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Abstract. This study is focused on the propagation of plane harmonic body waves
in a transversely isotropic linear poroelastic 
uid-saturated medium in the framework of
the simpli�ed u-p formulation. A set of two scalar potential functions is employed to
decouple the coupled 
uid continuity equation and equations of motion, such a way that
the governing equations for the potential functions are resulted in the form of either scaled
wave motion or a combination of repeated wave motion and transport equation. The
velocities and corresponding attenuation coe�cients of both longitudinal and transverse
waves are extracted from the acoustic equations for the body waves. To show the validity
of the analytical solution developed in this paper, the degeneration to the case of a single-
phase transversely isotropic, and consequently isotropic solid is presented. The motivation
behind this was to provide the possibility of comparing the results of this study and the
developed solution with those reported in the literature. Besides, the e�ects of mechanical
and hydraulic parameters of materials on the velocity of propagation and attenuation
coe�cient of the waves are investigated in more detail. To this end, various synthetic
poroelastic transversely isotropic materials are de�ned, and the dependency of wave motion
to these parameters is illustrated by plotting the graphs.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

The problem of wave propagation in a 
uid-saturated
porous medium, such as saturated soils or saturated
rocks, is a very important topic in many branches
of engineering, e.g., seismology, geophysics, petroleum
industry, soil mechanics, pollution, biomechanics, etc.
[1,2]. Moreover, the phenomenon of 
uid 
owing
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through a medium with complex structures plays im-
portant roles in the industry, natural environment,
and human life [3]. Moreover, due to the interaction
between the solid skeleton and the pore 
uid, the
macro mechanical properties of the two-phase materials
are very important, especially in dynamic analysis.
Therefore, this topic received a great deal of attention
by engineers and since a long time, to explore and
understand the physical behavior of a two- or more-
phase material had been the subject of many research
e�orts made in this area [4]. On the other hand, the

uid-saturated porous media is di�erent from single-
phase media and its mathematical study is much more
complicated compared to latter, thus mathematicians
showed interest to proceed to it. By chronological
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investigation of multiphase continuum mechanics, we
could identify two poroelastic theories including; the
Biot's theory [5{9] and the theory of porous media.
Today these new emerged theories have an special
statute and application. More details of the chrono-
logical development of porous media theories could be
found in the work of De Boer [10]. The research in the
�eld of poroelastodynamics was initiated by Biot whose
papers published in 1956 [8,9]. The topics discussed in
these papers were the low and high frequency range, the
boundary of which depends on both the viscosity of the

uid and the size of pores [8]. According to this theory,
the material parameters have an acceptable physical
meaning which could be determined in the laboratory
[11,12]. This is considered as one of the most important
features of Biot's theory.

Generally, the vector of the solid displacement,
the vector of seepage velocity, and the pore pressure
are used to derive the governing equations in di�erent
theories relating to poroelasticity. In a slightly di�erent
form, namely u-p formulation, the seepage velocity
is replaced by 
uid pressure by virtue of generalized
Darcy's law if either Fourier or Laplace transform is
also applied. It has been concluded that in geomechan-
ical applications and soil mechanics with mostly low-
frequency acceleration, the complete Biot's theory does
not signi�cantly di�er from u-p formulation. Bonnet
[13] showed that this choice is su�cient, where the solid
displacement, u, and the pore 
uid pressure, p, are
the primary variables. Nevertheless, this formulation
exists only in the Laplace or Fourier domain. Hence,
a simpli�ed poroelastic model has been introduced to
be applied in poroelastic wave propagation to derive
and solve the governing di�erential equations directly
in the time domain [14].

Based on the Biot's equations, a simpli�ed
formulation for poroelastodynamic problems in low-
frequency has been proposed by Zienkiewicz et al. [15],
where the inertial e�ect due to the relative acceleration
between pore 
uid and solid phases is ignored. The
results of the investigations indicated that the problems
with low- frequency accelerations can be treated well
by simpli�ed u-p formulation, with applications in
earthquake engineering as an example, while it may
be inaccurate for high-frequencies [15{17]. Schanz and
Struckmeier [16] showed that the solution from the
complete u-p formulation and the formulation in which
the time-derivative of the seepage velocity is omitted
(simpli�ed u-p formulation), are quite similar. Since
simpli�ed u-p formulation contains fewer unknown
variables compared to the fully vectored formulations,
and since the pore pressure can be obtained directly
from this formulation without iterations; a higher
computational e�ciency could be attained, thus it is
convenient to be used to describe the dynamic problems
of the saturated porous media [18].

A few studies have been done on elastic wave
propagation and its attenuation in poroelastic media.
Greetsma and Smit [19] investigated some aspects of
wave propagation in poroelastic rock, while Deresiewicz
[20,21] and Deresiewicz and Rice [22], using Biot's
model, were able to study the e�ects of boundaries
on harmonic wave propagation in a saturated porous
solid. Also, Beskos et al. [23] have analytically-
numerically studied the propagation of plane harmonic
body waves in an unbounded, fully saturated, elastic
rock media characterized by two degrees of porosity.
By conducting this study the di�erences of velocity
and attenuation of the double and single porosity
models for a certain range of frequency were revealed.
Besides, Beskos et al. [24] analytically proved that
the propagation of plane harmonic Rayleigh waves in a
fully saturated elastic rocky half-space is characterized
by two degrees of porosity.

On the other hand, many kinds of rocks lo-
cated near the earth surface show well-de�ned fabric
elements in the form of layering, bedding, foliation,
strati�cation, jointing, or �ssuring. These rocks have
anisotropic properties in terms of physical, mechanical,
thermal and hydraulic features [25]. Practically, these
rocks are often considered as either orthotropic or
transversely isotropic materials. Thus, studying the
behavior of both orthotropic and transversely isotropic
materials is necessary. Regarding the wave propagation
in saturated material of this kind some researches are
conducted some of which are indicated in the following.
Schmitt [26] gave out the dispersion and attenuation
curves of plane waves in a transversely isotropic 
uid-
saturated porous medium. Sharma and Gogna [27] in-
vestigated the possibility of the presence of body waves
with a real velocity of propagation and Rayleigh waves
at the free surface of transversely isotropic poroelastic
solids. Carcione [28] gave the fundamentals of wave
propagation in anelastic, anisotropic, and porous me-
dia, including electromagnetic waves. Also, the e�ect
of anisotropy of a solid skeleton on the propagation of
plane waves in the porous medium has been discussed
in the work of Carcione [29]. Furthermore, Ba and his
co-workers computed the dynamic response of a multi-
layered transversely isotropic saturated half-space sub-
jected to pore 
uid pressure and time-harmonic loads
using the exact dynamic sti�ness matrix method [30].
In this study, it was found that the dynamic responses
between the isotropic and transversely isotropic media
can be signi�cantly di�erent, and the transversely
isotropic parameters have a signi�cant in
uence on the
solutions. More recently, Zhang and Pan presented a
new semi-analytical method for solving the dynamic
response of a multilayered transversely isotropic and
poroelastic half-space subjected to time-harmonic hor-
izontal and vertical loads buried in the layered half-
space [31].
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The potential method is an elegant and common
method for decoupling a set of coupled linear par-
tial di�erential equations (PDEs), where the physical
aspects of original PDEs may be recognized from
the governing equations of the potential functions.
One of the famous sets of potential functions for
one-phase isotropic material is the combination of a
divergence-free and a curl-free vector function, known
as Helmholtz decomposition [32]. Lu and Jeng [33]
used the same decomposition, with some modi�cations
to uncouple the governing wave and transport equa-
tions of Biot's theory. Also, an alternative solution
method to the Helmholtz decomposition was developed
by Pooladi and his co-authors [34] that could be
utilized to solve the wave propagation problems in
isotropic 
uid-saturated poroelastic media. On the
other hand, some remarkable past potential functions
for a transversely isotropic medium are presented
by Lekhnitskii-Hu-Nowacki [35] for elastostatic and
by Eskandari-Ghadi [36] for elastodynamic boundary
value problems. A complete solution for the general
elastodynamics boundary value problem in a linear
elastic cross-anisotropic mono-axial-convex domain in
terms of two scalar potential functions was introduced
by Eskandar-Ghadi [36]. In this solution one of the
potential functions is related to SH-wave and other to
SV - and P -waves. Raoo�an-Naeeni and Eskandari-
Ghadi [37] determined the surface and body wave
velocities in terms of both the direction of propagation
and elasticity coe�cients in a single-phase transversely
isotropic media with a depth-wise axis of material
symmetry using the above-mentioned scalar potential
functions. In this study, the Rayleigh, longitudinal
and transverse wave velocities were determined in
explicit forms. Furthermore, Pooladi et al. [38] have
obtained a pair of scalar potentials to uncouple Biot's
equations of motion in transversely isotropic 
uid-
saturated poroelastic media. It is worth noting that
they considered the governing equations in the form of
the u-p formulation. An analytical solution has been
presented for stress wave propagation in a saturated
porous transversely isotropic half-space under surface
traction by Sahebkar and Eskandari-Ghadi [17]. In this
study, for the �rst time, the simpli�ed u-p formulation
was considered, and two scalar potential functions were
proposed to decouple the governing PDEs. Moreover,
with the help of these potential functions, analytical
solutions of many poroelastodynamic problems in the
transversely isotropic 
uid-saturated media have been
studied; some of studies conducted in this area include:
[39{42]. Very recently, using the potential functions,
Liang et al. investigated the three-dimensional (3D)
dynamic responses of a transversely isotropic saturated
half-space subjected to uniformly distributed buried
loads acting on a circular disk [43].

In the present paper, the propagation of plane

harmonic body waves in a transversely isotropic fully
saturated medium is studied analytically based on sim-
pli�ed u-p formulation. In accordance to the assump-
tion that both 
uid and solid are transversely isotropic,
both hydraulic and mechanical axes of the symmetry
of the material are conceived to be depth-wise. With
the aid of two scalar potential functions, determined
by Sahebkar and Eskandari-Ghadi [17], the coupled

uid continuity equation and equations of motion are
decoupled. The longitudinal and transverse velocities
and related attenuation coe�cients are extracted from
the presented body wave equations. The obtained
results imply the existence of two compressional and
two shear waves. The �ndings of the present study
showed that the SH-wave, which represents one of
these shear waves, showed the same behavior as in
the corresponding single-phase transversely isotropic
elastic medium. Also, the expression of velocity and
corresponding attenuation coe�cient of body waves are
given in explicit form for some special direction of prop-
agation and saturated isotropic materials. Besides,
under the assumption of incompressible constituents,
for some special cases, the slowness are obtained. To
prove the validity of the analytical solution given in
this study, the results are reduced to the case of
a single-phase of transversely isotropic and isotropic
itself, which is in agreement with the solutions pre-
sented in the literature. Also, to study the e�ects of
hydraulic and mechanical parameters on the behavior
of wave motion, various numerical results are plotted
for di�erent synthetic poroelastic transversely isotropic
materials.

2. Problem statement and potential functions

A 
uid-�lled elastic skeleton with interconnected pores,
which itself is transversely isotropic in terms of both

uid and solid with a depth-wise axis of material
symmetry is considered. A Cartesian coordinate sys-
tem with a vertical downward x3-axis is attached to
the domain, so that both hydraulic and mechanical
axes of material symmetry are parallel to the x3-axis.
Based on Biot's theory, in this paper the simpli�ed
u-p formulation [15] for fully saturated material, in
which the relative pore 
uid acceleration is neglected, is
considered. The equations of motion, in the absence of
body force, and the transport equation may be written
as [4]:

�ij;j � �@
2ui
@t2

= 0; (1)

@�
@t

+ qi;i = 0; (2)

where �ij = �sij � np�ij is the total stress de�ned on
the surface of a bulk volume saturated poroelastic, with
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A1111 = C1111 + �1
2M; A1122 = C1122 + �1

2M;
A1133 = C1133 + �1�3M; A3333 = C3333 + �3

2M;
A1313 = C1313; A1212 = C1212

(4b)

Box I

�sij and np�ij respectively being the stress tensor of the
solid and the 
uid, where p denotes the pore pressure,
as an independent variable and �ij is the Kronecker
delta. The sign conventions for stress follow that of
elasticity, namely, tensile stress is denoted positive.
Note that the derivative with respect to the spatial
variable xi in Eqs. (1) and (2) is abbreviated by ();i.
Besides, the bulk density � = (1� n)�s + n�f with �s
being the density of the solid and �f the density of 
uid
is used. The sealed pores are considered as a part of the
solid, and the porosity, n, is de�ned as the ratio of n =
Vf=V , where Vf is the volume of the interconnected
pores contained in a sample of bulk volume V . Full
saturation is expected, leading to V = Vf + Vs with Vs
being the volume of the solid. Furthermore, the index
f and s denote to the interstitial 
uid and the solid,
respectively. In addition, qi = @wi/@t refers to the
speci�c 
ux of the 
uid passing through the surface of
a bulk volume. The relative 
uid to solid displacement
is denoted by wi = n(Ui�ui), where the corresponding
displacement of the 
uid and the displacement in the
solid are Ui and ui, respectively. Eventually, � is the
variation of 
uid volume per unit reference volume.
Eq. (2) identi�es � to describe the motion of the 
uid
relative to the solid. The dynamic version of Darcy's
law, which shows the 
uid transport in the interstitial
space expressed by the speci�c 
ux, by eliminating the
second time derivative of the seepage displacement is
written in the form of [4]:

qi = �kj
�

�
p;i + �f

@2ui
@t2

�
; (3)

where kj with j = 1 and 3 are the intrinsic permeability
of porous media in any direction in the isotropic plane
and in a direction parallel to the material axis of
symmetry, respectively, and � is introduced as 
uid
dynamic viscosity. The factor kj=� (j = 1 and 3)
in Eq. (3) is usually indicated by � which is called

permeability. Moreover, when the frequency of excita-
tion ft exceeds ��=4d2 Darcy's law, which governs the

ow in pores, it is not valid [8], where � is kinematic
viscosity and d is the order of the diameter of the pores.
According to this limitation, the relative motion of the

uid in the pores is assumed to be Poiseuille type [8].
In case where the water temperature is 15�C, Biot [8]
found ft = 100 Hz for d = 10�2 cm and ft = 104 Hz
for d = 10�3 cm.

Taking the linear strain-displacement relation-
ships into account for the solid part, "ij = 1/2(ui;j +
uj;i), the constitutive equations in a transversely
isotropic saturated porous medium in the Cartesian
coordinate system may be written by Eqs. (4a) and
(4b) [44] as shown in Box I, where Cijkl are the
elasticity coe�cients with the property of C1122 =
C1111 � 2C1212. The following inequalities should be
held to have a positive de�nite strain energy function
[36,44]:

C1111 > jC1122j; C1313 > 0;

C1111C3333�2C2
1133 + C3333C1212 > 0; M � 0; (5)

�1 and �3 are the Biot's e�ective stress coe�cient in
isotropic planes and vertical planes respectively, which
are de�ned as follows [29]:

�1 = 1� C1111 + C1122 + C1133

3Ks
;

�3 = 1� 2C1133 + C3333

3Ks
: (6)

It was shown in [45] that the values of �j(j = 1; 3) lie
within the range of n � �j � 1. In addition, M is the
Biot's modulus which can be obtained through [29]:

1
M

=
1
Ks

�
2�1 + �3

3
� n

�
+

n
Kf

; (7)

with Ks and Kf being the compression modulus of
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the solid grain and 
uid, respectively. With the use
of Eqs. (1) through (4), a set of coupled PDEs for the
unknowns solid displacement ui and pore pressure p,
in the Cartesian coordinate system is found as:

C1111
@2u1

@x2
1

+
�
C1111 � C1122

2

�
@2u1

@x2
2

+ C1313
@2u1

@x2
3

+
�
C1111+C1122

2

�
@2u2

@x1@x2
+(C1133+C1313)

@2u3

@x1@x3
� �1

@p
@x1
� �@2u1

@t2
= 0;�

C1111�C1122

2

�
@2u2

@x2
1

+C1111
@2u2

@x2
2

+ C1313
@2u2

@x2
3

+
�
C1111+C1122

2

�
@2u1

@x1@x2
+(C1133 + C1313)

@2u3

@x2@x3
� �1

@p
@x2
� �@2u2

@t2
= 0;

C1313
@2u3

@x2
1

+ C1313
@2u3

@x2
2

+ C3333
@2u3

@x2
3

+(C1133 + C1313)
@2u1

@x1@x3
+ (C1133 + C1313)

@2u2

@x2@x3
� �3

@p
@x3
� �@2u3

@t2
= 0;

k1�f
@3u1

@x1@t2
� �1�

@2u1

@x1@t
+ k1�f

@3u2

@x2@t2

��1�
@2u2

@x2@t
+ k3�f

@3u3

@x3@t2
� �3�

@2u3

@x3@t

+k1r2
12p+ k3

@2p
@x2

3
� �
M

@p
@t

= 0; (8)

in which u1, u2 and u3 are the displacement of the
solid in x1�, x2� and x3� direction, respectively.
The general solution of these equations in a x3�
convex medium may be obtained by expressing the
displacement u=(u1; u2; u3) and the pore pressure p in
terms of two scalar potential functions F and � as [17];

u1 =��k1�3
@2

@x1@x3

�
�2
p +

��1�k3

�3�k1

�
�f

@2

@t2
� ���3

�k3

@
@t

��
F

� @�
@x2

;

u2 =��k1�3
@2

@x2@x3

�
�2
p+

��1�k3

�3�k1

�
�f

@2

@t2
� ���3

�k3

@
@t

��
F

+
@�
@x1

;

u3 = �k1

�
(�2

0 + �1r2
12)�2

p + ��1r2
12

�
�f

@2

@t2

����1
�k1

@
@t

��
F;

p = � @2

@t@x3

�
����3

�
�2

0 +
�
�1 � �3

��1

��3

�
r2

12

�
+�k3�f

@
@t

�
�2

0 +
�
�1 � �3

�k1
�k3

�
r2

12

��
F; (9)

where:

�1 =
C1122 + C1212

C1212
; �2 =

C1313

C1212
;

�3 =
C1133 + C1313

C1212
; �4 =

C3333

C1212
;

�5 =
�

MC1212
;

�k1 =
k1

C1212
; �k3 =

k3

C1212
;

��1 =
�1

C1212
; ��3 =

�3

C1212
;

�� =
�

C1212
: (10)

In addition:

�2
0 = r2

12 + �2
@2

@x2
3
� ��

@2

@t2
;

�2
p = r2

12 +
1
s2

3

@2

@x2
3
� �6

@
@t
;

r2
12 =

@2

@x2
1

+
@2

@x2
2
; (11)

with 1
�
s2

3 = �k3
��k1 = k3/k1 and �6 = �/(Mk1).

By substituting Eq. (9) into the governing equation
(Eq. (8)), two uncoupled equations governing the
functions F and � give [17]:

�2

�
�k1(1 + �1)�2

p

�
�2

1�2
2 � ���3

@2

@t2
@2

@x2
3

�
+��1�k1�f

@2

@t2

�
r2
s1�2

3 + �1r2
12
@2

@x2
3

�
����2

1
@
@t

�
r2
s2�2

3 + �2r2
12
@2

@x2
3

��
F = 0; (12a)

�2
0� = 0; (12b)

in which:
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�2
1 = r2

12 +
1
s2

1

@2

@x2
3
� ��

1 + �1

@2

@t2
;

�2
2 = r2

12 +
1
s2

2

@2

@x2
3
� ��
�2

@2

@t2
;

�2
3 = r2

12 +
@2

@x2
3
� ��
�2

@2

@t2
;

r2
s1 = r2

12 +
��3

��1s2
3

@2

@x2
3
;

r2
s2 = r2

12 +
��2

3
��2

1

@2

@x2
3
; (13a)

�1 = � 1
��1�k1�2

[��1�k1(�2 � �4) + (��1�k3 + ��3�k1)�3

+��3�k3(�2 � 1� �1)];

�2 =
1

��2
1�2

[��2
3(1+�1��2)+ ��2

1(�4��2)�2��1 ��3�3];

�3 =
1

1 + �1

�
1� 1

s2
2

�
+

1
�2

�
�4

1 + �1
� 1
s2

1

�
; (13b)

1
s2

1
+

1
s2

2
=
�2

2 � �2
3 + �4(1 + �1)
�2(1 + �1)

;

1
s2

1s2
2

=
�4

1 + �1
: (13c)

Moreover, solving the following equation:

C3333C1313s4 + (C2
1133 + 2C1133C1313

�C1111C3333)s2 + C1111C1313 = 0; (14)

the roots s1 and s2, which are positive and nonzero,
could be obtained. In fact, s1 and s2 could be
either real distinct or real coalescent, and or conjugate
complex. Besides, in view of the Eq. (5), it is evident
that when the roots are real, then they are not negative
[36].

It is worth mentioning that each of the governing
equations of motion and the 
uid 
ow equation is a
second-order partial di�erential equation in terms of
special coordinates for both displacements and pore

uid pressure. In addition, they are second-order in
terms of time for displacements and �rst order for pore

uid pressure (see Eq. (8)). Thus, in general, there
is a partial di�erential equation of order 8 in terms of
special coordinates and of order 7 in terms of time.
Furthermore, the PDEs for scalar potential functions
are the same. By detailed investigation of Eq. (12a),
we can see that the order in special coordinates and

time is 6 and 5, respectively, and the order in Eq. (12b)
is two in terms of both time and special coordinates.

Besides, one of the important features of the
proposed potential functions is the physical concept
of the operators used in them. Eq. (12b) is a wave
equation, while Eq. (12a) contains repeated wave-
transport operator as the main part of the operator
applied on the potential function F (x1; x2; x3; t), and
some perturbed wave operator applied on the time
derivatives of F (x1; x2; x3; t). Operator �2

p expresses
the equation for the transfer of pressure in a viscous

uid (see also [17]). The viscosity parameter in this
equation results in the damped response. Also, �2

1
demonstrates the propagation of longitudinal waves,
while �2

2 and �2
3 show the propagation of transverse

waves (see [17,36]). In addition, r2
s1 and r2

s2 are
two di�erent scaled Laplace operators (see also [46]).
According to Eq. (9), it can be deduced that the
response of the transversely isotropic saturated media
is oscillatory with damping and that the engaged lon-
gitudinal (compressive) and transverse waves appear in
this media.

Thus, one may search for wave functions with
�nite/in�nite wave velocities as solutions of Eqs. (12a)
and (12b). It should be noted that as soon as the
time being replaced with a scalar either real or complex
parameter, in the simpli�ed u-p formulation, to formu-
late and solve the governing di�erential equations with
the use of these potential functions will be possible.
Thus, the proposed potential functions can be used
in both time domain accompanied by Laplace integral
transform and frequency domain. To explore the kinds
of waves traveling in the domain (the body of saturated
transversely isotropic poroelastic material) and their
velocities, plane waves in the form of:

F = Aei!(Sxpmp�t); � = Bei!(Sxpmp�t); (15)

are sought as solutions of Eqs. (12a) and (12b), where
i =
p�1, ! is the angular frequency of the wave and

S is the slowness of the plane wave traveling in the
domain. A and B are constants showing the amplitudes
of the wave induced by the scalar functions F and �,
respectively. In addition, m=(m1;m2;m3 = cos')
with jmj = 1 is the wave normal (see Figure 1), that
identi�es the direction of the propagation of plane
waves. In an isotropic medium, it is known that
for wave propagation in any direction, there always
exist three real body waves with mutually orthogonal
polarization, which coincide with the dynamic axes
formed by the wavefront and propagation vector [47].
In anisotropic elastic mediums, three body waves might
propagate in each direction, however, while the associ-
ated displacement vectors are mutually perpendicular,
these waves cannot generally be classi�ed into pure
dilatational and rotational types [48]. One body wave
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Figure 1. A schematic �gure to show propagation of P -,
SV -, and SH-waves, in the direction of m.

is always purely transverse in transversely isotropic
materials, and the other two body waves are neither
purely dilatational nor purely transverse type. Thus,
they may be called Quasi-Longitudinal (QL) wave and
Quasi-Transverse (QT) wave. If u:m = 0, then,
the wave de�ned by Eqs. (15) is a shear (transverse)
body wave. In reference to Figure 1, the shear wave
propagating in x1 � x2 plane with an amplitude in
the same plane is called \horizontally" polarized shear
wave or SH-wave.

By substituting the functions given in Eqs. (15)
into Eqs. (12) the characteristic equations for the
governing equations of the potential functions F and
� are determined, respectively, as:

c1S6 + c2S4 + c3S2 + c4 = 0; (16)

��� (sin2'+ �2cos2')S2 = 0; (17)

where �� is given in Eqs. (10), and:

c1(!) = �!
�

sin2'+
cos2'
s2

1

��
sin2'+

cos2'
s2

2

�
�

sin2'+
cos2'
s2

3

�
; (18a)

c2(!) =
��!
�2

�
sin2'+

cos2'
s2

3

��
sin2'+

cos2'
s2

1s2
2

�
+�6i

�
sin2'+

cos2'
s2

1

��
sin2'+

cos2'
s2

2

�
+

��!
1 + �1

�
sin2'+

cos2'
s2

3

�
� ��1�f!

1 + �1

��
sin2'+

��3

��1

cos2'
s2

3

�
+ �1sin2'cos2'

�
+i

�
�k1

��2
1

1 + �1

��
sin2'+

��2
3

��2
1

cos2'
�

+�2sin2'cos2'
�
; (18b)

c3(!)=�
�

��!
1+�1

��
�2

�
sin2'+

cos2'
s2

3

�
+

��
1+�1

�6i

+
��
�2
�6i
�

sin2'+
cos2'
s2

1s2
2

�
� ��1�f!

1 + �1

��
�2�

sin2'+
��3

��1

cos2'
s2

3

��
� i ��k1

��
�2

��2
1

1 + �1�
sin2'+

��2
3

��2
1

cos2'
�
; (18c)

c4 =
��

1 + �1

��
�2
�6i: (18d)

Thus, it has been revealed that the body waves in fully
saturated media could be separated into two secular
equations described by Eqs. (16) and (17).

3. P - and SV -waves

The secular equation (Eq. (16)) is a bi-cubic equation
for the slowness, S, whose solution for general complex
coe�cients is given as:

S2
k(!) = � 1

3c1(!)

�
c2(!) + akD(!) +

�0(!)
akD(!)

�
;

k = 1; 2; 3; (19)

where:

a1 = 1; a2 =
�1 + i

p
3

2
; a3 =

�1� ip3
2

D(!) =
3

s
�1 +

p
�2

1 � 4�3
0

2
;

�0(!) = c22 � 3c1c3;

�1(!) = 2c32 � 9c1c2c3 + 27c21c4: (20)

All of the three kinds of waves with the slowness deter-
mined from Eq. (16) are attenuated, as clearly indicates
from Eqs. (19) and (20). These waves are dispersive
since their velocities depend on the frequency, !, as
it is evident from Eq. (19). Here the slowness is no
longer real. Thus the scalar potential function F in
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Eq. (15) can be written more generally in the form
of Ake�!Im(Sk)xpmpei![Re(Sk)xpmp�t], which shows that
the propagation velocity is de�ned as 1=Re(Sk), while
the attenuation coe�cient is denoted as Im(Sk) for cer-
tain frequency. There are two dilatational waves known
as dilatational waves of the �rst and the second kind.
The waves of the �rst kind have very small attenuation,
while the waves of the second kind are highly attenu-
ated [8,12]. The extra compressional wave is known
as slow longitudinal or P2-wave since its velocity is
smaller than the conventional compressional wave. On
the other hand, the conventional compressional wave is
referred to as the fast compressional wave or P1-wave.
The P1- and S-waves induce a motion for the 
uid
particles that is practically in-phase with the motion
of the solid. However, the P2-mode induces an out-of-
phase motion for the 
uid compared to the solid, which
leads to its strong attenuation by the viscous damping
mechanism associated with the relative 
uid-solid mo-
tion. Moreover, both P1- and S-waves have relatively
small attenuation, as mentioned for the saturated
poroelastic isotropic media [12]. The slow wave has a
quasi-static character at low- frequencies and becomes
overdamped due to the 
uid viscosity [28]. Knowing
that in the absence of 
uid or when the porosity is
zero, there are two waves in the transversely isotropic
elastic medium, namely QL and QT waves [37,48,49],
one can infer that the appearance of an additional wave
is due to the existence of the 
uid in the medium.

By further detailed investigation of Eq. (18), the
governing equation (Eq. (16)) can be written as:

i!S2[ĉ1S4 + ĉ2S2 + ĉ3] + [ĉ4S4 + ĉ5S2 + ĉ6] = 0;
(21)

where:

ĉ1 = �
�

sin2'+
cos2'
s2

1

��
sin2'+

cos2'
s2

2

�
�

sin2'+
cos2'
s2

3

�
; (22a)

ĉ2 =
�

sin2'+
cos2'
s2

3

��
��
�2

�
sin2'+

cos2'
s2

1s2
2

�
+

��
1 + �1

�
� ��1�f

1 + �1

��
sin2'+

��3

��1

cos2'
s2

3

�
+�1sin2'cos2'

�
; (22b)

ĉ3 = � ��
�2

�
��

1 + �1

�
sin2'+

cos2'
s2

3

�
� ��1�f

1 + �1�
sin2'+

��3

��1

cos2'
s2

3

��
; (22c)

ĉ4 = �
�
�6

�
sin2'+

cos2'
s2

1

��
sin2'+

cos2'
s2

2

�
+
�
�k1

��2
1

1 + �1

��
sin2'+

��2
3

��2
1

cos2'
�

+�2sin2'cos2'
��
; (22d)

ĉ5 = �6

�
��

1 + �1
+

��
�2

�
sin2'+

cos2'
s2

1s2
2

��
+
�
�k1

��
�2

��2
1

1 + �1

�
sin2'+

��2
3

��2
1

cos2'
�
; (22e)

ĉ6 = ��6
��

1 + �1

��
�2
: (22f)

As it is evident in the low-frequency limit (! ! 0), the
secular equation (Eq. (21)) takes the form:

ĉ4S4 + ĉ5S2 + ĉ6 = 0: (23)

It is convenient to denote the solution of Eq. (23)
by S1(!=0) and S2(!=0). Biot [8] showed that both
the phase velocity and the attenuation of the wave
of the second kind tend to zero as the frequency,
!, approaches zero. Also, attenuation coe�cients of
P1- and SV -waves are zero at zero-frequency. So,
these roots, which are obtained by Eq. (23), are not
dispersive and correspond to the velocity of the �rst
kind and the rotational waves.

4. SH-wave

We now wish to investigate the waves induced by the
function �, in more detail. Eq. (17) has one root which
is generally di�erent from any of the three roots of
Eq. (16). By virtue of Eq. (17), one could result in
that:

S =
r

�
C1212sin2'+ C1313cos2'

: (24)

Similar to a transversely isotropic dry elastic medium,
the displacement due to �-function is related to SH-
wave. From the linearity of Eq. (8) with respect to ui
and Eq. (9) with respect to the potential functions F
and �, it can be concluded that the displacement �eld
corresponds only to the function �, in the form of:

u =
�
� @�
@x2

;
@�
@x1

; 0
�
: (25)

This equation implies that the displacement vector has
no component in the x3-direction. The conventional
inner product of the unit vectors of the direction of



1140 M. Mahmoodian et al./Scientia Iranica, Transactions A: Civil Engineering 28 (2021) 1132{1151

propagation and the displacement vector, which may
be expressed as:

u:m=(�i!Sm2�; i!Sm1�; 0):(m1; m2; m3)=0;
(26)

indicates that the displacement vector and the wave-
normal are perpendicular, namely the displacement is
polarized in the x1�x2 plane. Therefore, this solution
describes a pure shear wave, so, based on our early
description, this solution implies that the function �
produces a pure SH-wave. So, we can write from
Eq. (24) that vSH =

q
(C1212sin2'+ C1313cos2')

�
�.

As it is observed, the velocity of the SH-wave is
determined from an equation which is the same as
the formulation given for a dry (one-phase) solid part,
except that the mass density is the bulk mass density
of the saturated porous medium. Consequently, the
behavior of SH-wave in saturated porous materials is
similar to its behavior in the single-phase.

5. Special cases

As indicated in this paper, in general, four di�erent
body waves could travel in transversely isotropic fully
saturated poroelastic media. As indicated in Eq. (19),
the slowness (velocity) of di�erent body waves in a
saturated transversely isotropic poroelastic material
depends on the material properties of 
uid and solid,
and the direction of propagation as well. In this
section, the slowness determined in previous sections
is expressed for some special direction of propagation
and is also simpli�ed for some special cases of material
�lling the domain.

As shown in Figure 1, if ' = 0, the wave
propagates along the axis of material symmetry of the
transversely isotropic material. By putting ' = 0
in Eq. (19), the slowness of the wave induced by the
potential function F is determined. To do so, �rst, the
parameters ck given in Eq. (18) are simpli�ed for ' = 0
as:

c1(!) = i!; (27a)

c2(!) = �i!
�
�� �3�f
C3333

+
�

C1313

�
+
�
k3

�
1
M

+
�3

2

C3333

�
; (27b)

c3(!) = �i! �
C1313

�� �3�f
C3333

� � �
k3�

1
M

�
1

C3333
+

1
C1313

�
+

1
C1313

�3
2

C3333

�
;
(27c)

c4 =
�

C3333

�
C1313

1
M

�
k3
: (27d)

The rational root may also be used for a cubic equation
with a rational coe�cient. In this way, the slowness of
P1- and P2-waves are given in Eq. (28) as shown in
Box II, while the slowness of the SV -wave is given by:

SSV =
r

�
C1313

: (29)

The slowness given in Eq. (28) shows that in this case,
the longitudinal wave velocities and corresponding
attenuation coe�cients depend on those properties of
solid and liquid, which directly describe the behavior
in the direction of the axis of symmetry, i.e. C3333,
�3, and k3. Also, SP1 and SP2 are dispersive, while
the transverse wave velocity is found to be purely
transverse, which propagates without dispersion with
a velocity which is dependent on the shear elasticity
coe�cient. In addition, SP1(!=0) =

p
�/A3333 and

SP2(!=0) is zero.
Also, the wave incident is perpendicular to the

axis of symmetry and propagates in a horizontal direc-
tion when ' = �=2 (Figure 1). In this case:

c1(!) = i!; (30a)

c2(!) = �i!
�
�� �1�f
C1111

+
�

C1313

�
+
�
k1

�
1
M

+
�1

2

C1111

�
; (30b)

c3(!) = i!
�

C1313

�� �1�f
C1111

�� �
k1�

1
M

�
1

C1111
+

1
C1313

�
+

1
C1313

�1
2

C1111

�
;
(30c)

c4 =
�

C1111

�
C1313

1
M

�
k1
; (30d)

and the slowness can be obtained from Eqs. (19) and

SP1;P2 =
1p
2i!
�
vuut���3�f

C3333
i!�

�
1
M

+
�32

C3333

�
�
k3
�
s�

���3�f
C3333

i!�
�

1
M

+
�32

C3333

�
�
k3

�2

+
4�

C3333

i!
M

�
k3
: (28)

Box II
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SP1;P2 =
1p
2i!
�
vuut���1�f

C1111
i!�

�
1
M

+
�12

C1111

�
�
k1
�
s�

���1�f
C1111

i!�
�

1
M

+
�12

C1111

�
�
k1

�2

+
4�

C1111

i!
M

�
k1

(31)

SSV =
r

�
C1313

Box III

SP1;P2 =
1p
2i!
�
vuut�� ��f

�+ 2�
i! �

�
1
M

+
�2

�+2�

�
�
k
�
s�

����f
�+2�

i!�
�

1
M

+
�2

�+2�

�
�
k

�2

+
4�

�+2�
i!
M

�
k

SSV =
r
�
�

(33)

Box IV

(20). Similar to the previous case, here the rational
root test is helpful, so it can be explicitly shown that
the slowness is obtained by Eq. (31) as shown in
Box III.

Thus, P1- and P2-waves velocities and related
attenuation coe�cients, in this case, are both related
to material properties in a plane perpendicular to the
axis of symmetry. As seen previously, the SV -wave
velocity is written in terms of shear modulus. Finally,
when ! = 0, one may �nd SP1(!=0) =

p
�/A1111, while

SP2(!=0) is disappeared.
SH-wave slowness can be computed for ' = 0 and

' = �=2, from Eq. (24) as
p
�/C1313 and

p
�/C1212,

respectively. As it is observed, these waves are pure
transverse waves.

In addition, the material properties, in a special
case in which the transmitting material is isotropic
in both hydraulic and mechanical points of view, are
written as:

C1111 = C3333 = �+ 2�; C1122 = C1133 = �;

C1313 = �; �1 = �3 = �; k1 = k3 = k; (32)

where � and � are Lame's constants. We then found
that s2

1 = s2
2 = 1. In this case, it can be easily shown

that the parameters �1, �2 and �3 are identically zero
and s2

3 = 1. By substituting these values into Eq. (16),
and applying the rotational root test, the solution of
the governing secular equation leads to Eq. (33) as
shown in Box IV.

With the aid of Eq. (24), for isotropic elastic
materials, it can be deduced that:

SSH =
r
�
�
: (34)

In addition, in this case:

SP1(!=0) =
q
�
�

[(�+ 2�) + �2M ]:

Besides the general model, where all constituents
are compressible, an idealized version with incompress-
ible constituents can also be considered. When both
constituents are incompressible, i.e. K/Ks � 1 and
K/Kf � 1, these results may be obtained: �1 = �3 =
1 and M ! 1 [50,51]. Inserting these conditions in
the material properties, an in�nite wave speed for the
fast compressional wave could be obtained , while the
slowness of other waves changes to:

for transversely isotropic material and ' = 0:

SP2 =
r

1
C3333i!

[(�� �f )i! � �
k3

]; (35a)

for transversely isotropic material and ' = �
2 :

SP2 =
r

1
C1111i!

[(�� �f )i! � �
k1

]; (35b)

for isotropic material:

SP2 =

s
1

(�+ 2�)i!
[(�� �f )i! � �

k
]; (35c)

and by virtue of Eq. (23):

SSV (!=0) =
q

��
�

[�2(1 + �2sin2'cos2')]:
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To prove the validity of the results presented
here, we examined the results for a single-phase elastic
medium, and compared them with the formulations
reported in the literature. To de�ne a single-phase, the
porosity n must be zero. As a result �1 = �3 = 0 and
M ! 1. Therefore, the parameters ��1; ��3; �5 and �6
are identically zero. It can be easily deduced that the
coe�cient in Eq. (18d) is neglected. Consequently, the
secular equation (Eq. (16)) leads to S2(c1S4 � c2S2 +
1) = 0. As it is observed , in this case, one of the roots
of Eq. (16) is zero, while the others are the roots of the
quadratic equation:

c1S4 � c2S2 + 1 = 0; (36)

where:

c1 =
�2

��
1 + �1

��

�
sin2'+

cos2'
s2

1

��
sin2'+

cos2'
s2

2

�
;

c2 =
1 + �1

��

�
sin2'+

cos2'
s2

1s2
2

�
+
�2

��
: (37)

The slowness in this case is:

SP1 =
1
vP1

=

s
2�s

C1111sin2'+ C3333cos2'+ C1313 +
p



;

SSV =
1
vSV

=

s
2�s

C1111sin2'+ C3333cos2'+ C1313 �p

;


 = [(C1111 � C1313)sin2'� (C3333 � C1313)cos2']2

+(C1133 + C1313)2sin22': (38)

Moreover:

SSH =
1
vSH

=
r

�s
C1212sin2'+ C1313cos2'

; (39)

which have been previously derived in [37,49]. In
general, anisotropic dry media have three body waves
propagating with velocities, which are the function
of the direction of phase propagation. Besides, for
a particular direction of phase propagation, their po-
larizations are �xed and orthogonal. The waves are
called quasi-waves as polarizations may not be along
the wavefront and propagation vector namely dynamic
axis [49].

Eventually, the velocities for isotropic single-
phase material can be concluded from Eqs. (33) and
(34) or (38) and (39), where one may �nd vP1 =p

(�+ 2�)/�s, vSV =
p
�/�s, and vSH =

p
�/�s.

6. Numerical results

We now, in this section, present some numerical
evaluations for body wave velocities and corresponding
attenuation coe�cients for di�erent synthetic poroelas-
tic transversely isotropic materials based on numerical
values of the coe�cients given in Table 1. The solid
density equals �s = 2700 kg

�
m3 and the bulk modulus

of the solid is Ks = 1:1 � 1010 N
�

m2. The elastic
parameters of the materials have been selected so that
the positive de�nite conditions of strain energy function
are satis�ed in accordance with Eq. (5). The synthetic
materials listed in Table 1 have been selected, such that
a wide variety of degrees of anisotropy de�ned as E=E0
and G=G0 be considered in the numerical study. In
this study E and E0 are the Young's modulus in any
direction in an isotropic plane and a direction normal
to it, respectively. Also, G is the shear modulus in
an isotropic plane, and G0 is the same function in
any plane parallel to the material axis of symmetry.
Furthermore, � is the Poisson's ratio related to any two
perpendicular directions in horizontal plane, and �0 is
the same parameter corresponding to any direction in

Table 1. Elasticity coe�cients of synthetic transversely isotropic materials.

Material No.
E

(N/m2)
�107

E0

(N/m2)
�107

G
(N/m2)
�107

G0

(N/m2)
�107

� �0
C1111

(N/m2)
�107

C1133

(N/m2)
�107

C3333

(N/m2)
�107

C1313

(N/m2)
�107

C1212

(N/m2)
�107

1 5 5 2 2 0.25 0.25 6 2 6 2 2

2 10 5 4 2 0.25 0.25 14 5 7.5 2 4

3 5 5 2 1 0.25 0.25 6 2 6 1 2

4 5 10 4 2 0.25 0.25 5.64 1.82 10.91 2 4

5 10 5 2 2 0.25 0.25 14 5 7.5 2 2

6 15 5 6 2 0.25 0.25 26 10 10 2 6



M. Mahmoodian et al./Scientia Iranica, Transactions A: Civil Engineering 28 (2021) 1132{1151 1143

a horizontal plane with respect to a vertical direction.
Based on this idea, Material No. 1 denoted as Mat #1
is selected to be isotropic as a reference. Mat #2 is
a transversely isotropic material with E=E0 = 2 and
G=G0 = 2, Mat #3 is a transversely isotropic material
with E = E0 and G=G0 = 2. Mat #4 is a transversely
isotropic material with E=E0 = 0:5 and G=G0 = 2.
On the other hand, Mat #5 is a transversely isotropic
material with E=E0 = 2 and G = G0. Eventually, Mat
#6 is a transversely isotropic material with E=E0 = 3
and G=G0 = 3. As mentioned earlier, since simpli-
�cation is made based on the original formulation of
Biot, the range of validity of the solutions should be
considered. Therefore, we, after Biot [8], suppose that
the poiseuille 
ow breaks down for frequency larger
than ft = 100 Hz. The material properties of the

uid for numerical computation are given in Table 2.
The data of these coe�cients have been provided based
on the information given by the works of [2,52]. The
intrinsic permeability coe�cients may also be observed
in Table 2. It should be noted that the intrinsic
permeability considered for the materials is su�ciently
small that the frequency of excitation falls within the
low-frequency range. Biot's e�ective stress coe�cient
in horizontal and vertical planes and Biot's modulus
can be obtained from Eqs. (6) and (7), respectively,
and based on the data given in Tables 1 and 2. In the
present study, the physical quantities of interest express
the in
uence of the type of material anisotropy, phase
angle, frequency-dependent, permeability, and poros-
ity on the velocity of propagation and corresponding
attenuation coe�cient.

Wang et al. [49] derived analytical solutions for
body wave velocities and the direction of propagation
of a continuously inhomogeneous cross-anisotropic ma-
terial. In this study, the closed-form solutions were
governed by the inhomogeneous parameter, the degree
and type of material anisotropy and the phase angle.
In addition, Raoo�an-Naeeni and Eskandari-Ghadi
[37] determined the longitudinal and transverse wave
velocities in explicit forms for transversely isotropic
media. To compare the results for a single-phase
case, the solutions presented in [37] and in [49] for
transversely isotropic homogeneous materials are used
as benchmarks. The velocities are equal to the values,
which have been presented in Eqs. (38) and (39). As
indicated in Figures 2 to 4, there is an excellent agree-
ment between the two solutions. Computations for the
case n = 0 indicate that the slowness of longitudinal

Figure 2. Comparison of normalized longitudinal
P1-wave velocity obtained from the present study with
[37,49].

Figure 3. Comparison of normalized SV -wave velocity
obtained from the present study with [37,49].

P2-wave disappears, and those of P1�; SV -, and SH-
waves are associated with the single-phase model.

Figure 5 shows the variation of the wave prop-
agation velocity versus frequency for di�erent values
of the porosity, i.e., n = 0:2; 0:5, and 0.8 for Mat
#4 and at ' = �=2. As stated previously �P1, �P2
and �SV correspond to quasi-dilatational and quasi-

Table 2. Material data for 
uid and intrinsic permeability coe�cients [2,52].

�f (kg/m3) Kf (N/m2) k1 (m2) k3 (m2) � (N.sec/m2)

1000 3:3� 109 3:55� 10�12 3:55� 10�13 10�3
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Figure 4. Comparison of normalized SH-wave velocity
obtained from the present study with [37,49].

Figure 5a. P1- and P2-wave velocities (m/sec) versus
frequency (rad/sec) for Mat #4, and ' = �=2.

shear wave velocities, respectively. It is clear from
Figure 5 that vP1 > vSV > vP2. Also, the behavior of
�P1 and �SV is independent of frequency in this case,
which means that they are non-dispersive. Moreover,
as mentioned, �P1 and �SV for ! = 0 and ' = �=2
equal to

p
A1111/� and

p
C1313/�, respectively. Thus,

based on Figures 5a and 5b, these velocities are always
equal to

p
A1111/�, and

p
C1313/�, respectively. It

should be noticed that in this expression � is a function
of the porosity, n, as stated earlier in Section 2. In
addition, the dispersive character of the P2-wave can
be observed from Figure 5a. It is clear from this �gure
that the dependency of compressional wave velocity
of the second kind on porosity for all frequencies is
negligible. It is depicted that �P2 tends to be disap-
peared at zero frequency, as it has been analytically
discussed in Section 3. As it can be observed, the
lower the frequency, the higher the velocity change

Figure 5b. SV -wave velocity (m/sec) versus frequency
(rad/sec) for Mat #4, and ' = �=2.

Figure 6. Attenuation coe�cient of P1- and P2-waves
(rad/m) versus frequency (rad/sec) for Mat #4, and
' = �=2.

happens (see Figure 5a). It should also be pointed
out that based on Eq. (24), �SH is independent of the
frequency.

Figure 6 describes the variation of wave attenua-
tion (see Section 3) versus ! for the speci�ed values of n
for Mat #4 and incident angle ' = �=2. From Figure 6,
we can see that the P1-wave attenuation coe�cient is
not a�ected by porosity in low-frequency. However,
the attenuation coe�cient is highly changed at high-
frequency. In addition, the higher the porosity, the
lower the wave attenuation. As it is clear from this
�gure, the attenuation coe�cient of the P2-wave is not
a�ected by the level of porosity, while it is in
uenced
by the frequency in such a way that the larger the
frequency the larger the attenuation of compressional
wave (P2-wave). It should be noted that according to
Eq. (31), the attenuation coe�cient for the transverse
shear wave vanishes for incident angle equal to �=2,
and that is why the attenuation coe�cient for SV -wave
is not plotted. Also, it is seen from Figures 5 and 6



M. Mahmoodian et al./Scientia Iranica, Transactions A: Civil Engineering 28 (2021) 1132{1151 1145

Figure 7a. P1- and P2-wave velocities (m/sec) versus
porosity, ' = 0 and ! = 50 rad/sec.

Figure 7b. SV - and SH-wave velocities (m/sec) versus
porosity, ' = 0 and ! = 50 rad/sec.

that the form of the curves is comparable to the one
corresponding to Biot's model for isotropic saturated
porous media.

Figures 7 and 8 provide the variation of body wave
velocities and corresponding attenuation coe�cients
versus porosity for all materials, when ' = 0. The
e�ect of the porosity on the velocities for compressional
and shear waves is depicted in Figure 7. With the
aid of numerical results, it can be shown that the
trend of �P1 and

p
A3333/� at ' = 0 are alike versus

porosity. So, the compressional wave velocity �P1
for Mat #4 is the largest compared with the others,
which is related to the elasticity coe�cient C3333 (see
Figure 7a). Inspection of Eqs. (24) and (29) indicates
that the magnitudes and the variation of �SV and �SH
are the same as those presented in this special case
(' = 0), and equal to

p
C1313/�. On the other hand,

the mass density of the mixture is in
uenced by the

Figure 8a. P1-wave attenuation coe�cient (rad/m)
versus porosity, ' = 0, and ! = 50 rad/sec.

Figure 8b. P2-wave attenuation coe�cient (rad/sec)
versus porosity, ' = 0, and ! = 50 rad/sec.

porosity, resulting in some variation for �SV and �SH
in terms of the porosity. Figure 7b shows the variation
of �SV and �SH in terms of porosity. As could be seen,
the transverse wave velocities for Mat # 1, 2, 4, 5, and 6
are equal, since C1313 for these materials are the same.
Furthermore, the attenuation coe�cient, !Im(SP1),
decreases with an increase of porosity, especially in
the isotropic material (Figure 8a). Also, as it is
observed in Figures 7a and 8b, for the compressional
wave of the second kind, the dependence of velocity
and attenuation coe�cient di�ers from materials with
di�erent anisotropy, while the e�ect of porosity on
these parameters is negligible. Detailed investigation
of Figures 7a and 8b shows that the velocity and
attenuation coe�cient of P2-wave for all materials are
signi�cantly di�erent, while for Mat #2 and Mat #5
they are not very di�erent. This could be due to the
similarity between these two materials. On the other
hand, the elasticity coe�cient C1212 for these materials
was di�erent, however, the e�ect of C1212 on either �P2
or !Im(SP2) is not signi�cant.
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Figure 9a. Normalized P1-wave velocity versus incidence
angle, n = 0:5, and ! = 50 rad/sec.

Figure 9b. Normalized P2-wave velocity versus incidence
angle, n = 0:5, and ! = 50 rad/sec.

Figure 9 illustrates a graphical representation for
P1-, P2-, SV -, and SH-wave velocities in terms of
incidence angle, ', for synthetic materials, which have
been shown in Table 1. The velocities of body waves
in an isotropic material (Mat #1) are independent of
the direction of propagation, while it is di�erent for
the other materials. This behavior is expected and
can be seen in these �gures. A magnitude of �P1
at an incident angle of �=2 is

p
A1111/�, while it is

equal to
p
A3333/� for incident angle of zero. The

maximum compressional body wave velocity of the �rst
kind belongs to Mat #4 (see Figure 9a). As illustrated
in Figure 9b, the velocity di�erence of �P2 for Mat #2
and Mat #5 is negligible, which is indicated in Table 1,
too. Furthermore, the maximum value of �SV occurs
in the incident angle equal to ' = �=4 and its related
odd coe�cients. In addition, according to Eqs. (29)
and (31), vSV =

p
C1313/� in the isotropic plane and

the plane parallel to the material axis of symmetry, as
seen in Figure 9c. It has been shown in Figure 9d that
the SH-wave velocity of Mat #1 and Mat #5 is the

Figure 9c. Normalized SV -wave velocity versus incidence
angle, n = 0:5, and ! = 50 rad/sec.

Figure 9d. Normalized SH-wave velocity versus
incidence angle, n = 0:5.

same. Also, this is true of Mat #2 and Mat #4. This
result is related to the values of material coe�cients
C1212 and C1313. Figure 10 illustrates the P1-, P2-,
and SV -wave attenuation coe�cients versus incidence
angle '. The results demonstrate that the responses
are strongly in
uenced by both the degree of anisotropy
of the material and the incident angle. The maximum
and minimum values of the attenuation coe�cient of
P1-wave occur at incident angles equal to �=2 and 0,
respectively. However, a reverse rule occurs for P2-
wave. Besides, according to Eqs. (29), (31), and (33),
the attenuation coe�cient of SV -wave is expected to
be zero when the wave propagates in the vertical and
horizontal direction as well as in the saturated isotropic
material. As shown in Figure 10c the numerical results
also con�rm this. Furthermore, it can be observed
from this �gure that Mat #2 and Mat #5 have the
same attenuation coe�cient, as their velocity. Another
point is that in Mat #3, the attenuation coe�cient of
SV -wave, besides at ' = 0 and ' = �=2 vanishes at
' = �=4.

Figure 11 �nally depicts the frequency depen-
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Figure 10a. Normalized P1-wave attenuation coe�cient
versus incidence angle, n = 0:5 and ! = 50 rad/sec.

Figure 10b. Normalized P2-wave attenuation coe�cient
versus incidence angle, n = 0:5 and ! = 50 rad/sec.

Figure 10c. Normalized SV -wave attenuation coe�cient
versus incidence angle, n = 0:5 and ! = 50 rad/sec.

dence of the velocities and related attenuation coef-
�cients for di�erent values of k1=k3 (with k1 = 3:55 �
10�12m2) when the waves travel in a vertical direction.
As can be seen, while both velocity and attenuation
coe�cient of P2-wave are signi�cantly a�ected by
k1=k3, only the imaginary part of SP1 are mostly

Figure 11a. Normalized P1-wave velocity and
corresponding attenuation coe�cient versus frequency
(rad/sec) for the di�erent ratio of k1=k3, Mat #4, n = 0:2,
and ' = 0.

Figure 11b. Normalized P2-wave velocity and
corresponding attenuation coe�cient versus frequency
(rad/sec) for the di�erent ratio of k1=k3, Mat #4, n = 0:2,
and ' = 0.

a�ected by k1=k3 and it has a minor e�ect on the
velocity of the fast compressional wave. Moreover,
the decrease in the permeability along the x3-axis
resulted in the decrease of the P2-wave velocity, and
increase of the corresponding attenuation coe�cient
(see Figure 11b).

Furthermore, we have carried out separate numer-
ical studies, the result of which reveal that the e�ect of
the value of k3 and consequently changing k1=k3 on
velocity and corresponding attenuation coe�cient of
P1- and P2-waves is negligible in the horizontal plane.
Besides, since SP1 and SP2 in isotropic plane depend on
k1, Eq. (31), we expected that changes in k1=k3 would
not a�ect the velocities and corresponding attenuation
coe�cients of these waves. In addition, by referring
to the equations presented in the previous section, it
may be concluded that the velocity of SV -wave in the
horizontal and vertical plane is neither a function of
frequency nor a function of permeability. Therefore, in
accordance to these �ndings, the relevant �gures are
not plotted.
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7. Conclusion

The propagation of plane harmonic body waves in
transversely isotropic linear poroelastic 
uid-saturated
materials with a depth-wise axis of material symmetry
for both 
uid and solid has been investigated in this
study. Therefore, based on Biot's theory, the potential
function method in the framework of simpli�ed u-
p formulation has been used. The longitudinal and
transverse velocities and corresponding attenuation
coe�cients have been extracted from the presented
body wave equations. To demonstrate the validity
of the analytical solution developed in this study,
degeneration to zero porosity has been presented to
provide interesting comparisons with the solutions
given in the literature. Moreover, the expression of
velocity and attenuation coe�cient of body waves in
the isotropic plane and the plane perpendicular to
it, have been derived in explicit form. Also, the
simpli�ed form of the relations has been obtained
for saturated isotropic materials and incompressible
constituents. Furthermore, the e�ects of hydraulic and
mechanical parameters of materials on the velocity of
propagation and related attenuation coe�cient of the
waves have been investigated in more detail. To do so,
a variety of synthetic poroelastic transversely isotropic
materials have been provided, and the dependency
of wave motion to these parameters is illustrated by
plotting the graphs.

The �gures provided for di�erent frequencies give
a comprehensive picture of the e�ect of these parameter
on the velocities and, therefore, on the corresponding
attenuations. It has been found that the �rst and the
second kind of dilatational as well as vertical shear
waves in transversely isotropic saturated media, in
general, are dispersive and attenuated. The behaviour
of the wave of the second kind is similar to that of heat
conduction phenomenon, therefore the attenuation is
very high. The attenuation coe�cient of SV -wave for
some special cases tends to zero. Also, the excellent
agreement between the analytical equations obtained
for the special cases and the numerical results has
been illustrated. In addition, the e�ects of porosity
and permeability have been demonstrated. Moreover,
the result of the separate numerical studies show the
e�ects of the degree of material anisotropy and wave
incident angle on body wave velocities and related
attenuation coe�cients. The analytical and numerical
results represent that the in
uence of anisotropy char-
acteristics should be considered for wave propagation
in poroelastic transversely isotropic materials.

Nomenclature

Aijkl Material constants
Cijkl Elasticity constants

d Order of the diameter of the pores
E Young's moduli in the plane of

transverse isotropy
E0 Young's moduli in a direction normal

to the plane of transverse isotropy
F Scalar potential function
G Shear modulus in a plane normal to

the axis of symmetry
G0 Shear modulus in planes normal to

plane of transverse isotropy
i =
p�1

Kf Fluid compression modulus
Ks Solid grain compression modulus
k1 Intrinsic permeability in any direction

in the horizontal plane
k3 Intrinsic permeability in any direction

in the vertical direction
M Biot's modulus
mi(i = 1; 2; 3) Wave normal component
n Porosity
p Pore 
uid pressure
q Speci�c 
ux
S Slowness
t Time variable
Ui(i=1; 2; 3) Displacement component of 
uid phase
ui(i=1; 2; 3) Displacement component of solid phase
V Bulk volume
Vf Volume of the interconnected pores
Vs Volume of the solid phase
w Relative 
uid to solid displacement
�1 Biot's e�ective stress coe�cient in the

horizontal plane
�3 Biot's e�ective stress coe�cient in the

vertical plane
�ij Kronecker delta
"ij(i;j=1;2;3) Strain tensor
� Variation of 
uid content
� Dynamic viscosity of the 
uid
� Lame's constant
� Lame's constant
� Mass density of the mixture
�f Mass density of the 
uid
�s Mass density of the matrix
�ij(i;j=1;2;3) Stress tensor
�sij(i;j=1;2;3) Stress tensor of matrix
� Poisson's ratio characterizing the

lateral strain response in the plane of
transverse isotropy to stress acting
parallel to it
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�0 Poisson's ratio characterizing the
lateral strain response in the plane of
transverse isotropy to stress acting
normal to it

� Kinematic viscosity of the 
uid
� Scalar potential function
! Angular frequency
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