222

+
s2

n�222T 2
222

: (G.2)

As Y > 0, we have @AP222(n�222;0;T222)
@T222

> 0: Hence,
AP222(n�222; 0; T222) is an increasing function. T222
should take the maximum value without exceeding the
space limitation of shelf. We replace r222 by 0 and let
q222 = l for Eq. (23), as a result we obtain the following
equation:

l =
d(p)
� + �

�
e(�+�)T222 � 1

�
: (G.3)

Solving Eq. (G.3), we get T222 by:

T �222 = ln
�
l(� + �)
d(p222)

+ 1
�
=(� + �): (G.4)

In brief, for a given n�222, if:

p� + w� � h� �g � c(� + �)
T �222(� + �)

�h1(n�222 � 1) + n�222h2

2
> 0;

we can calculate AP �222(n�222; 0; T �222) by plugging n�222
and T �222 into Eq. (29), otherwise (n�222; 0; T �222) is not
a feasible solution. The proof is completed.

Appendix H

The proof of Proposition 8
If:

p�+w��h��g�c(�+�)
T223(�+�)

� h1(n223�1) + n223h2

2
=0

we take the second-order derivative of Eq. (29) with
respect to r223:

@2AP223(n223;r223; T223)
@r2232 =

(� + �)e(�+�)(T223�r223)d(p) 
p� + w� � h� �g � c(� + �)

T223(� + �)

� h1(n223 � 1) + n223h2

2

!
: (H.1)

Since:

p� + w� � h� �g � c(� + �)
T223(� + �)

=

h1(n223�1)+n223h2

2
;
@2AP223(n223;r223; T223)

@r2232 =0:

Thus, the Hessian matrix of AP223(n223,r223,
T223) satis�es the following condition:

@2AP223(n223;r223; T223)
@r2232 :

@2AP223(n223;r223; T223)
@T223

2

�
�
@2AP223(n223;r223; T223)

@T223@r223

�2

� 0: (H.2)

Therefore, there is no maximum value for AP223(n223;
r223; T223). The proof is completed.
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