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Abstract. The main objective of the present study is to point to the generalization
of Molodtsov's approach to soft sets obtained by passing from the classical two-valued
logic underlying those sets to a three-valued logic where the third truth value can usually
be interpreted as either non-determined (i.e., between true and false) or unknown. This
extension of soft set approach allows a more intuitive and clearer representation of various
decision-making problems involving incomplete or uncertain information. In other words, it
is a viable approach to analyze soft-set-based multi-criteria-group decision-making problems
in the absence of adequate information resulting from the inability to determine the data.
In this regard, this study introduced the concept of three-valued soft set and some of
its operations and products. In addition, the formulas required to calculate all possible
choice values were proposed for each object in the (weighted) three-valued soft sets and
their respective decision values were calculated. Both Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) and ELimination Et Choice Translating REality
(ELECTRE) methods were modi�ed to deal with multi-criteria group decision problems
and then, three-valued soft-set-based decision-making algorithms were constructed. To
demonstrate the practicality of these algorithms, the examples adopted from the decision
problems in real life were addressed. Lastly, some aspects of the e�ciency of the proposed
algorithms were discussed using computational experiments.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Classically, a logic is two-valued (Boolean) if every
proposition is either false (\0") or true (\1"). In
1930,  Lukasiewicz [1] initiated a three-valued logic,
i.e., a natural extension of the two-valued logic with
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three truth (logical) values indicating false (\0"), true
(\1"), and some indeterminate third values (\ 1

2" as
something in the middle between true and false).
Further, he pioneered the conceptual form and basic
ideas of three-valued logic. By interpreting the intu-
ition of  Lukasiewicz three-valued logic from di�erent
perspectives, two-valued logic was extended to three-
valued logic in di�erent ways [2{5]. Based on their
choice of basic connectives, they were di�erent from a
syntactic and proof-theoretic point of view. Although
the idea of fuzzi�cation of logic was envisaged by
several researchers in the years following 1920, the
concept of fuzzy logic in which the truth values of
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variables might be any real number between 0 and
1, both inclusive, was explicitly and crisply proposed
by Zadeh [6] in 1965. Fuzzy logic is based on the
investigation and observation that people take into
account while making decisions based on uncertain
and non-numerical information. Fuzzy set, which is a
generalization of the crisp set based on the two-valued
logic, is the mathematical means of representing vague-
ness and imprecise information. This set is described
by a membership function that assigns to each object
a degree of membership ranging between 0 and 1.
Pawlak [7] de�ned a rough set that can be considered as
a new area of uncertainty mathematics closely related
to set theory. This set is a formal approximation
of a crisp set in a pair of sets which give the lower
and upper approximations of the original set. The
approximation spaces of rough set theory are sets with
multiple memberships, while fuzzy sets are concerned
with partial memberships. These sets are combined to
derive di�erent variations such as the fuzzy rough set
and rough fuzzy set. In 1999, Molodtsov [8] described
the soft set based on two-valued logic as a mathematical
tool dealing with parametric data which were imprecise
or uncertain in nature. In 2003, Maji et al. [9]
published a study on the operations of soft sets. Later,
the operational laws of the soft sets were derived [10{
14]. In addition, many authors have described and
discussed di�erent types of soft sets such as bijective
soft set [15], exclusive disjunctive soft set [16], bipolar
soft set [17], inverse soft set [18,19], etc.

Decision making, which is one of the issues that
triggers uncertainty, is a frequently encountered prob-
lem in many commercial and scienti�c �elds, even in
every stage of daily life. For deterministic model-
ing of decision-making problems, many mathematical
techniques such as Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS), AHP, VIKOR,
ELimination Et Choice Translating (ELECTRE), and
PROMETHEE have been developed. These mathe-
matical techniques were adopted for decision-making
based on the fuzzy set and some of its extensions [20{
26]. In addition to the fuzzy modelling of TOPSIS,
ELECETRE, etc., many algorithmic solutions were
proposed for decision-making in a fuzzy environment
[27{31]. In 2002, Maji et al. [32] reported that soft
sets could be used to solve decision-making problems
involving parametric data based on two-valued logic.
In the following years, many soft decision algorithms
were created and their applications to problems in
real life were speci�ed [33{37]. Moreover, Eraslan
[38] proposed a decision-making procedure through the
classical method of TOPSIS on the soft sets. In this
regard, he pointed out that classical decision-making
techniques could be successfully applied to the soft-
set-based decision-making.

In 2008, Avron and Konikowska [39] explored the

idea of describing Pawlak's rough set using three-valued
logic. This paradigm presents a di�erent perspective in
the interpretation of issues involving indeterminate or
unknown data in many �elds. As with the rough set,
three-valued logic emerges in many real-world scenes
that are included in the scope of the soft set, and
it is di�cult to deal with such broadly scoped issues
whose third truth value is \undetermined". In this
study, a completely designed approach to soft set was
discussed using three-valued logic. Thus, in practice,
we aim to overcome the di�culties that include a third
truth value caused by uncertain or unknown origin,
in addition to the truth values of a two-valued logic.
The present study was conducted based on the idea
of proposing the notion of three-valued soft set to
describe a soft set using three-valued logic. The fusion
of three-valued logic into the soft set suggests a clearer
and intuitive way to explain di�erent issues under
incomplete or uncertain information. In this regard,
the main focus was put on decision-making based on
this type of soft set and o�ering di�erent algorithmic
solutions.

The rest of this paper is organized as follows.
Section 2 gives an outline of soft set theory. Section 3
elaborates the motivation to reinterpret soft sets using
three-valued logic. Section 4 calculates the choice value
of an object in (weighted) three-valued soft sets and
accordingly, proposes two algorithms. Section 5 cre-
ates a multi-criteria group decision-making algorithm
based on the modi�ed TOPSIS on three-valued soft
sets. Section 6 proposes a three-valued soft decision-
making algorithm via the modi�ed ELECTRE, which is
based on three fundamental objectives called choosing,
sorting, and ranking. In addition, some examples were
given to analyze the performance of the algorithms
emerging in these two sections. Section 7 solves the
matching numerical examples to compare the results
of the proposed algorithms, thus showing that they are
convincing. The last section presents the concluding
remarks and suggests plans for further research.

2. Preliminaries

As a preparatory opening for new concepts, this section
elaborates some relevant arguments of soft set, two-
valued logic, and three-valued logic.

Consider the soft set theory �rst. In 1999,
Molodtsov [8] introduced soft set theory as a useful
way of classifying objects based on parametric data.
In 2010, C�a~gman and Engino~glu [40] recreated soft sets
to make their operations more practical in some cases.
Maji et al. [32] put forward that the soft set could be
represented in a tabular form. They also demonstrated
that soft sets were the parametric sets created based on
two-valued logic (i.e., 0 as false, 1 as true). Now, recall
the de�nition of soft set.
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From now on, X is a universal set, P is a
parameter set, and Q � P.

De�nition 2.1 [8,40]. Assume that Xhf0;1gi denotes
the set of all functions from X to f0; 1g. A pair
(fQ;P) = FQ is called a soft set over X when the
mapping fQ is de�ned by fQ : P ! X(f0;1g), where for
all pj 2 P, the approximate function fQ(pj) is shown
in Box I.

Example 2.1. In daily life, many operations such as
shopping, booking, money transfer, etc., can be done
through online websites. Recently, some websites have
made it feasible to reserve hotel rooms for trips and
holidays; take Booking.com and Expedia.com as ex-
amples. Now, consider the following problem that one
may encounter when making a hotel room reservation.

Let X = fx1; x2; x3; x4; x5g be a set of �ve hotels
that are available for booking a room. Let P =
fp1 = price; p2 = location; p3 = amenities; p4 =
satisfactiong be a set of the choice parameters. Then,
we can create the following soft set over X:

TP = f(p1; fxh0i1 ; xh1i2 ; xh1i3 ; xh0i4 ; xh0i5 g);
(p2; fxh1i1 ; xh1i2 ; xh0i3 ; xh0i4 ; xh1i5 g);
(p3; fxh1i1 ; xh1i2 ; xh0i3 ; xh1i4 ; xh0i5 g);
(p4; fxh0i1 ; xh1i2 ; xh1i3 ; xh0i4 ; xh1i5 g)g:

For the �rst pair in this soft set, it can be interpreted
that the prices of hotels x2 and x3 are suitable for us,
while the prices of hotels x1; x4; and x5 are not suitable.
Other pairs can be interpreted similarly.

In 1930,  Lukasiewicz [1] put forward
(Lukasiewicz) three-valued logic by extending
two-valued logic called Boolean logic. Immediately
after the above author, many authors have exhibited
their interest in the idea of three-valued logic and
its operations [2,4,39,41,42]. They argued that since
two-valued logic (Boolean logic) could cover all kinds
of scienti�c investigations, three-valued logic might be
useful as a basis for a number of useful reasoning tasks.
Boolean connectives can be extended to three-valued
logic in di�erent ways. In other words, the third truth
value can be explained in di�erent ways that are

di�erent from true and false. Ciucci and Dubois [43]
listed these ways as follows:

� Possible: this explanation was proposed by
 Lukasiewicz [1] and Borowski [2] the pioneer of
three-valued logic. A proposition is regarded as
\Possible" if its truth value will be known only in
the future;

� Unknown: This explanation was proposed by
Kleene [4] in 1952. A proposition is \Unknown" if
its truth value cannot be computed for some reasons
(for instance, it is too time-consuming to compute);

� Inconsistent : The third value stands for a proposi-
tion that is both true and false, and also it is the
dual of \Unknown" in some sense;

� Half-true: This is the typical of fuzzy logic [3]. The
intuition is that for some propositions, truth is a
importance degree. For instance, Shadowed set in
[44,45] is based on the idea of turning fuzzy set into
three-valued one;

� Unde�ned : This is another explanation of
Kleene [4]. The unde�ned state corresponds to the
selection of the argument of the function outside its
de�nition domain. A proposition is \Unde�ned" if
its truth value involves unde�ned atoms;

� Irrelevant : The idea behind it is that propositions
are not applicable in some possible worlds.

In 1960, Skolem [5] initiated a set theory based on
a certain three-valued logic. In this set theory, the
variables such as p; q; r; ::: take three values: 0; 1

2 ; 1.
We may interpret 0 as \false", 1 as \true", and 1

2 as
something in the middle between true and false, say
\undetermined". Moreover, Skolem presented a set of
truth tables showing tree-valued logic operations like
negation, disjunction and conjunction (for a detailed
review, see [5]). In the literature, there are many truth
tables illustrating tree-valued logic operations. How-
ever, this study focused on the truth tables proposed
by Skolem [5].

Three-valued logic emerges in several real-world
scenes. Three samples in the atmosphere of \undeter-
mined" are presented in Figures 1{3. In these �gures,
\?" symbolizes \undetermined", i.e., 1

2 .
Since the truth value of \undetermined" in Fig-

ures 1 and 2 is precisely known in the future, it can

fQ(pj) =

8>><>>:
(
x
h�ifQ(pj)

i
i : xi 2 X and �ifQ(pj)

2 f0; 1g
)
; if pj 2 Qn

xh0ii : 8xi 2 X
o
; if pj 2 P �Q

Box I
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Figure 1. Three-valued logic for classifying mail in a mailbox.

Figure 2. Three-valued logic for reviewers'
recommendation in journal.

be considered as \Possible". Figure 3 can also be
considered as an example for \Unknown".

3. Three-valued soft sets

This section discusses three-valued soft set which is a
generalization of soft set obtained by passing from two-
valued logic to three-valued one.

The soft set is a set approach proposed by two-
valued logic (true and false). In daily life, while

evaluating alternatives according to parameters in the
decision-making process, \undetermined" mode (nei-
ther true nor false, or both true and false) sometimes
arises. In such decision-making processes, the soft sets
are insu�cient. To overcome this shortcoming, the
notion of three-valued soft set, which is a soft set based
on three-valued logic (i.e., 0 as false, 1 as true, and 1

2
as \undetermined") is formed.

3.1. Three-valued soft set
De�nition 3.1. Assume that Xhf0; 12 ;1gi denotes the set
of all functions from X to f0; 1

2 ; 1g. A pair (tQ;P) =
TQ is called a three-valued soft set over X when the
mapping tQ is de�ned by tQ : P ! X(f0; 12 ;1g), where
for all pj 2 P the equation shown in Box II is obtained.

Notation: For the parameter set P, the set of
all three-valued soft sets over X is denoted by
T VSS(X;P).

Example 3.1. Assume that X = fx1; x2; x3; x4; x5g
is a set of drugs that can be taken by pregnant

Figure 3. Three-valued logic for cilia-related lesions in hydrocephalic mice (see [46]).
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tQ(pj) =

8>><>>:
(
x
h�itQ(pj)

i
i : xi 2 X and �itQ(pj)

2 f0; 1
2 ; 1g

)
; if pj 2 Qn

xh0ii : 8xi 2 X
o
; if pj 2 P �Q

Box II

Table 1. The side e�ects speci�ed in the prospectus of drugs.

p1 = allergy p2 = fetal damage p3 = pharmacological e�ect

x1 X � {
x2 � { X
x3 X � �
x4 � { {
x5 � X �

Note: The symbols X, �, and { represent Yes, No and Undetermined, respectively.

women and those of childbearing age. The drugs
that can be taken by these women, can be observed
without increase in the frequency of malformation or
other direct or indirect harmful e�ects on the human
fetus. Therefore, these women should carefully check
their side e�ects while using the drug. Suppose
that P = fp1 = allergy; p2 = fetal damage; p3 =
pharmacological e�ectg denotes some side e�ects of
the drugs. Here, the following table (Table 1) can be
obtained by examining the prospectus of drugs.

Based on Table 1, the following three-valued soft
set is constructed:

TP = f(p1; fxh1i1 ; xh0i2 ; xh1i3 ; xh0i4 ; xh0i5 g);
(p2; fxh0i1 ; xh

1
2 i

2 ; xh0i3 ; xh
1
2 i

4 ; xh1i5 g);
(p3; fxh 12 i1 ; xh1i2 ; xh0i3 ; xh

1
2 i

4 ; xh0i5 g):
Example 3.2. Let X = fx1 = V ivo V 17 Pro; x2 =
OneP lus 7; x3 = Xiaomi Redmi K20 Pro; x4 =
Apple IPhone 11g be a set of four mobiles, and

P = fp1 = FM Radio; p2 = Stereo Speakers; p3 =
Loudspeakerg a set of multimedia features (attributes)
that may be available on phones. Through the website
\www.91mobiles.com" (date: 17.10.2019), we have
Figure 4. Based on this �gure, the following three-
valued soft set can be created:

TP = f(p1; fxh1i1 ; xh0i2 ; xh
1
2 i

3 ; xh0i4 g);
(p2; fxh 12 i1 ; xh1i2 ; xh

1
2 i

3 ; xh1i4 g);
(p3; fxh1i1 ; xh1i2 ; xh1i3 ; xh1i4 g)g:

Based on the information presented on this web-
site, we can interpret that for the multimedia feature
p1 (FM Radio):

- The mobile x1 (Vivo V17 Pro) has an FM Radio;
- The mobiles x2 and x4 (OnePlus 7 and Apple IPhone

11) do not have an FM Radio; and
- It remains \undetermined" whether the mobile x3

(Xiaomi Redmi K20 Pro) has an FM Radio.

Figure 4. Comparison of some multi-media features of four mobiles.
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Comment: The truth value 1
2 in the three-valued logic

di�ers from the membership degree 0.5 in the fuzzy
logic. The truth value 1

2 in the three-valued logic
represents \undetermined", not membership. Why is
this truth value between 0 and 1, not 0? 0 indicates
that the given object does not certainly have the
desired property, while 1

2 means that the object might
possibly have this property. To be speci�c, assume that
one wants to buy any item from the mobiles x2 and x3
(presented in Figure 4). As a criterion for purchasing,
the requirement to have only FM Radio is determined.
In such situations, it is more convenient to select the
mobile x3. Since it is not known (undetermined)
whether or not the mobile x3 has an FM Radio and the
mobile x2 has no FM Radio, there is also the possibility
that the mobile x3 has an FM Radio. Indeed, we
reconsider through the website \www.smartprix.com"
that the mobile x3 (Xiaomi Redmi K20 Pro) has an
FM Radio.

Example 3.3. Let X = fx1; x2; x3; x4g be a set of
four investments at the disposal of the investor to
invest some money and P = fp1 = riskless; p2 =
security; p3 = tax free; p4 = short periodg a set of
parameters. For parameter subset Q1 = fp1; p2; p3g,
an investor can create the following three-valued soft
set over X:
TQ1 = f(p1; fxh1i1 ; xh0i2 ; xh1i3 ; xh

1
2 i

4 g);
(p2; fxh0i1 ; xh1i2 ; xh

1
2 i

3 ; xh1i4 g);
(p3; fxh1i1 ; xh

1
2 i

2 ; xh
1
2 i

3 ; xh1i4 g)g:
The element (p1; fxh1i1 ; xh0i2 ; xh1i3 ; xh

1
2 i

4 g) in TQ1 means
that:

- The investments x1 and x3 are risk-free;
- The investment x2 is risky; and
- The investment x4 is \undetermined" in terms of

risk.

As shown in the above example, if pj 2 PnQ1, the
pair (pj ; tQ1(pj)) does not need to be displayed in the
structure of the three-valued soft set TQ1 . However, it
is known that (pj ; fxh0ii : 8xi 2 Xg).

Each three-valued soft set can be represented
in the form of a binary table. This representation
makes three-valued soft sets useful in di�erent com-
puter program languages as well as the practicality of
calculations.

The binary tabular form of three-valued soft set
TQ1 in Example 3.3 is presented in Table 2.

In Table 2, each component xij represents the
truth value �itQ(pj)

of the alternative xi with respect
to the parameter pj , that is, in Table 2 and onward:

Table 2. The tabular form of three valued soft set TQ1 in
Example 3.3.

X=P p1 p2 p3 p4

x1 1 0 1 0

x2 0 1 1
2 0

x3 1 1
2

1
2 0

x4
1
2 1 1 0

- xij = 1 means that xi belongs to the subset of X
approximated by the parameter pj ;

- xij = 0 means that xi does not belong to the subset
of X approximated by the parameter pj ; and

- xij = 1
2 means that it is undetermined whether

xi belongs to the subset of X approximated by the
parameter pj .

From now on, in the examples, the three-valued soft
sets will be represented by the binary tables.

De�nition 3.2. Let TQ 2 T VSS(X;P). It is called:

a) An empty three-valued soft set when tQ(pj) =
fxh0ii : 8xi 2 Xg for all pj 2 P and it is denoted by
T�;

b) A Q-mid three-valued soft set when tQ(pj) =
fxh 12 ii : 8xi 2 Xg for all pj 2 Q, and it is denoted
by T eQ. If Q = P, the Q-mid three-valued soft set is
called a mid three-valued soft set and it is denoted
by T eP ;

c) A Q-universal three-valued soft set when tQ(pj) =
fxh1ii : 8xi 2 Xg for all pj 2 Q, and it is denoted
by T bQ. If Q = P, the Q-universal three-valued soft
set is called a universal three-valued soft set, and it
is denoted by T bP .

De�nition 3.3. Let TQ1 ; TQ2 2 T VSS(X;P), then,
we have:

a) TQ1 is a three-valued soft subset of TQ2 when
tQ1(pj) � tQ2(pj) for all pj 2 P and it is denoted
by TQ1 v TQ2 . Here, tQ1(pj) � tQ2(pj) for pj 2 P
means �itQ1(pj)

� �itQ2(pj)
for each xi 2 X.

b) TQ1 and TQ2 are both equal three-valued soft sets
when tQ1(pj) = tQ2(pj) for all pj 2 P , denoted by
TQ1 = TQ2 . Here, tQ1(pj) = tQ2(pj) for pj 2 P
means that �itQ1(pj)

= �itQ2(pj)
for each xi 2 X.

Example 3.4. Let us consider the three-valued soft
set TQ1 given in Table 2 of Example 3.3. In addition,
the three-valued soft set TQ2 is shown in Table 3. Then,
TQ2 v TQ1 .

Proposition 3.1. Let TQ1 ; TQ2 ; TQ3 2 T VSS(X;P).
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Table 3. The tabular form of TQ2 for Q2 = P.

X=P p1 p2 p3 p4

x1
1
2 0 1

2 0
x2 0 1 1

2 0
x3

1
2 0 0 0

x4 0 1 1 0

i. T� v T eP v T bP ;
ii. T� v TQk for each k;
iii. TQk v T bP ;
iv. TQk v TQk for each k;
v. TQ1 v TQ2 and TQ2 v TQ3 ) TQ1 v TQ3 .

Proof. The proofs are obvious according to De�nitions
3.2 and 3.3, hence they are omitted.�
3.2. Operations and products on three-valued

soft sets
De�nition 3.4. Let TQ 2 T VSS(X;P). Then the
complement of TQ, denoted by TQ, is de�ned by the
mapping tQ : P ! X(f0; 12 ;1g) such that:

tQ(pj) =
�
x
h�i
linetQ(pj)

i
i : xi 2 X and

�itQ(pj)
2 f0; 1

2
; 1g
�
;

for all pj 2 P where:

�itQ(pj)
= 1� �itQ(pj)

: (1)

Note: This de�nition clari�es why the truth value for
\undetermined" is 1

2 . The negation of \undetermined"
must also have the same truth value because there is
no gauge of \undetermined". Accordingly, we argue

Table 4. The tabular form of TQ2 for Q2 = P.

X=P p1 p2 p3 p4

x1
1
2 1 1 0

x2 0 0 0 0
x3

1
2

1
2 1 0

x4 1 0 0 1

Table 5. The tabular form of TQ2 .

X=P p1 p2 p3 p4

x1
1
2 0 0 1

x2 1 1 1 1
x3

1
2

1
2 0 1

x4 0 1 1 0

that \undetermined" implies something in the middle
between true and false, whose truth vale is 1

2 .

Example 3.5. We consider the universal set X and
parameter set P in Example 3.3. Furthermore, we
generated the three-valued soft set TQ2 given in Table 4.

The complement of TQ2 is obtained and shown in
Table 5.

Proposition 3.2. Let TQ 2 T VSS(X;P).

i. (TQ) = TQ;
ii. T� = T bP ;

iii. T eP = T eP .

Proof. (i) We consider three-valued soft set TQ =
(tQ;P) over X. Then, we have the mapping tQ : P !
X(f0; 12 ;1g) so that for all pj 2 P we obtain the equation
shown in Box III. Based on De�nition 3.4, we can write
for all pj 2 P the equation shown in Box IV. When
proceeding in a similar manner, for all pj 2 P we

tQ(pj) =

8>><>>:
(
x
h�itQ(pj)

i
i : xi 2 X and �itQ(pj)

2 f0; 1
2 ; 1g

)
; if pj 2 Qn

xh0ii : 8xi 2 X
o
; if pj 2 P �Q

Box III

tQ(pj) =

8>><>>:
(
x
h1��itQ(pj)

i
i : xi 2 X and �itQ(pj)

2 f0; 1
2 ; 1g

)
; if pj 2 Qn

xh1�0i
i : 8xi 2 X

o
; if pj 2 P �Q

Box IV
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tQ(pj) =

8>><>>:
(
x
h1�(1��itQ(pj)

)i
i : xi 2 X and �itQ(pj)

2 f0; 1
2 ; 1g

)
; if pj 2 Qn

xh1�(1�0)i
i : 8xi 2 X

o
; if pj 2 P �Q

=

8>><>>:
(
x
h�itQ(pj)

i
i : xi 2 X and �itQ(pj)

2 f0; 1
2 ; 1g

)
; if pj 2 Qn

xh0ii : 8xi 2 X
o
; if pj 2 P �Q

Box V

obtained the equation shown in Box V. Therefore, we
have tQ(pj) = tQ(pj) for all pj 2 P. So, (TQ) = TQ.

Proofs (ii) and (iii) are obvious, hence they are
omitted.�

De�nition 3.5. Let TQ1 ; TQ2 2 T VSS(X;P). Then,
the intersection of TQ1 and TQ2 , denoted by TQ1u TQ2 ,
is de�ned by the mapping tQ1uQ2 : P ! X(f0; 12 ;1g) such
that:

tQ1uQ2(pj) =
�
x
h�it(Q1uQ2)(pj)

i
i : xi 2 X and

�it(Q1uQ2)(pj)
2 f0; 1

2
; 1g
�
;

for all pj 2 P, where:

�it(Q1uQ2)(pj)
= min

�
�itQ1(pj)

; �itQ2(pj)

�
: (2)

Proposition 3.3. Let TQ 2 T VSS(X;P).

i. TQ u T� = T�;
ii. TQ u T bQ = TQ;

iii. TQ u T eQ v TQ.

Proof. It is clear from De�nitions 3.2, 3.3, and 3.5.

De�nition 3.6. Let TQ1 ; TQ2 2 T VSS(X;P). Then,
the union of TQ1 and TQ2 , denoted by TQ1t TQ2 , is
de�ned by the mapping tQ1tQ2 : P ! X(f0; 12 ;1g) such
that:

tQ1tQ2(pj) =
�
x
h�it(Q1tQ2)(pj)

i
i : xi 2 X and

�it(Q1tQ2)(pj)
2 f0; 1

2
; 1g
�
;

for all pj 2 P, where:

�it(Q1tQ2)(pj)
= max

�
�itQ1(pj)

; �itQ2(pj)

�
: (3)

Proposition 3.4. Let TQ 2 T VSS(X;P).

i. TQ t T� = TQ;
ii. TQ t T bQ = T bQ;
iii. TQ t T eQ w TQ.

Proof. It is clear from De�nitions 3.2, 3.3, and 3.6.�

Proposition 3.5. Let TQ1 ; TQ2 ; TQ3 2 T VSS(X;P).
For all �; � 2 fu;tg:
i. TQk � TQk = TQk ;

ii. TQ1 � (TQ2 � TQ3) = (TQ1 � TQ2) � TQ3 ;
iii. TQ1 � (TQ2 � TQ3) = (TQ1 � TQ2) � (TQ1 � TQ3).

Proof. Proofs (i) and (ii) are similar to (iii), hence
omitted. (iii) Let us prove that TQ1 � (TQ2 � TQ3) =
(TQ1 � TQ2) � (TQ1 � TQ3) for � = u and � = t.

We consider TQ1 u (TQ2 t TQ3). Suppose that
TQ2t TQ3 = TR, where for all pj 2 P:

tR(pj) = tQ2tQ3(pj) =
�
x
h�itR(pj)i
i : xi 2 X and

�itR(pj) = �it(Q2tQ3)(pj)
2
�

0;
1
2
; 1
��

;

such that:

�itR(pj)
= �it(Q2tQ3)(pj)

= max
�
�itQ2(pj)

; �itQ3(pj)

�
:
(4)

Assume that TQ1 u TR = TS , where for all pj 2 P:

tS(pj) = tQ1uR(pj) =
�
x
h�itS(pj)i
i : xi 2 X and

�itS(pj) = �it(Q1uR)(pj)
2
�

0;
1
2
; 1
��

;

such that:

�itS(pj)
= �it(Q1uR)(pj)

= minf�itQ1(pj)
; �itR(pj)

g

= minf�itQ1(pj)
;maxf�itQ2(pj)

; �itQ3(pj)
gg: (5)
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Now, we consider (TQ1 u TQ2) t (TQ1 u TQ3). Assume
that TQ1 u TQ2 = TU , where for all pj 2 P:

tU (pj) = tQ1uQ2(pj) =
�
x
h�itU (pj)i
i : xi 2 X and

�itU (pj) = �it(Q1uQ2)(pj)
2
�

0;
1
2
; 1
��

;

such that:

�itU(pj)
= �it(Q1uQ2)(pj)

= min
�
�itQ1(pj)

; �itQ2(pj)

�
:
(6)

Assume that TQ1 u TQ3 = TV , where for all pj 2 P:

tV (pj) = tQ1uQ2(pj) =
�
x
h�itV (pj)i
i : xi 2 X and

�itV (pj) = �it(Q1uQ2)(pj)
2
�

0;
1
2
; 1
��

;

such that:

�itV(pj)
= �it(Q1uQ2)(pj)

= min
�
�itQ1(pj)

; �itQ2(pj)

�
:
(7)

Suppose that TU t TV = TW , where for all pj 2 P:

tW (pj) = tUtV (pj) =
�
x
h�itW (pj)i
i : xi 2 X and

�itW (pj) = �it(UtV )(pj)
2
�

0;
1
2
; 1
��

;

such that:

�itW(pj)
= �it(UtV )(pj)

= max
�
�itU(pj)

; �itW(pj)

�
= max

(
min

�
�itQ1(pj)

; �itQ2(pj)

�
;

min
�
�itQ1(pj)

; �itQ3(pj)

�)
: (8)

Since �itQ1(pj)
; �itQ2(pj)

; �itQ3(pj)
2 f0; 1

2 ; 1g, we have:

�itS(pj)
= �itW(pj)

;

for all pj 2 P (by Eqs. (5) and (8). Therefore, it
can be concluded that TS and TW are indeed the
same set-valued mappings, and TQ1 u (TQ2 t TQ3) =
(TQ1 u TQ2) t (TQ1 u TQ3).

Other cases can be proved in a similar way.�

Proposition 3.6. Let TQ1 ; TQ2 2 T VSS(X;P). Then,
the following De Morgan's rules are held:

i. (TQ1 u TQ2) = TQ1 t TQ2 ;

ii. (TQ1 t TQ2) = TQ1 u TQ2 .

Proof. (i) Since 1�minf�itQ1(pj)
; �itQ2(pj)

g = maxf1�
�itQ1(pj)

; 1 � �itQ2(pj)
g for �itQ1(pj)

; �itQ2(pj)
2 f0; 1

2 ; 1g,
we can say that (TQ1 u TQ2) = TQ1 t TQ2 . (ii) It is
similar to the proof of (i).�

De�nition 3.7. Let TQ1 ; TQ2 2 T VSS(X;P). Then,
the di�erence between TQ1 and TQ2 , denoted by
TQ1n TQ2 , is de�ned by the mapping tQ1nQ2 : P !
X(f0; 12 ;1g) such that:

tQ1nQ2(pj) =
�
x
h�it(Q1nQ2)(pj)

i
i : xi 2 X and

�it(Q1nQ2)(pj)
2 f0; 1

2
; 1g
�
;

for all pj 2 P, where:

�it(Q1Q2)(pj)
= min

�
�itQ1(pj)

; 1� �itQ2(pj)

�
: (9)

De�nition 3.8. Let TQ1 ; TQ2 2 T VSS(X;P). Then,
the symmetric di�erence between TQ1 and TQ2 , de-
noted by TQ14TQ2 , is de�ned by the mapping tQ14Q2 :
P ! X(f0; 12 ;1g) such that:

tQ14Q2(pj) =
�
x
h�it(Q14Q2)(pj)

i
i : xi 2 X and

�it(Q14Q2)(pj)
2
�

0;
1
2
; 1
��

for all pj 2 P, where:

�it(Q14Q2)(pj)
= min

(
max

�
�itQ1(pj)

; �itQ2(pj)

�
;

1�min
�
�itQ1(pj)

; �itQ2(pj)

�)
: (10)

Example 3.6. Consider three-valued soft sets TQ1

and TQ2 in Tables 2 and 4, respectively. Therefore,
the di�erence and symmetric di�erence between TQ1

and TQ2 can be measured as shown in Tables 6 and 7,
respectively.

Proposition 3.7. Let TQ1 ; TQ2 2 T VSS(X;P).

i. TQ1n TQ2 = TQ1 u TQ2 ;
ii. TQ14 TQ2 = (TQ1n TQ2) t (TQ2n TQ1).

Proof.
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Table 6. The tabular form of TQ1n TQ2 .

X=P p1 p2 p3 p4

x1
1
2 0 0 0

x2 0 1 1
2 0

x3
1
2

1
2 0 0

x4 0 1 1 0

Table 7. The tabular form of TQ14 TQ2 .

X=P p1 p2 p3 p4

x1
1
2 1 0 0

x2 0 1 1
2 0

x3
1
2

1
2

1
2 0

x4
1
2 1 1 1

(i) Assume that TQ1n TQ2 = TR. According to
Eq. (9), for all pj 2 P, we have:

�itR(pj) = min
�
�itQ1(pj)

; 1� �itQ2(pj)

�
: (11)

On the contrary, assume that TQ1 u TQ2 = TS .
Then, based on De�nition 3.5, we have:

�itS (pj) = min
�
�itQ1(pj)

; �itQ2 (pj)

�
=

min
�
�itQ1(pj)

; 1� �itQ2(pj)

�
: (12)

By Eqs. (11) and (12), we prove that the above
equality is achieved.

(ii) Assume TQ14 TQ2 = TU . Then, by Eq. (10), we
have for all pj 2 P:

�itU (pj) = min

(
max

�
�itQ1(pj)

; �itQ2(pj)

�
;

1�min
�
�itQ1(pj)

; �itQ2(pj)

�)
: (13)

With the consideration of the right side of equality, we
have TQ1n TQ2 = TV and TQ2n TQ1 = TW , where:

�itV (pj) = min
�
�itQ1(pj)

; 1� �itQ2(pj)

�
; (14)

and:

�itW (pj) = min
�
�itQ2(pj)

; 1� �itQ1(pj)

�
: (15)

For TZ = TV u TW , from De�nition 3.6, we obtain
that:

�itZ (pj) = max
�
�itV(pj)

; �itW(pj)

�
=

max

(
min

�
�itQ1(pj)

; 1� �itQ2(pj)

�
;

min
�
�itQ2(pj)

; 1� �itQ1(pj)

��
: (16)

We know that �itQ1(pj)
; �itQ2(pj)

2 f0; 1
2 ; 1g for all pj 2

P, and �itU (pj) = �itZ (pj). This completes the proof.�

De�nition 3.9. Let TQ1 ; TQ2 2 T VSS(X;P). Then,
the And-product of TQ1 and TQ2 , denoted by TQ1Z TQ2 ,
is de�ned by the mapping tQ1ZQ2 : P �P ! X(f0; 12 ;1g)
such that:

tQ1ZQ2(pj ; pk) =

(
x
h�it(Q1ZQ2)(pj;pk)

i
i : xi 2 X and

�it(Q1ZQ2)(pj;pk)
2
�

0;
1
2
; 1
�)

for all (pj ; pk)

2 P � P;
where:

�it(Q1ZQ2)(pj;pk)
= min

�
�itQ1(pj)

; �itQ2(pk)

�
: (17)

De�nition 3.10. Let TQ1 ; TQ2 2 T VSS(X;P). Then,
the Or-product of TQ1 and TQ2 , denoted by TQ1 Y TQ2 ,
is de�ned by the mapping tQ1YQ2 : P �P ! X(f0; 12 ;1g)
such that:

tQ1YQ2(pj ; pk) =
�
x
h�it(Q1YQ2)(pj;pk)

i
i : xi 2 X and

�it(Q1YQ2)(pj;pk)
2
�

0;
1
2
; 1
��

for all (pj ; pk) 2 P � P, where:

�it(Q1YQ2)(pj;pk)
= max

�
�itQ1(pj)

; �itQ2(pk)

�
: (18)

Proposition 3.8. Let TQ1 ; TQ2 ; TQ3 2 T VSS(X;P).
For all �; � 2 fZ;Yg:
i. TQ1 � (TQ2 � TQ3) = (TQ1 � TQ2) � TQ3 ;

ii. TQ1 � (TQ2 � TQ3) = (TQ1 � TQ2) � (TQ1 � TQ3);
iii. (TQ1 ? TQ2) � TQ3 = (TQ1 � TQ3) ? (TQ2 � TQ3).

Proof. They can be shown in a similar way to the
proofs of Proposition 3.5.�

Proposition 3.9. Let TQ1 ; TQ2 2 T VSS(X;P). Then,
the following De Morgan's laws are held:
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i. (TQ1 Z TQ2) = TQ1 Y TQ2 ;

ii. (TQ1 Y TQ2) = TQ1 Z TQ2 .

Proof. The proofs are similar to those of Proposition
3.6.�

4. Choice value of an object in three-valued
soft set(s)

In 2002, Maji et al. [32] de�ned the choice value of an
object in a soft set and concluded that this indication
could be used to prioritize the objects in the soft set
during the decision-making process. In addition, the
idea of choice value initiated by Maji et al. was used
for the three-valued soft sets.

In this part, it is taken J = f1; 2; :::; jPjg where
jPj denotes the cardinality of the parameter set P.

De�nition 4.1. Let X be a set of alternatives
(objects).

1. The choice value of an object xi 2 X in the three-
valued soft set TQ is de�ned and denoted by:

�i =
X
j2J

(xij)�; (19)

where xij for all i; j are the entries in the table of
the three-valued soft set TQ. Further, the arbitrary
number � 2 R+ represents the overall impact
coe�cient of \undetermined" on the choice value.

2. The choice value of an object xi 2 X in the three-
valued soft sets TQk for k = 1; 2; :::; s is de�ned and
denoted by:

�i =
P
j2J ((xuij)� + (xtij)�)

2
; (20)

where xuij and xtij for all i; j are the entries in

the tables of three-valued soft sets usk=1TQk and
tsk=1TQk , respectively. Also, the arbitrary number
� 2 R+ is the overall impact coe�cient of \unde-
termined" on the choice value.

Remark: It is clear that for xij = 1
2 , (xij)� ! 1 when

� ! 0 and (xij)� ! 0 when � ! +1. Take Figure
2 as an example. In case of minor modi�cation, it is
more appropriate to consider 0 < � < 1. However,
if the modi�cation is major, and should consider � 2
(1;+1).

Algorithm 1: Selection

Step 1. Choose feasible subsets Qk (k = 1; 2; :::; s)
of the parameter set P;

Step 2. Create the three-valued soft sets TQk for
parameter subsets Qk (k = 1; 2; :::; s);

Step 3. Specify the overall impact coe�cient of
\undetermined" on the choice value, i.e., � 2 R+;

Step 4.

� If k > 1, obtain the intersection and union of three-
valued soft sets TQk (k = 1; 2; :::; s);

� If k = 1, skip to Step 4.

Step 5. Calculate �i for all i's;

Step 6. Find l, for which �l = max �i.

Then, xl is the optimal choice object. If l has more
than one value, any one of them could be chosen.

Example 4.1. As an implementation of Algorithm 1,
we attempt to solve our numerical problem in Example
3.3. According to Tables 8 and 9, we have max �i = �4
for � = 1; 1

4 ;
3
2 ;
p

13; 10; then, the investment x4 is an

Table 8. The choice value for three valued soft set TQ1 in Example 3.3.

�i =
P
j(xij)

�

X=P p1 p2 p3 p4 � = 1 � = 1
4 � = 3

2 � =
p

13 � = 10
x1 1 0 1 0 2 2 2 2 2
x2 0 1 1

2 0 1.5 1:8408 1:3535 1:0824 1:0009
x3 1 1

2
1
2 0 2 2:6816 1:707 1:1648 1:0018

x4
1
2 1 1 0 2.5 2:8408 2:3535 2:0824 2:0009

Table 9. The ranking preference order of objects for three valued soft set TQ1 in Example 3.3.

Ranking order of
choice value �i

ranking preference
order of xi

max �i
Optimal choice

object
� = 1 �4 > �1 = �3 > �2 x4 � x1 � x3 � x2 �4 x4

� = 1
4 �4 > �3 > �1 > �2 x4 � x3 � x1 � x2 �4 x4

� = 3
2 �4 > �1 > �3 > �2 x4 � x1 � x3 � x2 �4 x4

� =
p

13 �4 > �1 > �3 > �2 x4 � x1 � x3 � x2 �4 x4

� = 10 �4 > �1 > �3 > �2 x4 � x1 � x3 � x2 �4 x4
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optimal choice to invest some money.

Example 4.2. We consider three-valued soft sets TQ1

in Example 3.3 and TQ2 in Example 3.5. Then, we
should make a common decision based on the data
in these two three-valued soft sets for � = 2. We
obtain the intersection and union of TQ1 and TQ2 as
in Tables 10 and 11, respectively.

According to Tables 10 and 11, we have max�i =
�1 = �4 = 2:125. It can be concluded that any of
the investments x1 and x4 can be an optimal choice to
invest some money.

In the decision-making process, all parameters
of a parameter set may not be of equal importance.
In such cases, weights can be imposed on the choice
parameters; in other words, there is a weight !j 2 (0; 1]
corresponding to each parameter pj 2 Q. If pj 2 P�Q,
we know that !j = 0. Generally, the total weight isP
j !j = 1. Now, let us describe the weighted choice

value of an object in the structures of (weighted) three-
valued soft sets.

De�nition 4.2. Let X be a set of alternatives (ob-
jects). Also, TQ is a (weighted) three-valued soft set
over X:

1. The weighted choice value of an object xi 2 X in
the (weighted) three-valued soft set TQ is de�ned
and denoted by:

�!i =
X
j2J

!j � (xij)�; (21)

where the arbitrary number � 2 R+ represents
the overall impact coe�cient of \undetermined"
on the choice value. Also, !j denotes the weight
corresponding to each parameter pj in the structure
of three-valued soft set TQ.

2. The weighted choice value of an object xi 2 X in
the (weighted) three-valued soft sets TQk for k =
1; 2; :::; s is de�ned and denoted by:

Table 10. Three valued soft set TQ1u TQ2 .

X=P p1 p2 p3 p4
P
j(x
u
ij)2

x1
1
2 0 1 0 1.25

x2 0 0 0 0 0
x3

1
2

1
2

1
2 0 0.75

x4
1
2 0 0 0 0.25

Table 11. Three valued soft set TQ1t TQ2 .

X=P p1 p2 p3 p4
P
j(x
t
ij)2

x1 1 1 1 0 3
x2 0 1 1

2 0 1.25
x3 1 1

2 1 0 2.25
x4 1 1 1 1 4

�!i =
P
j2J !ortj � ((xuij)� + (xtij)�)

2
; (22)

where the arbitrary number � 2 R+ is the overall
impact coe�cient of \undetermined" on the choice
value. Also:

!ortj =
Ps
k=1 !

k
j

s
; (23)

where !kj indicates the weight corresponding to each
parameter pj in the structure of three-valued soft
set TQk .

Algorithm 2: Selection by imposing weights on
parameters

Step 1. Choose the feasible subsets Qk (k =
1; 2; :::; s) of the parameter set P and determine its
weights (i.e., !k) for each subsets Qk;
Step 2. Create the (weighted) three-valued soft sets
TQk for the parameter subsets Qk (k = 1; 2; :::; s);
Step 3. Specify the overall impact coe�cient of
\undetermined" on the choice value, i.e., � 2 R+;
Step 4.
� If k > 1, obtain the intersection and union of three-

valued soft sets TQk (k = 1; 2; :::; s), and
� If k = 1, skip to Step 4.
Step 5. Calculate �!i for all i's;
Step 6. Find l for which �!l = max �!i .

Then, xl is the optimal choice object. If l has more
than one value, any one of them could be chosen.

Example 4.3. the numerical problem proposed in
Example 3.3 was taken into consideration. Also, the
following weights were measured for the parameters of
Q1: !1

1 = 0:6 for the parameter p1 = high returns,
!1

2 = 0:3 for the parameter p2 = low risk and !1
3 = 0:1

for the parameter p3 = high security. Since p4 =2 Q1,
the weight of parameter p4 2 P can be considered \0".

According to Table 12, we have max �!i = �!3
(for � = 1; 1

10 ; 3). Then, the optimal choice is x3.

Example 4.4. Consider the weighted three-valued soft
sets TQ1 in Example 4.3. Also, we take the following
parameter weights for TQ2 in Table 4: !2

1 = !2
4 = 0:2

and !2
2 = !2

3 = 0:3. For � = 1, we obtain weighted
choice values of alternatives xi (i = 1; 2; 3; 4) as �!1 =
0:65, �!2 = 0:2, �!3 = 0:6, �!4 = 0:6. Since max �!i =
�!1 = 0:65, the optimal choice is x1.

In Algorithms 1 and 2, for each decision-maker,
the overall impact coe�cient (�) of \undetermined" on
the choice value is taken the same. These two algo-
rithms cannot be used if each decision-maker selects
the impact coe�cient of \undetermined" di�erently.
To address these shortcomings, we will create new
decision-making algorithms.
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Table 12. The weighted choice value for three valued soft set TQ1 in Example 3.3

�!i =
P
j !

1
j � (xij)�

X=P p1(!1
1 = 0:6) p2(!1

2 = 0:3) p3(!1
3 = 0:1) p4(!1

4 = 0) � = 1 � = 1
10 � = 3

x1 1 0 1 0 0.7 0.7 0.7
x2 0 1 1

2 0 0.35 0:3933 0:3125
x3 1 1

2
1
2 0 0.8 0:9732 0:65

x4
1
2 1 1 0 0.7 0:9598 0:475

5. Three-valued soft decision-making model
based on TOPSIS

This section primarily focuses on the TOPSIS, which
produces satisfactory results during decision-making.
Here, this technique was rebuilt to deal with the
multi-criteria-group decision-making problems based
on three-valued soft sets, thus constructing a novel
decision-making model.

TOPSIS is an approach to solving multi-criteria
decision-making problems based on a decision maker.
In 2007, Shih et al. [47] extended this method for
group decision-making. The operations in the pro-
cess of TOPSIS include decision matrix normalization,
distance measures, and aggregation operators [47].
Generally, a decision matrix is required prior to the
beginning of the process. As a result of this process,
the output data are interpreted so that the ranking
order of alternatives can be obtained. In summary,
the TOPSIS approach is a practical and useful method
for ranking and selecting a number of externally de-
termined alternatives through distance measures. The
main procedure of TOPSIS is given in a series of steps
(see [48{51]).

Now, a multi-criteria group decision-making
model is proposed using the TOPSIS on three-valued
soft sets.

Algorithm 3: TOPSIS based three-valued soft
sets

Step 1. The multi-criteria group decision-making
problem is identi�ed. In this step, decision makers
(experts), alternatives, and choice parameters are
determined. Suppose that DM = fEk : k 2 Is =
f1; 2; :::; sgg is a set of decision makers (experts) and
Ek denotes the kth decision maker (expert). Also, xi
(i 2 Im = f1; 2; :::;mg) denotes the ith alternative,
and pj (j 2 In = f1; 2; :::; ng) represents the jth
parameter (criterion or attribute).

Considering these data, each decision maker
Ek (k 2 Is) create three-valued soft set TQk and
measures the weights of parameters as !kj (j 2 In)
satisfying the condition

Pn
j=1 !

k
j = 1.

Moreover, each decision maker Ek speci�es the
impact coe�cient of \undetermined" in decision-
making, i.e., �k;

Step 2. For each decision maker Ek, the decision
matrix Dk is constructed and represented as follows:

p1 p2 : : : pn

Dk =

x1
x2
:
:
:
xm

26666664
dk11 dk12 : : : dk1n
dk21 dk22 : : : dk2n
: : : :
: : : :
: : : :

dkm1 dkm2 : : : dkmn

37777775 = [dkij ]m�n;

where dkij = (xkij)�k that xkij for all i; j are the entries
in the table of three-valued soft set TQk ;
Step 3. After constructing the decision matrices,
these are normalized (standardized).

For each decision matrix Dk, the normalized
decision matrix Rk is constructed and expressed as
follows:

Rk =

26666664
rk11 rk12 : : : rk1n
rk21 rk22 : : : rk2n
: : : :
: : : :
: : : :

rkm1 rkm2 : : : rkmn

37777775 = [rkij ]m�n;

where:

rkij =

8<: dkijqPm
`=1(dk`j)2

; if dkij 6= 0

0; if dkij = 0
(24)

for all k 2 Is, i 2 Im, and j 2 In.
Step 4. Given di�erent weights of parameters for
each decision-maker, the weighted normalized deci-
sion matrix is calculated by multiplying the weights
of evaluation parameters by values in the normalized
decision matrix.

For each normalized decision matrix Rk, the
weighted normalized decision matrix Vk is created
as follows:

Vk =

26666664
vk11 vk12 : : : vk1n
vk21 vk22 : : : vk2n
: : : :
: : : :
: : : :

vkm1 vkm2 : : : vkmn

37777775 = [vij ]m�n;



3732 E. Ak�cetin and H. Kamac�/Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 3719{3742

where:
vkij = wkj � rkij ; (25)

for all k 2 Is, i 2 Im and j 2 In.
Step 5. By combining the weighted normalized
decision matrices Vk (k 2 Is), the average weighted
normalized decision matrix V can be obtained.

The structure of the matrix V is expressed as
follows:

V =

26666664
v11 v12 : : : v1n
v21 v22 : : : v2n
: : : :
: : : :
: : : :

vm1 vm2 : : : vmn

37777775 = [vij ]m�n;

where for all i 2 Im and j 2 In:

vij = v1
ij � v2

ij � :::� vsij : (26)

In other words, the value vij is obtained by combining
the weighted normalized decision value vkij through an
operation �. Here, the operation � can o�er many
choices: arithmetic mean, geometric mean, harmonic
mean and their modi�cation.

Note: In this study, we will take the arithmetic mean
of all individual measures.
Step 6. The positive and negative ideal solutions V>
and V? are determined using the average weighted
normalized decision matrix V.

In the TOPSIS approach, the parameters (crite-
ria or attributes) are evaluated in terms of bene�t (cf.
Example 3.3) and cost (cf. Example 3.1). Suppose
that J1 and J2 are the sets of bene�t and cost
parameters, respectively, where J1 \ J2 = � and
J1 [ J2 = f1; 2; :::; ng. V> and VL are described as
follows:
� V> is the set which shows that the most suitable

alternative for each parameter may be preferred
(PIS). This set is obtaibed and shown in the
following:

V> = fv>1 ; v>2 ; :::; v>j ; :::; v>n g
= f(max

i
v?ij : j 2 J1); (min

i
v?ij : j 2 J2);

i 2 Img: (27)

� V? is the set showing the least preferable alterna-
tive for each parameter (NIS). This set is obtained
as follows:
V? = fv?1 ; v?2 ; :::; v?j ; :::; v?n g

= f(min
i
v?ij : j 2 J1); (max

i
v?ij : j 2 J2);

i 2 Img: (28)

Step 7. The separation measurements of alterna-
tives to the ideal solutions are obtained through the
Euclidean distance formula.

The separation measurement of each alternative
xi to the positive ideal solution V> is calculated as
follows:

S>i =

vuut nX
j=1

(vij � v>j )2: (29)

The separation measurement of each alternative xi to
the negative ideal solution V? is calculated as follows:

S?i =

vuut nX
j=1

(vij � v?j )2: (30)

Here, S>i and S?i represent the distance of the
alternative xi from PIS and NIS, respectively.
Step 8. The relative closeness of each alternative to
the ideal solutions is also calculated.

The relative closeness Cyi of the alternatives xi
with respect to the ideal solutions can be expressed
as:

Cyi =
S?i

S?i + S>i ; 8i 2 Im (0 � Cyi � 1): (31)

Step 9. The alternatives (objects) are ranked in
order of preference.

A set of alternatives xi can be ranked according
to the descending order of the values Cyi .

To show the potential of the proposed approach, a real-
life practice was suggested, adopted from Figure 4.

Example 5.1. Assume that two experts are about
to determine the best mobile brand by examining
the new model mobile phones presented by six dif-
ferent mobile phone brands. The �rst expert E1
reviews each brand's mobile phone with memory of
128 GB, and the second expert E2 reviews each
brand's mobile phone with memory of 64 GB. Let
X = fx1; x2; x3; x4; x5; x6g be a set of six di�erent
mobile phone brands. Also, the set of parameters is
employed to determine the brand with the best mobile
phones, which is given as P = fp1; p2; p3; p4; p5; p6; p7g
where p1 = optical image stabilization, p2 = quick
charging, p3 = expandable memory, p4 = waterproof ,
p5 = autofocus, p6 = cheap, and p7 = fingerprint
sensor. Each of these experts proceeds to the de-
cision making stage after reviewing comparisons on
mobile phones on a comparison-focused website (such
as \www.91mobiles.com" and \www.smartprix.com").

To deal with this problem, the steps of Algo-
rithm 3 are followed:

Step 1. The experts E1 and E2 determine the
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Table 13. The weights of choice parameters of experts E1 and E2.

!1 !2 !3 !4 !5 !6 !7

First expert (E1) 0.22 0.15 0.13 0.15 0.13 0.11 0.11
P7
j=1 !

1
j = 1

Second expert (E2) 0.24 0.12 0.12 0.16 0.14 0.1 0.12
P7
j=1 !

2
j = 1

Table 14. Three valued soft sets of experts E1 and E2.

Decision makers: First expert (E1) Second expert (E2)

X=P p1 p2 p3 p4 p5 p6 p7 p1 p2 p3 p4 p5 p6 p7

x1 1 0 0 1
2

1
2 1 0 1

2
1
2 1 0 1

2 1 0

x2 1 1
2

1
2 1 1 1 1

2 1 0 1
2 1 1 1 1

x3
1
2 0 1

2 1 1
2 0 1 1

2 0 0 1 1 0 1

x4
1
2

1
2 1 1

2
1
2 1 1 0 1

2 1 0 0 1 1
2

x5 0 1
2

1
2 1 1

2 0 1 1
2 0 0 1 0 1 1

x6
1
2

1
2 1 1 0 1 1 1 1 1 1 0 1 1

Impact coe�cient �k: �1 = 1:5 �2 = 2

parameter sets as Q1 = Q2 = P, respectively. In
addition, they determine the weights of their choice
parameters as !kj for all j = 1; 2; :::; 7 and k = 1; 2.
(see Table 13). The experts collect data about
each brand's mobile phone xi (i = 1; 2; :::; 6) for
each attribute pj and create three-valued soft sets in
Table 14.

Step 2. According to Table 14, the decision matrices
Dk (k = 1; 2) are constructed in the equations shown
in Box VI.

Step 3. For each decision matrix Dk (k = 1; 2),
the normalized decision matrix Rk (k = 1; 2) is
constructed in the equations shown in Box VII.

Step 4. For each normalized decision matrix Rk

(k = 1; 2), the weighted normalized decision matrix
Vk (k = 1; 2) is formed by the equations shown in
Box VIII.
Step 5. Then, the average weighted normalized
decision matrix is constructed by the equation shown
in Box IX, where the operation � represents the
arithmetic mean.
Step 6. The positive and negative ideal solutions V>
and V? are determined as follows:

V> = fv>1 = 0:1524; v>2 = 0:094; v>3 = 0:0764;

v>4 = 0:0763; v>5 = 0:1017; v>6 = 0:0498;

v>7 = 0:0568g;

D1 =

26666664
1 0 0 0:3535 0:3535 1 0
1 0:3535 0:3535 1 1 1 0:3535

0:3535 0 0:3535 1 0:3535 0 1
0:3535 0:3535 1 0:3535 0:3535 1 1

0 0:3535 0:3535 1 0:3535 0 1
0:3535 0:3535 1 1 0 1 1

37777775 = [d1
ij ]6�7;

D2 =

26666664
0:25 0:25 1 0 0:25 1 0

1 0 0:25 1 1 1 1
0:25 0 0 1 1 0 1

0 0:25 1 0 0 1 0:25
0:25 0 0 1 0 1 1

1 1 1 1 0 1 1

37777775 = [d2
ij ]6�7:

Box VI
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R1 =

26666664
0:6489 0 0 0:1714 0:2886 0:5 0
0:6489 0:5001 0:2293 0:485 0:8166 0:5 0:174
0:2293 0 0:2293 0:485 0:2886 0 0:4923
0:2293 0:5001 0:6489 0:1714 0:2886 0:5 0:4923

0 0:5001 0:2293 0:485 0:2886 0 0:4923
0:2293 0:5001 0:2293 0:485 0 0:5 0:4923

37777775 ;

R2 =

26666664
0:169 0:2357 0:5714 0 0:0174 0:4472 0
0:6761 0 0:1428 0:5 0:6963 0:4472 0:4961
0:169 0 0 0:5 0:6963 0 0:4961

0 0:2357 0:5714 0 0 0:4472 0:124
0:169 0 0 0:5 0 0:4472 0:4961
0:6761 0:9428 0:5714 0:5 0 0:4472 0:4961

37777775 :
Box VII

V1 =

26666664
0:1427 0 0 0:0257 0:0375 0:055 0
0:1427 0:075 0:0298 0:0727 0:1061 0:055 0:0191
0:0504 0 0:0298 0:0727 0:0375 0 0:0541
0:0504 0:075 0:0843 0:0257 0:0375 0:055 0:0541

0 0:075 0:0298 0:0727 0:0375 0 0:0541
0:0504 0:075 0:0298 0:0727 0 0:055 0:0541

37777775 ;

V2 =

26666664
0:0405 0:0282 0:0685 0 0:0243 0:0447 0
0:1622 0 0:0171 0:08 0:0974 0:0447 0:0595
0:0405 0 0 0:08 0:0974 0 0:0595

0 0:0282 0:0685 0 0 0:0447 0:0148
0:0405 0 0 0:08 0 0:0447 0:0595
0:1622 0:1131 0:0685 0:08 0 0:0447 0:0595

37777775 :
Box VIII

and:

V? = fv?1 = 0:0202; v?2 = 0; v?3 = 0:0149;

v?4 = 0:0128; v?5 = 0; v?6 = 0; v?7 = 0g:
Step 7. The separation measurements S>i and S?i
of each alternative xi to the ideal solutions are given
in Table 15.

Step 8. The relative closeness Cyi of each alternative
to the ideal solutions is calculated as follows:

Cy1 = 0:3767; Cy2 = 0:7095;

Cy3 = 0:399; Cy4 = 0:3706;

Cy5 = 0:3513; Cy6 = 0:589:

Step 9. According to the descending order of

V = V1 �V2 =

26666664
0:0916 0:0141 0:0342 0:0128 0:0309 0:0498 0
0:1524 0:0375 0:0234 0:0763 0:1017 0:0498 0:0393
0:0454 0 0:0149 0:0763 0:0674 0 0:0568
0:0252 0:0516 0:0764 0:0128 0:0187 0:0498 0:0344
0:0202 0:0375 0:0149 0:0763 0:0187 0:0223 0:0568
0:1063 0:094 0:0491 0:0763 0 0:0498 0:0568

37777775 = [vij ]6�7:

Box IX



E. Ak�cetin and H. Kamac�/Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 3719{3742 3735

Table 15. Separation measurements S>i and S?i .

x1 x2 x3 x4 x5 x6

S>i 0.1542 0.0787 0.167 0.1705 0.178 0.1144

S?i 0.0932 0.1923 0.1109 0.1004 0.0964 0.164

the values Cyi , the ranking order of alternatives is
obtained below:

x2 � x6 � x3 � x1 � x4 � x5:

Then, it can be argued that x2 is the best mobile
phone brand according to the data presented by
experts.

6. Three-valued soft decision-making model
based on ELECTRE

This section introduces a modi�ed version of ELEC-
TRE technique (\ELimination Et Choix Traduisant la
REalit�e" or \Elimination and Choice Expressing Real-
ity"), which is generally intended to output choosing,
sorting, and ranking, to deal with the multi-criteria
group decision-making problems based on three-valued
soft sets.

As was �rst applied in 1965, the ELECTRE
method was employed to choose the best alternative(s)
from a given set of alternatives and it was applied to
three fundamental problems:

Choosing : Selecting a restricted number of the most
interesting potential alternatives, as small as possible
which will justify elimination of the others.

Sorting : Assigning each potential alternative to one
of the categories a family previously described; the
categories are ordered from the worst to best .

Ranking : Ordering alternatives from the best to worst
with the possibility of ties.
The main procedure of ELECTRE is described in a
series of steps (see [52{56].

Now, a multi-criteria group decision making model is
constructed on three-valued soft sets using the modi�ed
ELECTRE technique.

Algorithm 4: ELECTRE based three-valued
soft sets

Step 1. Describe the multi-criteria group-decision-
making problem (the same as Step 1 in Algorithm
3).
Step 2. For each decision maker Ek, the decision
matrix Dk is constructed (the same as Step 2 in
Algorithm 3).

Step 3. For each decision matrix Dk, the normalized
decision matrix Rk is constructed (the same as Step 3
in Algorithm 3).
Step 4. For each normalized decision matrix Rk, the
weighted normalized decision matrix Vk is created
(the same as Step 4 in Algorithm 3).
Step 5. After combining the weighted normalized
decision matrices Vk (k 2 Is), the average weighted
normalized decision matrix V is formed (the same as
Step 5 in Algorithm 3).
Step 6. The concordance sets and discordance sets
are determined. The concordance set is composed of
the index of all parameters for which the alternative
x� is preferred over the alternative x�. This set can
be described as follows.

For �; � 2 Im and � 6= � (note that an
alternative is not compared to itself):

J +
�� = fj : v�j � v�jg: (32)

The discordance set contains the index of all param-
eters for which the alternative x� is worse than the
alternative x�. This set can be described as follows.

For �; � 2 Im and � 6= �:

J��� = fj : v�j < v�jg: (33)

In other words, this set can be considered as the
complement of the concordance set J +

��, i.e., J��� =
J n J +

�� where J = fj : pj 2 Pg.
Step 7. The concordance matrix and discordance
matrix are generated by employing the sets of con-
cordance and discordance, respectively.

The concordance matrix can be expressed as
follows:

A =

26666666666664

� : : : a1� : : : a1m
: : : : :
: : : : : :
: : : : : :
a�1 : : : a�� : : : a�m
: : : : :
: : : : : :
: : : : : :

am1 : : : am� : : : �

37777777777775
= [a��]m�m;

where:
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a�� =
P
j2J+

��

Ps
k=1 !

k
jP

j2J
Ps
k=1 !kj

; (0 � a�� � 1); (34)

for all �; � 2 Im. In other words, each component of
concordance matrix is found as a summation of the
(standardized) weights of all parameters correspond-
ing to the indices in the concordance set J +.

The discordance matrix can be expressed as
follows:

B =

26666666666664

� : : : b1� : : : b1m
: : : : :
: : : : : :
: : : : : :
b�1 : : : b�� : : : b�m
: : : : :
: : : : : :
: : : : : :

bm1 : : : bm� : : : �

37777777777775
= [b��]m�m;

where:

b�� =
P
j2J��� jv�j � v�j jP
j2J jv�j � v�j j ; (0 � b�� � 1); (35)

for all �; � 2 Im.
Step 8. The concordance threshold A and discor-
dance threshold B are found.

The concordance threshold is calculated as fol-
lows:

A =

mP
�=1

mP
�=1

a��

m(m� 1)
; (0 � A � 1); (36)

and the discordance threshold is calculated below:

B =

mP
�=1

mP
�=1

b��

m(m� 1)
; (0 � B � 1): (37)

Step 9. The e�ective concordance matrix F and
e�ective discordance matrix G are created.

The e�ective concordance matrix F is measured
based on the concordance threshold A, as expressed
in the following:

F =

26666666666664

� : : : f1� : : : f1m
: : : : :
: : : : :
: : : : : :
f�1 : : : f�� : : : f�m
: : : : :
: : : : :
: : : : : :

fm1 : : : fm� : : : �

37777777777775
= [f��]m�m;

where:

f�� =

(
1; if a�� � A
0; if a�� < A (38)

The e�ective discordance matrix G is measured based
on the discordance threshold B, as expressed in the
following:

G =

26666666666664

� : : : g1� : : : g1m
: : : : :
: : : : :
: : : : : :
g�1 : : : g�� : : : g�m
: : : : :
: : : : :
: : : : : :

gm1 : : : gm� : : : �

37777777777775
= [g��]m�m;

where:

g�� =

(
0; if b�� > B
1; if b�� � B (39)

Step 10. The aggregated outranking matrix H is
constructed. Then, the aggregated outranking matrix
H is established by merging the e�ective concordance
information with e�ective discordance information.
The matrix H can be described as follows:

H =

26666666666664

� : : : h1� : : : h1m
: : : : :
: : : : :
: : : : : :
h�1 : : : h�� : : : h�m
: : : : :
: : : : :
: : : : : :

hm1 : : : hm� : : : �

37777777777775
= [h��]m�m;

where:

h�� = f�� � g��; (40)

for all �; � 2 Im.
Step 11. The alternatives (objects) are ranked
in order of preference. The components in the
aggregated outranking matrix H are indicative of
the dominance of any alternative over the other.
Therefore, according to this priority, a choice priority
among the alternatives is considered to rank the
alternatives.

Given the aggregated outranking matrix H, the
binary relations among the alternatives may take
place as one of the following three situations:
(a) x� � x� (i.e., x� is strictly preferred over x� or

x� is dominant over x�) if h�� = 1 and h�� = 0;
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(b) x� � x� (i.e., x� is indi�erent to x�) if h�� = 1
and h�� = 1;

(c) x�?x� (i.e., x� and x� are incomparable) if h�� =
0 and h�� = 0.

Therefore, the ranking order of alternatives can be
interpreted.

For the implementation of this model, a solution
that follows the multi-criteria group-decision-making
problem is o�ered.

Example 6.1. Supplier selection is among the most
important issues in the supply chain management area.
In this regard, a numerical example of a supplier
selection problem adopted from [57,58] was taken into
account. A high-technology company that manufac-
tures electronic products aims to evaluate and choose
a materials supplier. Assume that X = fx1; x2; x3; x4g
is a set of four suppliers chosen as candidates (alter-
natives). A single decision maker may not be able to
accurately consider all relevant aspects during decision-
making. Therefore, the company's leader decides to
put together a decision committee to determine a
suitable supplier. A committee of three decision makers
(experts) is established containing: 1) Financial expert
(E1), who evaluates alternatives in terms of cost and
�nance; 2) Quality control expert (E2), who evaluates
alternatives in terms of quality and safety; and 3)
Engineering expert (E3), who evaluates alternatives in
terms of engineering and technical aspects.

Six, evaluation parameters are also considered: 1)
performance (p1), 2) cost control (p2), 3) management
audit (p3), 4) service (p4), 5) company reputation (p5),

and 6) quality (p6). To deal with this problem, the
steps of Algorithm 4 are followed:

Step 1. Decision makers (experts) E1; E2, and E3
make their decisions based on the parameter subsets
Q1 = fp1; p2; p3; p5g, Q2 = fp1; p2; p3; p5; p6g, and
Q3 = fp1; p2; p4; p5; p6g, respectively. In addition,
they measure the weights of their choice parameters,
as shown in Table 16.

Decision makers (experts) present their opinion
about the truth of alternative xi under the parameter
pj and construct Table 17.
Step 2. The (three-valued) decision matrices Dk

(k = 1; 2; 3) are constructed as follows:

D1 =

2664 1 0:25 0 0 1 0
0:25 1 1 0 0 0

0 1 1 0 0:25 0
0:25 0:25 0:25 0 1 0

3775 ;
D2 =

2664 0 0:125 1 0 0:125 0
1 0 0 0 0 1
1 1 1 0 0:125 0

0:125 0 0:125 0 0 1

3775 ;
D3 =

26640:25 0 0 0 0:25 0
0 0:25 0 0 0:25 0
1 0 0 0 0:25 1
1 1 0 1 0:25 0

3775 :
Steps 3 and 4. For the decision matrices Dk (k =
1; 2; 3), the normalized decision matrices Rk (k =
1; 2; 3) and weighted normalized decision matrices Vk

(k = 1; 2; 3) are constructed similar to that in Steps
3 and 4 of Example 5.1; hence, it is omitted.

Table 16. The weights of the decision maker's choice parameters.

Decision makers/weights !1 !2 !3 !4 !5 !6

Engineering expert (E1) 0.2 0.15 0.5 0 0.15 0
P6
j=1 !

1
j = 1

Financial expert (E2) 0.15 0.25 0.25 0 0.1 0.25
P6
j=1 !

2
j = 1

Quality control expert (E3) 0.2 0.2 0 0.1 0.1 0.4
P6
j=1 !

3
j = 1

Table 17. The expert's three valued soft sets TQ1 , TQ2 , and TQ3 .

Decision makers: Financial expert
(E1)

Quality control expert
(E2)

Engineering expert
(E3)

X=P p1 p2 p3 p4 p5 p6 p1 p2 p3 p4 p5 p6 p1 p2 p3 p4 p5 p6

x1 1 1
2 0 0 1 0 0 1

2 1 0 1
2 0 1

2 0 0 0 1
2 0

x2
1
2 1 1 0 0 0 1 0 0 0 0 1 0 1

2 0 0 1
2 0

x3 0 1 1 0 1
2 0 1 1 1 0 1

2 0 1 0 0 0 1
2 1

x4
1
2

1
2

1
2 0 1 0 1

2 0 1
2 0 0 1 1 1 0 1 1

2 0

Impact coe�cient �k: �1 = 2 �2 = 3 �3 = 2
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Table 18. Sets of concordance and discordance.

Concordance set (J+) Discordance set (J )
x1 x2 x3 x4 x1 x2 x3 x4

x1 { f1; 4; 5g f4; 5g f1; 3; 5g { f2; 3; 6g f1; 2; 3; 6g f2; 4; 6g
x2 f2; 3; 4; 6g { f4g f3; 6g f1; 5g { f1; 2; 3; 5; 6g f1; 2; 4; 5g
x3 f1; 2; 3; 4; 6g f1; 2; 3; 4; 5; 6g { f1; 2; 3; 6g f5g ; { f4; 5g
x4 f2; 4; 6g f1; 2; 4; 5; 6g f4; 5g { f1; 3; 5g f3g f1; 2; 3; 6g {

Step 5. Then, the average weighted normalized
decision matrix is:

V = V1 �V2 �V3 =26640:0744 0:0189 0:0586 0 0:0917 0
0:0509 0:0504 0:116 0 0:0333 0:0589
0:0816 0:117 0:1747 0 0:0656 0:1333
0:0665 0:0732 0:0363 0:0333 0:0681 0:0589

3775
= [vij ]4�6;

where the operation � represents the arithmetic
mean.
Step 6. With the consideration of the average
weighted normalized decision matrix V, the concor-
dance set and discordance set are determined and
presented in Table 18.
Step 7. Then, the concordance matrix and discor-
dance matrix are respectively generated as follows:

A =

2664 � 0:3333 0:15 0:55
0:7 � 0:0333 0:4666

0:8833 1 � 0:85
0:45 0:75 0:15 �

3775
= [a��]4�4; and

B=

2664 � 0:6434 0:9314 0:7314
0:3565 � 1 0:5719
0:0685 0 � 0:1164
0:2685 0:428 0:8718 �

3775=[b��]4�4:

Step 8. The concordance threshold and discordance
threshold are calculated as A = 0:5263 and B =
0:4989, respectively.
Step 9. The e�ective concordance matrix F and
e�ective discordance matrix G are created as follows:

F =

2664� 0 0 1
1 � 0 0
1 1 � 1
0 1 0 �

3775 = [f��]4�4; and

G =

2664� 0 0 0
1 � 0 0
1 1 � 1
1 1 0 �

3775 = [g��]4�4:

Step 10. Then, the aggregated outranking matrix
H is

H =

2664� 0 0 0
1 � 0 0
1 1 � 1
0 1 0 �

3775 = [h��]4�4:

Step 11. Considering the aggregated outranking
matrix H, we obtain the following binary relations
as:
� h21 = 1 and h12 = 0) x2 � x1,
� h31 = 1 and h13 = 0) x3 � x1,
� h32 = 1 and h23 = 0) x3 � x2,
� h34 = 1 and h43 = 0) x3 � x4,
� h42 = 1 and h24 = 0) x4 � x2.
Therefore, the ranking order of alternatives is found
as x3 � x4 � x2 � x1.

7. Comparison and discussion

Algorithm 2 is more general than Algorithm 1; in
other words, it is the version that takes into account
parameter weights. In this section, the performances
of Algorithms 2, 3, and 4 are explained and evaluated.
All of these algorithms can be used to deal with multi-
criteria group decision problems involving incomplete
information. While each of them has a di�erent oper-
ating philosophy, they also have one goal in common,
that is, to combine the evaluations of multiple decision-
makers and to propose an optimal choice. They
can also o�er a choice according to the assessment
of only one decision-maker. While Algorithm 2 can
be applied if the decision-makers determine the same
impact coe�cient for \undetermined", there is no such
limitation for Algorithms 3 and 4. The computational
performance of each of our algorithms is critically
analyzed by the experimental studies; hence, we have
Table 19.

As shown in Table 19, the outputs of Algorithms 3
and 4 are the same. For many decision-making prob-
lems, the results obtained from these two algorithms
either are identical or overlap each other. Moreover, all
of these algorithms can be used for Examples 4.3 and
4.4, and produce the same results. For the problems in
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Table 19. Comparing and matching the results of Algorithms 2, 3, and 4.

Optimal choice
Problems Impact coe�cients Algorithm 2 Algorithm 3 Algorithm 4

Example 4.3 � = 1 (i.e., �1 = 1, �2 = 1) x3 x3 x3

Example 4.4 � = 1 (i.e., �1 = 1, �2 = 1) x1 x1 x1

Example 5.1 �1 = 1:5, �2 = 2 { x2 x2

Example 6.1 �1 = 2, �2 = 3, �3 = 2 { x3 x3

Note: \{" means that the algorithm is not applicable to this problem.

Table 20. The comparison results of Algorithms 2, 3, and 4 with some existing soft decision making algorithms.

Optimal choice

Ref. Problem in the paper Algorithm in
the paper

Algorithm 2 Algorithm 3 Algorithm 4

[38] Application (Section 5) in [38] u1 u1 u1 u1

[35; 36] (Example 5.17 in [35]
Example 3.3 in [36]

� h1; h2; h3 h1; h2; h3 h1
h1 � h3 � h4?
h5 & h2 � h4?h5

[59] Example 31 in [59] u3 u3 u3 u3

[32] Table 2 (Section 3.4) in [32] h1; h6 h1; h6 h1; h6 h1; h6

Note: For Algorithms 2, 3, and 4, the weights of parameters in decision problem are taken equally and their sum is 1.

Examples 5.1 and 6.1, the outputs of the algorithms
coincide. These results support the e�ciency and
usefulness of the proposed algorithms.

Since the three-valued soft set is an extension
of soft set, the emerging algorithms can be applied
to decision-making problems based on the soft set(s).
In this respect, the results of the proposed algorithms
with those of some of the existing soft decision-making
algorithms were compared. The details supporting this
argument are presented in Table 20.

In this table, the weights of parameters in each of
these problems were equally considered when making
calculations in Algorithms 2, 3, and 4 (for instance,
in application (Section 5) in [38], the parameter set is
X = fx1; x2; x3g and so we specify !1 = !2 = !3 = 1

3 ).
Also, � can be arbitrarily chosen in accordance with
the comments on the selection of the impact coe�cient
mentioned above. It is clear that the arbitrary selection
of � will not change the result(s).

As shown in Table 20, the results of our algo-
rithms coincide with those of existing soft decision-
making algorithms. For Example 5.17 in [35] and
Example 3.3 in [36], the optimal choice by the algo-
rithms proposed in [35,36] is fh1; h2; h3g, while the
optimal choice by Algorithm 3 is h1 (where h1 �
h3 � h2). This is not a contradiction, and this
is the e�ect of normalizing the decision matrices in
the model of TOPSIS (Algorithm 3). Considering
the result of Algorithm 4 for the same problems, we
say that h1 and h2 are incomparable, while h3 and
h2 are incomparable. This does not contradict the

result that the optimal choice is fh1; h2; h3g, because
what is certain is that h1 � h4?h5, h2 � h4?h5,
and h3 � h4?h5. Consequently, the applicability
of our algorithms to decision making based on both
soft set and three-valued soft set demonstrates their
performance range and advantages.

8. Conclusion

This study de�ned a three-valued soft set as a gen-
eralization of the soft set and its set-theoretic oper-
ations like intersection, union, di�erence, and sym-
metric di�erence. Moreover, the basic relationships
concerning three-valued soft sets were described and
the corresponding generalization of the operations on
soft sets to these sets was highlighted. In this regard,
some examples for them were provided. The algorithms
supporting multi-criteria decision making for the three-
valued soft set based on Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS) and ELimi-
nation Et Choice Translating (ELECTRE) techniques
were formed and their outputs were compared. Thus,
it was pointed out that these algorithms exhibited the
applicability and e�ciency of three-valued soft sets in
handling the multi-criteria decision making involving
uncertain or incomplete information.

We hope that this work will contribute to
decision-making under uncertain and incomplete in-
formation in the context of soft sets and also will
provide new ideas for future studies related to soft sets.
Also, this study will motivate researchers to use three-
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valued logic stems in many practical applications such
as data mining, data selection, data integration, data
analysis, control of production processes, and pattern
evaluation. In near future, we intend to explore new
operations on three-valued soft sets and their practical
applications in the �elds such as science, social science,
medical science, environmental science, economics, and
so on.
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